1
|
Mullally WJ, O'Leary CG, O'Byrne KJ. Rearranged during transfection (RET) lung cancer - Update on targeted therapies. Lung Cancer 2025; 200:108083. [PMID: 39827484 DOI: 10.1016/j.lungcan.2025.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The enhanced comprehension of the molecular pathways underpinning oncogenesis in non-small cell lung cancer (NSCLC) has led to the advancement of personalized treatment for individuals with actionable mutations using targeted therapies. The rearranged during transfection (RET) proto-oncogene, is critical in the embryonic development of various tissues, including renal, neural, and neuroendocrine tissue. RET fusions have been observed in approximately 1-2% of NSCLC cases. Targeted therapies for NSCLC with RET alterations have progressed significantly over the past decade. While multikinase inhibitors (MKIs) faced limitations in efficacy and tolerability, the introduction of selective RET inhibitors (SRIs) such as selpercatininb and pralsetinib has transformed patient outcomes, resulting in deep and durable responses. Ongoing clinical trials are exploring their potential benefits in the neoadjuvant and adjuvant setting. Early phase clinical trials endeavor to demonstrate next-generation selective RET inhibitors can effectively overcome SRI resistance mechanisms, offer improved safety profiles, and enhance patient outcomes.
Collapse
Affiliation(s)
- W J Mullally
- Department of Medical Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia.
| | - C G O'Leary
- Department of Medical Oncology, Mater Misericordiae Hospital, South Brisbane, Queensland 4101, Australia
| | - K J O'Byrne
- Department of Medical Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia; The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
2
|
Wang S, Wang Y, Wu X, Yang L, Zhang X. Patients outcomes in lung adenocarcinoma transforming to small-cell lung cancer after tyrosine kinase inhibitor therapy. World J Surg Oncol 2025; 23:34. [PMID: 39893475 PMCID: PMC11787757 DOI: 10.1186/s12957-025-03687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) transforming to small cell lung cancer (SCLC) is one of the mechanisms of resistance to tyrosine kinase inhibitors (TKIs). Cases of NSCLC transforming into SCLC have been discovered. However, we lack concentrated data on the characteristics of this population and the transformed SCLC to aid our insight of the biology and clinical value of NSCLC transforming with positive. METHODS We systematically reviewed the published literatures and summarized the pathological and clinical characteristics, and the prognosis, of published cases. RESULTS 140 patients with lung adenocarcinoma (LUAD) were included in this study, with a median age of 56.8 years. The median time from the first diagnosis of LUAD transforming to SCLC (ttSCLC) was 20.0 months. The median overall survival (mOS) after the diagnosis of SCLC was 11.0 months (95% CI, 7.41 to 14.59 months). In the univariate analysis, ever smoking (either former or current) was a promising predictor of a shorter ttSCLC (HR, 1.73; 95% CI, 1.14 to 2.62; P = 0.010). TKIs therapy administered as a second line and beyond treatment was related to a significant delay in SCLC onset compared to first-line therapy (HR, 0.62; 95% CI, 0.40 to 0.96; P = 0.031). The median progression-free survival (mPFS) on first-line platinum plus etoposide after the conversion to SCLC was 3.0 months. Female appeared to be related to worse outcomes after transformation of SCLC. CONCLUSION Transformed SCLC exhibited poor response to primary SCLC classic chemotherapy and immunotherapy. It carries a worse prognosis. Exploring novel therapeutic strategies for transformed SCLC is imperative.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450000, China
| | - Yongsen Wang
- Department of Molecular Pathology, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xuan Wu
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450000, China
| | - Li Yang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450000, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Joshi A, Bhaskar N, Pearson JD. Neuroendocrine Transformation as a Mechanism of Resistance to Targeted Lung Cancer Therapies: Emerging Mechanisms and Their Therapeutic Implications. Cancers (Basel) 2025; 17:260. [PMID: 39858043 PMCID: PMC11763869 DOI: 10.3390/cancers17020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/24/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, highlighting a major clinical challenge. Lung cancer is broadly classified into two histologically distinct subtypes, termed small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC). Identification of various oncogenic drivers of NSCLC has facilitated the development of targeted therapies that have dramatically improved patient outcomes. However, acquired resistance to these targeted therapies is common, which ultimately results in patient relapse. Several on-target and off-target resistance mechanisms have been described for targeted therapies in NSCLC. One common off-target mechanism of resistance to these therapies is histological transformation of the initial NSCLC into SCLC, a highly aggressive form of lung cancer that exhibits neuroendocrine histology. This mechanism of resistance presents a significant clinical challenge, since there are very few treatments available for these relapsed patients. Although the phenomenon of NSCLC-to-SCLC transformation was described almost 20 years ago, only recently have we begun to understand the mechanisms underlying this therapy-driven response. These recent discoveries will be key to identifying novel biomarkers and therapeutic strategies to improve outcomes of patients that undergo NSCLC-to-SCLC transformation. Here, we highlight these recent advances and discuss the potential therapeutic strategies that they have uncovered to target this mechanism of resistance.
