1
|
Zhang F, Ding Z, Lian Y, Yang X, Hu P, Liu Y, Xu L, Li Z, Qiu H. Prophylactic antibiotic use is associated with better clinical outcomes in gastric cancer patients receiving immunotherapy. Oncologist 2025; 30:oyae362. [PMID: 40036772 PMCID: PMC11879193 DOI: 10.1093/oncolo/oyae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/03/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND The relationship between antibiotic treatment and immunotherapy efficacy is complex. METHODS This study was a single-center study. History of antibiotic use in gastric cancer (GC) patients within 1 or 3 months prior to immunotherapy was collected. Patients were categorized into 3 groups according to whether they had used antibiotics prior to immunotherapy: none, prophylactic use, and infection. RESULTS A total of 252 GC patients received immunotherapy, of which 38.5% (97/252) received antibiotic treatment within 1 month before immunotherapy (prophylactic use in 72.2% of patients) and 48.8% (123/252) received antibiotic treatment within 3 months before immunotherapy (prophylactic use in 74.8% of patients). The prophylactic use of antibiotic within 1 month prior to immunotherapy significantly improved overall survival (OS) compared with patients who received anti-infective therapy and had no history of antibiotic use (prophylactic vs infection: OS, 22.6 vs 9.7 m, HR, 0.53, 95% CI, 0.27-1.07; prophylactic vs none: OS, 22.6 vs 14.7 m, HR, 0.57; 95% CI, 0.39-0.83). The use of antibiotics in infected patients did not increase the risk of death in patients compared with those who did not use antibiotics. Prophylactic antibiotic use within 1 month before immunotherapy is an independent prognostic factor for OS. CONCLUSIONS Prophylactic use of antibiotics is associated with better prognosis in GC patients receiving immunotherapy. Therefore, there is no necessity to delay the use of immune checkpoint inhibitors in this group of patients.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| | - Zixuan Ding
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yongping Lian
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| | - Xiao Yang
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| | - Pengbo Hu
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| | - Yongqing Liu
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| | - Liang Xu
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| | - Zhou Li
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430000, Hubei, China
| |
Collapse
|
2
|
Lim MY, Hong S, Nam YD. Understanding the role of the gut microbiome in solid tumor responses to immune checkpoint inhibitors for personalized therapeutic strategies: a review. Front Immunol 2025; 15:1512683. [PMID: 39840031 PMCID: PMC11747443 DOI: 10.3389/fimmu.2024.1512683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Immunotherapy, especially immune checkpoint inhibitor (ICI) therapy, has yielded remarkable outcomes for some patients with solid cancers, but others do not respond to these treatments. Recent research has identified the gut microbiota as a key modulator of immune responses, suggesting that its composition is closely linked to responses to ICI therapy in cancer treatment. As a result, the gut microbiome is gaining attention as a potential biomarker for predicting individual responses to ICI therapy and as a target for enhancing treatment efficacy. In this review, we discuss key findings from human observational studies assessing the effect of antibiotic use prior to ICI therapy on outcomes and identifying specific gut bacteria associated with favorable and unfavorable responses. Moreover, we review studies investigating the possibility of patient outcome prediction using machine learning models based on gut microbiome data before starting ICI therapy and clinical trials exploring whether gut microbiota modulation, for example via fecal microbiota transplantation or live biotherapeutic products, can improve results of ICI therapy in patients with cancer. We also briefly discuss the mechanisms through which the gut microbial-derived products influence immunotherapy effectiveness. Further research is necessary to fully understand the complex interactions between the host, gut microbiota, and immunotherapy and to develop personalized strategies that optimize responses to ICI therapy.