Collapse
Affiliation(s)
- Asim Joshi
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 0T6, Canada; (A.J.); (N.B.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Nivitha Bhaskar
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 0T6, Canada; (A.J.); (N.B.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Joel D. Pearson
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 0T6, Canada; (A.J.); (N.B.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
4
|
Lucibello F, Gounant V, Aldea M, Duruisseaux M, Perol M, Chouaid C, Bennouna J, Fallet V, Renault A, Guisier F, Giroux-Leprieur E, Wislez M, Toffart AC, Mazieres J, Basse C, Hegarat N, Carton M, Girard N. Real-World Outcomes of Pralsetinib in RET Fusion-Positive NSCLC. JTO Clin Res Rep 2025; 6:100743. [PMID: 39850629 PMCID: PMC11754132 DOI: 10.1016/j.jtocrr.2024.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/22/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Pralsetinib is a RET inhibitor found to have antitumor activity in advanced, metastatic, RET fusion-positive NSCLC. Objective To assess real-world efficacy of pralsetinib and treatment sequences in patients with RET fusion-positive NSCLC. Design Retrospective study of consecutive patients enrolled in the French expanded-access program for pralsetinib from December 1, 2019, to December 31, 2021. Participants A total of 41 patients with advanced, refractory, RET fusion-positive NSCLC were included. Pralsetinib was administered at a daily dose of 400 mg based on safety and pharmacokinetic outcomes from previous phase 1/2 study. Results Pralsetinib was administered as second line in 23 patients (56%) and as third line and beyond in 15 patients (37%). After a median follow-up of 26.3 months, pralsetinib was ongoing in 13 patients. Median real-world progression-free survival was 11.8 (95% confidence interval [CI]: 9.3-15.5) months. Objective response rate was 68% (95% CI: 50%-82%), and disease control rate was 89% (95% CI: 75%-97%). Subsequent line of systemic therapy was initiated in 11 patients. Median overall survival from pralsetinib initiation was 23.8 (95% CI: 16.5-not reached) months. Conclusion In this extensive real-world cohort of patients with advanced or metastatic NSCLC harboring RET fusions, we highlight the antitumor efficacy of pralsetinib, particularly when administered in later treatment lines. We also observe the aggressive nature of disease progression, frequent utilization of chemotherapy and antiangiogenic agents as initial subsequent therapies, and limited insight into resistance mechanisms due to infrequent rebiopsy and genomic profiling at progression.
Collapse
Affiliation(s)
| | - Valérie Gounant
- Université Paris Cité, Service d’Oncologie thoracique & CIC1425 INSERM, Hôpital Bichat Claude Bernard, AP-HP. Nord, Paris, France
| | - Mihaela Aldea
- Gustave Roussy, Oncologie médicale, Villejuif, France
| | | | | | | | | | - Vincent Fallet
- APHP, Service de Pneumologie, Hôpital Tenon, Paris, France
| | | | - Florian Guisier
- Normandie Univ, UNIROUEN, LITIS Lab QuantIF team EA4108, CHU Rouen, and Inserm CIC-CRB 1404, Rouen, France
| | | | - Marie Wislez
- APHP, Service de Pneumologie, Hôpital Cochin, Paris, France
| | | | | | - Clémence Basse
- Institut Curie, Institut du Thorax, Paris, France
- Paris Saclay, UVSQ, UFR Simone Veil, Versailles, France
| | | | | | - Nicolas Girard
- Institut Curie, Institut du Thorax, Paris, France
- Paris Saclay, UVSQ, UFR Simone Veil, Versailles, France
| |
Collapse
|
5
|
Chen MF, Repetto M, Wilhelm C, Drilon A. RET Inhibitors in RET Fusion-Positive Lung Cancers: Past, Present, and Future. Drugs 2024; 84:1035-1053. [PMID: 38997570 PMCID: PMC11977511 DOI: 10.1007/s40265-024-02040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 07/14/2024]
Abstract
While activating RET fusions are identified in various cancers, lung cancer represents the most common RET fusion-positive tumor. The clinical drug development of RET inhibitors in RET fusion-positive lung cancers naturally began after RET fusions were first identified in patient tumor samples in 2011, and thereafter paralleled drug development in RET fusion-positive thyroid cancers. Multikinase inhibitors were initially tested with limited efficacy and substantial toxicity. RET inhibitors were then designed with improved selectivity, central nervous system penetrance, and activity against RET fusions and most RET mutations, including resistance mutations. Owing their success to these rationally designed features, the first-generation selective RET tyrosine kinase inhibitors (TKIs) had higher response rates, more durable disease control, and an improved safety profile compared to the multikinase inhibitors. This led to lung and thyroid cancer, and later tumor-agnostic regulatory approvals. While next-generation RET TKIs were designed to abrogate uncommon on-target (e.g., solvent front mutation) resistance to selpercatinib and pralsetinib, many of these drugs lacked the selectivity of the first-generation TKIs, raising the question of what the future holds for drug development in RET-dependent cancers.
Collapse
Affiliation(s)
- Monica F Chen
- Thoracic Oncology, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Early Drug Development Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Matteo Repetto
- Early Drug Development Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Clare Wilhelm
- Thoracic Oncology, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
- Early Drug Development Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexander Drilon
- Thoracic Oncology, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
- Early Drug Development Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
6
|
Li X, Luan X, Zhang M, Wang R, Guo J, Lv J, Qiu W, Zhao S. Potential therapeutic option for EGFR-mutant small cell lung cancer transformation: a case report and literature review. Front Immunol 2024; 15:1439033. [PMID: 39234244 PMCID: PMC11371601 DOI: 10.3389/fimmu.2024.1439033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Transformation from non-small cell lung cancer (NSCLC) to small cell lung cancer (SCLC) is rare and is associated with poor prognosis. However, the standard treatment protocols for patients with SCLC transformation remain unknown. Here, we report the case of a patient with advanced EGFR exon 19 deletion (19del) NSCLC who underwent SCLC transformation during targeted therapy. Biopsies and genetic testing were performed to adjust treatment regimens accordingly. The patient responded favorably to a combined treatment regimen comprising etoposide plus cisplatin chemotherapy and adebrelimab plus osimertinib. This case highlights the critical importance of acknowledging tumor heterogeneity in clinical decision-making and identifying potentially effective treatment options for patients with SCLC transformation. Additionally, we reviewed cases of the transformation of NSCLC to SCLC from 2017 to 2023.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shufen Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Zhang J, Zeng X, Guo Q, Sheng Z, Chen Y, Wan S, Zhang L, Zhang P. Small cell lung cancer: emerging subtypes, signaling pathways, and therapeutic vulnerabilities. Exp Hematol Oncol 2024; 13:78. [PMID: 39103941 DOI: 10.1186/s40164-024-00548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024] Open
Abstract
Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by early metastasis, rapid tumor growth and poor prognosis. In recent decades, the epidemiology, initiation and mutation characteristics of SCLC, as well as abnormal signaling pathways contributing to its progression, have been widely studied. Despite extensive investigation, fewer drugs have been approved for SCLC. Recent advancements in multi-omics studies have revealed diverse classifications of SCLC that are featured by distinct characteristics and therapeutic vulnerabilities. With the accumulation of SCLC samples, different subtypes of SCLC and specific treatments for these subtypes were further explored. The identification of different molecular subtypes has opened up novel avenues for the treatment of SCLC; however, the inconsistent and uncertain classification of SCLC has hindered the translation from basic research to clinical applications. Therefore, a comprehensives review is essential to conclude these emerging subtypes and related drugs targeting specific therapeutic vulnerabilities within abnormal signaling pathways. In this current review, we summarized the epidemiology, risk factors, mutation characteristics of and classification, related molecular pathways and treatments for SCLC. We hope that this review will facilitate the translation of molecular subtyping of SCLC from theory to clinical application.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Xiaoping Zeng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qiji Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhenxin Sheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yan Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shiyue Wan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lele Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Shiba-Ishii A, Isagawa T, Shiozawa T, Mato N, Nakagawa T, Takada Y, Hirai K, Hong J, Saitoh A, Takeda N, Niki T, Murakami Y, Matsubara D. Novel therapeutic strategies targeting bypass pathways and mitochondrial dysfunction to combat resistance to RET inhibitors in NSCLC. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167249. [PMID: 38768929 DOI: 10.1016/j.bbadis.2024.167249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
RET fusion is an oncogenic driver in 1-2 % of patients with non-small cell lung cancer (NSCLC). Although RET-positive tumors have been treated with multikinase inhibitors such as vandetanib or RET-selective inhibitors, ultimately resistance to them develops. Here we established vandetanib resistance (VR) clones from LC-2/ad cells harboring CCDC6-RET fusion and explored the molecular mechanism of the resistance. Each VR clone had a distinct phenotype, implying they had acquired resistance via different mechanisms. Consistently, whole exome-seq and RNA-seq revealed that the VR clones had unique mutational signatures and expression profiles, and shared only a few common remarkable events. AXL and IGF-1R were activated as bypass pathway in different VR clones, and sensitive to a combination of RET and AXL inhibitors or IGF-1R inhibitors, respectively. SMARCA4 loss was also found in a particular VR clone and 55 % of post-TKI lung tumor tissues, being correlated with higher sensitivity to SMARCA4/SMARCA2 dual inhibition and shorter PFS after subsequent treatments. Finally, we detected an increased number of damaged mitochondria in one VR clone, which conferred sensitivity to mitochondrial electron transfer chain inhibitors. Increased mitochondria were also observed in post-TKI biopsy specimens in 13/20 cases of NSCLC, suggesting a potential strategy targeting mitochondria to treat resistant tumors. Our data propose new promising therapeutic options to combat resistance to RET inhibitors in NSCLC.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Proto-Oncogene Proteins c-ret/antagonists & inhibitors
- Proto-Oncogene Proteins c-ret/genetics
- Proto-Oncogene Proteins c-ret/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Mitochondria/metabolism
- Mitochondria/drug effects
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Cell Line, Tumor
- Quinazolines/pharmacology
- Quinazolines/therapeutic use
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/antagonists & inhibitors
- Signal Transduction/drug effects
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/antagonists & inhibitors
- DNA Helicases/genetics
- DNA Helicases/metabolism
- DNA Helicases/antagonists & inhibitors
- Cytoskeletal Proteins
Collapse
Affiliation(s)
- Aya Shiba-Ishii
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takayuki Isagawa
- Center for Data Science, Jichi Medical University, Tochigi, Japan
| | - Toshihiro Shiozawa
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoko Mato
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, Ibaraki, Japan
| | - Tomoki Nakagawa
- Department of Pathology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Yurika Takada
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kanon Hirai
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Jeongmin Hong
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Anri Saitoh
- Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Toshiro Niki
- Department of Pathology, Jichi Medical University, Tochigi, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Matsubara
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
9
|
Shiba-Ishii A, Takemura N, Kawai H, Matsubara D. Histologic transformation of non-small-cell lung cancer in response to tyrosine kinase inhibitors: Current knowledge of genetic changes and molecular mechanisms. Cancer Sci 2024; 115:2138-2146. [PMID: 38801833 PMCID: PMC11247606 DOI: 10.1111/cas.16192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Lung cancer is the leading cause of cancer death and includes two major types: non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC), accounting for 85% and 15% of cases, respectively. Non-small-cell lung cancer harboring actionable driver mutations is generally treated with tyrosine kinase inhibitors (TKIs) molecularly targeting individual oncogenes. Although TKIs have greatly contributed to better clinical outcomes, acquired resistance to them inevitably occurs. Histologic or lineage transformation is a rare but well-documented off-target mechanism associated with acquired resistance, and has been identified in settings following treatment with multiple different TKIs and other drugs. It includes neuroendocrine transformation, squamous cell transformation, and epithelial-to-mesenchymal transition. Here, we review the clinicopathologic features of transformed tumors and current understanding of the key genetic alterations and biologic mechanism of lineage transformation in NSCLC, particularly TKI-triggered transformation.
Collapse
Affiliation(s)
- Aya Shiba-Ishii
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Japan
| | - Noriko Takemura
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Japan
| | - Hitomi Kawai
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Japan
| | - Daisuke Matsubara
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Japan
| |
Collapse
|
10
|
Chen R, Jian Y, Liu Y, Xie J. ALK-rearranged and EGFR wild-type lung adenocarcinoma transformed to small cell lung cancer: a case report. Front Oncol 2024; 14:1395654. [PMID: 38720809 PMCID: PMC11078020 DOI: 10.3389/fonc.2024.1395654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Background Cases of ALK-rearranged EGFR wild-type lung adenocarcinoma (LUAD) transforming into small cell lung cancer (SCLC) are rarely reported, and diagnosis is often delayed. The emergence of this transformation phenomenon is often regarded as a consequence of acquired resistance mechanisms. Case presentation A 47-year-old male diagnosed with poorly differentiated adenocarcinoma of the right middle lung (pT2N2M0, stage IIIA) achieved a 46-month progression-free survival (PFS) following surgery and adjuvant chemotherapy. During routine follow-up, tumor recurrence and metastasis was detected. Genetic testing revealed ALK rearrangement and wild-type EGFR, prompting treatment with ALK-TKIs. In May 2023, abdominal CT scans showed significant progression of liver metastases and abnormal elevation of the tumor marker NSE. Immunohistochemical results from percutaneous liver biopsy indicated metastatic SCLC. Results After resistance to ALK-TKIs and transformation to SCLC, the patient received chemotherapy combined with immunotherapy for SCLC, but the patient's disease progressed rapidly. Currently, the patient is being treated with albumin-bound paclitaxel in combination with oral erlotinib and remains stable. Conclusion Histological transformation emerges as a compelling mechanism of resistance to ALK-TKIs, necessitating the utmost urgency for repeat biopsies in patients displaying disease progression after resistance. These biopsies are pivotal in enabling the tailor-made adaptation of treatment regimens to effectively counteract the assorted mechanisms of acquired resistance, thus optimizing patient outcomes in the battle against ALK-driven malignancies.
Collapse
Affiliation(s)
- Rui Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yan Jian
- Jiangxi Provincial Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yuzhen Liu
- Graduate School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junping Xie
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Peng Y, Zheng Z, Zewen W, Yanan L, Mingyan Z, Meili S. Whole-exome sequencing explored mechanism of selpercatinib resistance in RET-rearranged lung adenocarcinoma transformation into small-cell lung cancer: a case report. BMC Pulm Med 2023; 23:492. [PMID: 38057798 PMCID: PMC10698965 DOI: 10.1186/s12890-023-02799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Small cell transformation was one mechanism by which EGFR-mutation NSCLC acquired resistance after tyrosine kinase inhibitors (TKIs) treatment. A few reports of small cell transformation occurred in other oncogene-driven lung cancers. We found the first case of transformation of a RET-rearranged lung adenocarcinoma to SCLC after selpercatinib, a novel highly selective RET TKIs. Whole-exome sequencing (WES) was used to explore alteration in gene expression in tumor tissue at initial diagnosis and after transformation into small cell carcinoma. We found that transformed into SCLC tumor tissue had inactivation of RB1 and TP53, with RET fusion was still present. In addition, the APOBEC family of cytidine deaminases appeared amplification. Although RET rearrangement still existed, using another RET TKIs was ineffective, and etoposide plus platinum might be an effective rescue treatment.
Collapse
Affiliation(s)
- Yan Peng
- Oncology Department, Central Hospital Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Zhu Zheng
- Research Department, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Wang Zewen
- Oncology Department, Central Hospital Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Liu Yanan
- Oncology Department, Central Hospital Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Zhang Mingyan
- School of Medicine, Shandong University, Jinan, P. R. China
| | - Sun Meili
- Oncology Department, Central Hospital Affiliated to Shandong First Medical University, Jinan, P. R. China.
| |
Collapse
|
12
|
Vakkalagadda CV, Patel JD. Addition of Trastuzumab Deruxtecan to Selpercatinib in a Patient With RET Fusion-Driven NSCLC and an Acquired HER2 Amplification: Case Report. JTO Clin Res Rep 2023; 4:100603. [PMID: 38144396 PMCID: PMC10746506 DOI: 10.1016/j.jtocrr.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Despite the high activity of selective RET inhibitors in RET-driven NSCLC, resistance eventually develops and there is unmet need to better define therapeutic options for patients. This is a case of a patient initially thought to have no targetable alterations, then found to have a RET fusion, and subsequently HER2 amplification on three distinct biopsies. She was treated initially with chemotherapy and immune therapy, then switched to selpercatinib, and eventually had fam-trastuzumab deruxtecan added to selpercatinib. She also developed neuroendocrine differentiation at time of progression in the context of a p53 mutation, which is a known factor that can lead to small cell transformation. This patient's case highlights the need for comprehensive molecular testing at both diagnosis and progression, as unexpected resistance mechanisms may be identified particularly for patients with uncommon driver mutations.
Collapse
Affiliation(s)
- Chetan V. Vakkalagadda
- Department of Medicine, Division of Hematology and Oncology, Northwestern University, Chicago, Illinois
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Jyoti D. Patel
- Department of Medicine, Division of Hematology and Oncology, Northwestern University, Chicago, Illinois
| |
Collapse
|
13
|
Kim MY, Jung SY, Hong S, Oh SW, Jin KN, Kim JE, Kim JS. Establishment and characterization of BMC-PDC-019: a novel patient-derived cell line of EGFR-mutant pulmonary adenocarcinoma transformed into small-cell lung cancer. Hum Cell 2023; 36:2179-2186. [PMID: 37707774 DOI: 10.1007/s13577-023-00980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Transformed small-cell lung cancer (tSCLC) from EGFR-mutant adenocarcinoma is a rare and aggressive form of lung cancer that can occur when the tumor develops resistance to EGFR targeted therapy and the cancer cells acquire additional genomic alterations that cause them to transform into SCLC. Treatment for tSCLC has not been established yet, and chemotherapy regimens for de novo SCLC are mostly recommended. However, these treatments showed disappointing outcome, and novel anti-cancer agents and immunological approaches are currently being developed. The patient-derived cell line is a critical tool for pre-clinical and translational research, but cell line models for tSCLC are not publicly available from cell banks. The aim of this study was to establish and characterize a novel cell line for tSCLC. Using a lymph-node biopsy tissue from a 58-year-old female patient, whose tumor was EGFR-mutant lung adenocarcinoma progressed on afatinib, we successfully established a cell line, named BMC-PDC-019. The tumor sample and cell line showed a typical expression of SCLC markers, such as CD56 and synaptophysin. The population doubling-time of BMC-PDC-019 cells was 48 h. We examined a range of proliferation-inhibiting effects of anti-cancer drugs currently used for de novo SCLC, using BMC-PDC-019 cells. We concluded that BMC-PDC-019 would be a useful tool for pre-clinical and translational research.
Collapse
Affiliation(s)
- Mi Young Kim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20 Boramae-Ro-5-Gil, Dongjak-Gu, Seoul, 07061, Republic of Korea
| | - Seung Yeon Jung
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20 Boramae-Ro-5-Gil, Dongjak-Gu, Seoul, 07061, Republic of Korea
| | - Sungyoul Hong
- Seoul National University College of Pharmacy, Seoul, Republic of Korea
| | - So Won Oh
- Department of Nuclear Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Kwang Nam Jin
- Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Ji Eun Kim
- Department of Pathology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jin-Soo Kim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20 Boramae-Ro-5-Gil, Dongjak-Gu, Seoul, 07061, Republic of Korea.
| |
Collapse
|
14
|
Pu X, Xu C, Wang Q, Wang W, Wu F, Cai X, Song Z, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Liu A, Li W, Zhan P, Liu H, Lv T, Miao L, Min L, Lin G, Huang L, Yuan J, Jiang Z, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhou J, Zhu Z, Pan W, Pang F, Huang J, Wang K, Wu F, Shen T, Zou S, Xu B, Wang L, Zhu Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Kang J, Zhang J, Zhang C, Fu J, Huang J, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Lan G, Yang S, Shi L, Wang Y, Li B, Zhang Z, Li Z, Li Y, Liu Z, Yang N, Wang H, Huang W, Hong Z, Wang G, Wang J, Fang M, Fang Y, Zhu X, Shen Y, Zhang Y, Ma S, Song Y, Lu Y, et alPu X, Xu C, Wang Q, Wang W, Wu F, Cai X, Song Z, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Liu A, Li W, Zhan P, Liu H, Lv T, Miao L, Min L, Lin G, Huang L, Yuan J, Jiang Z, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhou J, Zhu Z, Pan W, Pang F, Huang J, Wang K, Wu F, Shen T, Zou S, Xu B, Wang L, Zhu Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Kang J, Zhang J, Zhang C, Fu J, Huang J, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Lan G, Yang S, Shi L, Wang Y, Li B, Zhang Z, Li Z, Li Y, Liu Z, Yang N, Wang H, Huang W, Hong Z, Wang G, Wang J, Fang M, Fang Y, Zhu X, Shen Y, Zhang Y, Ma S, Song Y, Lu Y, Fang W, Li Z, Wu L. Expert consensus on the diagnosis and treatment of RET gene fusion non-small cell lung cancer in China. Thorac Cancer 2023; 14:3166-3177. [PMID: 37718634 PMCID: PMC10626248 DOI: 10.1111/1759-7714.15105] [Show More Authors] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
The rearranged during transfection (RET) gene is one of the receptor tyrosine kinases and cell-surface molecules responsible for transmitting signals that regulate cell growth and differentiation. In non-small cell lung cancer (NSCLC), RET fusion is a rare driver gene alteration associated with a poor prognosis. Fortunately, two selective RET inhibitors (sRETi), namely pralsetinib and selpercatinib, have been approved for treating RET fusion NSCLC due to their remarkable efficacy and safety profiles. These inhibitors have shown the ability to overcome resistance to multikinase inhibitors (MKIs). Furthermore, ongoing clinical trials are investigating several second-generation sRETis that are specifically designed to target solvent front mutations, which pose a challenge for first-generation sRETis. The effective screening of patients is the first crucial step in the clinical application of RET-targeted therapy. Currently, four methods are widely used for detecting gene rearrangements: next-generation sequencing (NGS), reverse transcription-polymerase chain reaction (RT-PCR), fluorescence in situ hybridization (FISH), and immunohistochemistry (IHC). Each of these methods has its advantages and limitations. To streamline the clinical workflow and improve diagnostic and treatment strategies for RET fusion NSCLC, our expert group has reached a consensus. Our objective is to maximize the clinical benefit for patients and promote standardized approaches to RET fusion screening and therapy.
Collapse
Affiliation(s)
- Xingxiang Pu
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityCentral South UniversityChangshaPeople's Republic of China
| | - Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM)Chinese Academy of SciencesHangzhouPeople's Republic of China
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Qian Wang
- Department of Respiratory MedicineAffiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese MedicineNanjingPeople's Republic of China
| | - Wenxian Wang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Fang Wu
- Department of Oncology, The Second Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouPeople's Republic of China
| | - Zhengbo Song
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostics CoreTianjin Medical University Cancer Institute and HospitalTianjinPeople's Republic of China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical Sciences, School of MedicineGuangzhouPeople's Republic of China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaPeople's Republic of China
| | - Jingjing Liu
- Department of Thoracic CancerJilin Cancer HospitalJilinPeople's Republic of China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer CenterZhejiang University School of MedicineHangzhouPeople's Republic of China
| | - Anwen Liu
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangPeople's Republic of China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer CenterZhejiang UniversityHangzhouPeople's Republic of China
| | - Ping Zhan
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Hongbing Liu
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Liyun Miao
- Department of Respiratory Medicine, Affiliated Drum Tower HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Lingfeng Min
- Department of Respiratory MedicineClinical Medical School of Yangzhou University, Subei People's Hospital of Jiangsu ProvinceYangzhouPeople's Republic of China
| | - Gen Lin
- Department of Medical OncologyFujian Medical University Cancer Hospital & Fujian Cancer HospitalFuzhouPeople's Republic of China
| | - Long Huang
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangPeople's Republic of China
| | - Jingping Yuan
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Zhansheng Jiang
- Department of Integrative OncologyTianjin Medical University Cancer Institute and HospitalTianjinPeople's Republic of China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei HospitalUniversity of Chinese Academy of SciencesNingboPeople's Republic of China
| | - Dongqing Lv
- Department of Pulmonary MedicineTaizhou Hospital of Wenzhou Medical UniversityTaizhouPeople's Republic of China
| | - Zongyang Yu
- Department of Respiratory Medicine, the 900th Hospital of the Joint Logistics Team (the Former Fuzhou General Hospital)Fujian Medical UniversityFuzhouPeople's Republic of China
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan HospitalCapital Medical UniversityBeijingPeople's Republic of China
| | - Chuanhao Tang
- Department of Medical OncologyPeking University International HospitalBeijingPeople's Republic of China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease; Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University (The First Affiliated Hospital of Guangzhou Medical University)GuangzhouPeople's Republic of China
| | - Junping Zhang
- Department of Thoracic Oncology, Shanxi Academy of Medical SciencesShanxi Bethune HospitalTaiyuanPeople's Republic of China
| | - Hui Guo
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Xuewen Liu
- Department of Oncology, the Third Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Jingxun Wu
- Department of Medical Oncology, the First Affiliated Hospital of MedicineXiamen UniversityXiamenPeople's Republic of China
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and TechnologyChengduPeople's Republic of China
| | - Zhengfei Zhu
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiPeople's Republic of China
| | - Weiwei Pan
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingPeople's Republic of China
| | - Fei Pang
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiPeople's Republic of China
| | - Jintao Huang
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiPeople's Republic of China
| | - Kai Wang
- Department of MedicalShanghai OrigiMed Co, LtdShanghaiPeople's Republic of China
| | - Fan Wu
- Department of MedicalMenarini Silicon Biosystems SpaShanghaiPeople's Republic of China
| | - Tingting Shen
- Department of MedicalStone Pharmaceuticals (Suzhou) Co., Ltd.ShanghaiPeople's Republic of China
| | - Shirui Zou
- Department of MedicalStone Pharmaceuticals (Suzhou) Co., Ltd.ShanghaiPeople's Republic of China
| | - Bingwei Xu
- Department of Biotherapy, Cancer InstituteFirst Affiliated Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Liping Wang
- Department of OncologyBaotou Cancer HospitalBaotouPeople's Republic of China
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingPeople's Republic of China
| | - Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease; Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University (The First Affiliated Hospital of Guangzhou Medical University)GuangzhouPeople's Republic of China
| | - Jing Cai
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangPeople's Republic of China
| | - Ling Xu
- Department of Interventional Pulmonary DiseasesAnhui Chest HospitalHefeiPeople's Republic of China
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinnanPeople's Republic of China
| | - Xiaodong Jiao
- Department of Medical Oncology, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiPeople's Republic of China
| | - Kainan Li
- Department of Oncology, Shandong Provincial Third Hospital, Cheeloo College of MedicineShandong UniversityJinanPeople's Republic of China
| | - Huijing Feng
- Department of Thoracic Oncology, Shanxi Academy of Medical SciencesShanxi Bethune HospitalTaiyuanPeople's Republic of China
| | - Lin Wang
- Department of Pathology, Shanxi Academy of Medical SciencesShanxi Bethune HospitalTaiyuanPeople's Republic of China
| | - Yingying Du
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Wang Yao
- Department of Interventional Oncology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou HospitalZhejiang University School of MedicineHuzhouPeople's Republic of China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Yanwen Yao
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Jing Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical Sciences, School of MedicineGuangzhouPeople's Republic of China
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical Sciences, School of MedicineGuangzhouPeople's Republic of China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's HospitalGuangdong Academy of Medical Sciences, School of MedicineGuangzhouPeople's Republic of China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaPeople's Republic of China
| | - Jianhui Huang
- Department of OncologyLishui Municipal Central HospitalLishuiPeople's Republic of China
| | - Yinbin Zhang
- Department of Oncology, the Second Affiliated Hospital of Medical CollegeXi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Pingli Sun
- Department of PathologyThe Second Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Hong Wang
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingPeople's Republic of China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Dong Wang
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Yue Hao
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Zhen Wang
- Department of Radiation Oncology, Affiliated Jinling HospitalMedical School of NanjingNanjingPeople's Republic of China
| | - Bing Wan
- Department of Respiratory MedicineThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Donglai Lv
- Department of Clinical OncologyThe 901 Hospital of Joint Logistics Support Force of People Liberation ArmyHefeiPeople's Republic of China
| | - Gang Lan
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingPeople's Republic of China
| | - Shengjie Yang
- Department of Thoracic SurgeryChuxiong Yi Autonomous Prefecture People's HospitalChuxiongPeople's Republic of China
| | - Lin Shi
- Department of Respiratory Medicine, Zhongshan HospitalFudan UniversityShanghaiPeople's Republic of China
| | - Yina Wang
- Department of Oncology, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouPeople's Republic of China
| | - Bihui Li
- Department of OncologyThe Second Affiliated Hospital of Guilin Medical UniversityGuilinPeople's Republic of China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of PharmacyJinan UniversityGuangzhouPeople's Republic of China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of PathologyPeking University Cancer Hospital & InstituteBeijingPeople's Republic of China
| | - Yuan Li
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiPeople's Republic of China
| | - Zhefeng Liu
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingPeople's Republic of China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaPeople's Republic of China
| | - Huijuan Wang
- Department of Medical OncologyThe Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouPeople's Republic of China
| | - Wenbin Huang
- Department of Pathologythe First Affiliated Hospital of Henan University of Science and TechnologyLuoyangPeople's Republic of China
| | - Zhuan Hong
- Department of Medical Oncology, Jiangsu Cancer HospitalNanjing Medical University Affiliated Cancer HospitalNanjingPeople's Republic of China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao HospitalThird Military Medical UniversityChongqingPeople's Republic of China
| | - Jiandong Wang
- Department of Pathology, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Meiyu Fang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw HospitalZhejiang UniversityHangzhouPeople's Republic of China
| | - Xixu Zhu
- Department of Radiation Oncology, Affiliated Jinling HospitalMedical School of NanjingNanjingPeople's Republic of China
| | - Yi Shen
- Department of Thoracic Surgery, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Yiping Zhang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouPeople's Republic of China
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Cancer CenterZhejiang University School of MedicineHangzhouPeople's Republic of China
| | - Yong Song
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingPeople's Republic of China
| | - Yuanzhi Lu
- Department of Clinical PathologyThe First Affiliated Hospital of Jinan UniversityGuangzhouPeople's Republic of China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouPeople's Republic of China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Lin Wu
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityCentral South UniversityChangshaPeople's Republic of China
| |
Collapse
|
15
|
Megyesfalvi Z, Gay CM, Popper H, Pirker R, Ostoros G, Heeke S, Lang C, Hoetzenecker K, Schwendenwein A, Boettiger K, Bunn PA, Renyi-Vamos F, Schelch K, Prosch H, Byers LA, Hirsch FR, Dome B. Clinical insights into small cell lung cancer: Tumor heterogeneity, diagnosis, therapy, and future directions. CA Cancer J Clin 2023; 73:620-652. [PMID: 37329269 DOI: 10.3322/caac.21785] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023] Open
Abstract
Small cell lung cancer (SCLC) is characterized by rapid growth and high metastatic capacity. It has strong epidemiologic and biologic links to tobacco carcinogens. Although the majority of SCLCs exhibit neuroendocrine features, an important subset of tumors lacks these properties. Genomic profiling of SCLC reveals genetic instability, almost universal inactivation of the tumor suppressor genes TP53 and RB1, and a high mutation burden. Because of early metastasis, only a small fraction of patients are amenable to curative-intent lung resection, and these individuals require adjuvant platinum-etoposide chemotherapy. Therefore, the vast majority of patients are currently being treated with chemoradiation with or without immunotherapy. In patients with disease confined to the chest, standard therapy includes thoracic radiotherapy and concurrent platinum-etoposide chemotherapy. Patients with metastatic (extensive-stage) disease are treated with a combination of platinum-etoposide chemotherapy plus immunotherapy with an anti-programmed death-ligand 1 monoclonal antibody. Although SCLC is initially very responsive to platinum-based chemotherapy, these responses are transient because of the development of drug resistance. In recent years, the authors have witnessed an accelerating pace of biologic insights into the disease, leading to the redefinition of the SCLC classification scheme. This emerging knowledge of SCLC molecular subtypes has the potential to define unique therapeutic vulnerabilities. Synthesizing these new discoveries with the current knowledge of SCLC biology and clinical management may lead to unprecedented advances in SCLC patient care. Here, the authors present an overview of multimodal clinical approaches in SCLC, with a special focus on illuminating how recent advancements in SCLC research could accelerate clinical development.
Collapse
Affiliation(s)
- Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helmut Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Robert Pirker
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gyula Ostoros
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna Schwendenwein
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Paul A Bunn
- University of Colorado School of Medicine, Aurora, CO, USA
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Tisch Cancer Institute, Center for Thoracic Oncology, Mount Sinai Health System, New York, NY, USA
| | - Balazs Dome
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Translational Medicine, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Desilets A, Repetto M, Yang SR, Sherman EJ, Drilon A. RET-Altered Cancers-A Tumor-Agnostic Review of Biology, Diagnosis and Targeted Therapy Activity. Cancers (Basel) 2023; 15:4146. [PMID: 37627175 PMCID: PMC10452615 DOI: 10.3390/cancers15164146] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
RET alterations, such as fusions or mutations, drive the growth of multiple tumor types. These alterations are found in canonical (lung and thyroid) and non-canonical (e.g., gastrointestinal, breast, gynecological, genitourinary, histiocytic) cancers. RET alterations are best identified via comprehensive next-generation sequencing, preferably with DNA and RNA interrogation for fusions. Targeted therapies for RET-dependent cancers have evolved from older multikinase inhibitors to selective inhibitors of RET such as selpercatinib and pralsetinib. Prospective basket trials and retrospective reports have demonstrated the activity of these drugs in a wide variety of RET-altered cancers, notably those with RET fusions. This paved the way for the first tumor-agnostic selective RET inhibitor US FDA approval in 2022. Acquired resistance to RET kinase inhibitors can take the form of acquired resistance mutations (e.g., RET G810X) or bypass alterations.
Collapse
Affiliation(s)
- Antoine Desilets
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
| | - Matteo Repetto
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20133 Milan, Italy
| | - Soo-Ryum Yang
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
| | - Eric J. Sherman
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
17
|
Toyokawa G, Bersani F, Bironzo P, Picca F, Tabbò F, Haratake N, Takenaka T, Seto T, Yoshizumi T, Novello S, Scagliotti GV, Taulli R. Tumor plasticity and therapeutic resistance in oncogene-addicted non-small cell lung cancer: from preclinical observations to clinical implications. Crit Rev Oncol Hematol 2023; 184:103966. [PMID: 36925092 DOI: 10.1016/j.critrevonc.2023.103966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The identification of actionable targets in oncogene-addicted non-small cell lung cancer (NSCLC) has fueled biomarker-directed strategies, especially in advanced stage disease. Despite the undeniable success of molecular targeted therapies, duration of clinical response is relatively short-lived. While extraordinary efforts have defined the complexity of tumor architecture and clonal evolution at the genetic level, not equal interest has been given to the dynamic mechanisms of phenotypic adaptation engaged by cancer during treatment. At the clinical level, molecular targeted therapy of EGFR-mutant and ALK-rearranged tumors often results in epithelial-to-mesenchymal transition (EMT) and histological transformation of the original adenocarcinoma without the acquisition of additional genetic lesions, thus limiting subsequent therapeutic options and patient outcome. Here we provide an overview of the current understanding of the genetic and non-genetic molecular circuits governing this phenomenon, presenting current strategies and potentially innovative therapeutic approaches to interfere with lung cancer cell plasticity.
Collapse
Affiliation(s)
- Gouji Toyokawa
- Department of Oncology, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy; Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Francesca Bersani
- Department of Oncology, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy; Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Paolo Bironzo
- Department of Oncology, University of Torino, AOU S. Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Francesca Picca
- Department of Oncology, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy; Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Fabrizio Tabbò
- Department of Oncology, University of Torino, AOU S. Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Naoki Haratake
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Seto
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Silvia Novello
- Department of Oncology, University of Torino, AOU S. Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Giorgio V Scagliotti
- Department of Oncology, University of Torino, AOU S. Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Italy.
| | - Riccardo Taulli
- Department of Oncology, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy; Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy.
| |
Collapse
|