Collapse
Affiliation(s)
- Mi Young Lim
- Personalized Diet Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Seungpyo Hong
- Department of Molecular Biology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Young-Do Nam
- Personalized Diet Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
3
|
Le Ngoc K, Pham TTH, Nguyen TK, Huong PT. Pharmacomicrobiomics in precision cancer therapy: bench to bedside. Front Immunol 2024; 15:1428420. [PMID: 39315107 PMCID: PMC11416994 DOI: 10.3389/fimmu.2024.1428420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The burgeoning field of pharmacomicrobiomics offers promising insights into the intricate interplay between the microbiome and cancer, shaping responses to diverse treatment modalities. This review aims to analyze the molecular mechanisms underlying interactions between distinct microbiota types and cancer, as well as their influence on treatment outcomes. We explore how the microbiome impacts antitumor immunity, and response to chemotherapy, immunotherapy, and radiation therapy, unveiling its multifaceted roles in cancer progression and therapy resistance. Moreover, we discuss the challenges hindering the development of microbiome-based interventions in cancer therapy, including standardization, validation, and clinical translation. By synthesizing clinical evidence, we underscore the transformative potential of harnessing pharmacomicrobiomics in guiding cancer treatment decisions, paving the way for improved patient outcomes in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Phung Thanh Huong
- Faculty of Biotechnology, Hanoi University of Pharmacy,
Hanoi, Vietnam
| |
Collapse
|
4
|
Del Giudice T, Staropoli N, Tassone P, Tagliaferri P, Barbieri V. Gut Microbiota Are a Novel Source of Biomarkers for Immunotherapy in Non-Small-Cell Lung Cancer (NSCLC). Cancers (Basel) 2024; 16:1806. [PMID: 38791885 PMCID: PMC11120070 DOI: 10.3390/cancers16101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the recent availability of immune checkpoint inhibitors, not all patients affected by Non-Small-Cell Lung Cancer (NSCLC) benefit from immunotherapy. The reason for this variability relies on a variety of factors which may allow for the identification of novel biomarkers. Presently, a variety of biomarkers are under investigation, including the PD1/PDL1 axis, the tumor mutational burden, and the microbiota. The latter is made by all the bacteria and other microorganisms hosted in our body. The gut microbiota is the most represented and has been involved in different physiological and pathological events, including cancer. In this light, it appears that all conditions modifying the gut microbiota can influence cancer, its treatment, and its treatment-related toxicities. The aim of this review is to analyze all the conditions influencing the gut microbiota and, therefore, affecting the response to immunotherapy, iRAEs, and their management in NSCLC patients. The investigation of the landscape of these biological events can allow for novel insights into the optimal management of NSCLC immunotherapy.
Collapse
Affiliation(s)
- Teresa Del Giudice
- Department of Hematology-Oncology, Azienda Ospedaliera Renato Dulbecco, 88100 Catanzaro, Italy;
| | - Nicoletta Staropoli
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (N.S.); (P.T.); (P.T.)
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (N.S.); (P.T.); (P.T.)
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (N.S.); (P.T.); (P.T.)
| | - Vito Barbieri
- Department of Hematology-Oncology, Azienda Ospedaliera Renato Dulbecco, 88100 Catanzaro, Italy;
| |
Collapse
|
5
|
Blake SJ, Wolf Y, Boursi B, Lynn DJ. Role of the microbiota in response to and recovery from cancer therapy. Nat Rev Immunol 2024; 24:308-325. [PMID: 37932511 DOI: 10.1038/s41577-023-00951-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Our understanding of how the microbiota affects the balance between response to and failure of cancer treatment by modulating the tumour microenvironment and systemic immune system has advanced rapidly in recent years. Microbiota-targeting interventions in patients with cancer are an area of intensive investigation. Promisingly, phase I-II clinical trials have shown that interventions such as faecal microbiota transplantation can overcome resistance to immune checkpoint blockade in patients with melanoma, improve therapeutic outcomes in treatment-naive patients and reduce therapy-induced immunotoxicities. Here, we synthesize the evidence showing that the microbiota is an important determinant of both cancer treatment efficacy and treatment-induced acute and long-term toxicity, and we discuss the complex and inter-related mechanisms involved. We also assess the potential of microbiota-targeting interventions, including bacterial engineering and phage therapy, to optimize the response to and recovery from cancer therapy.
Collapse
Affiliation(s)
- Stephen J Blake
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Yochai Wolf
- Ella Lemelbaum Institute for Immuno-oncology and Skin Cancer, Sheba Medical Center, Tel Hashomer, Israel
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ben Boursi
- School of Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oncology, Sheba Medical Center, Tel Hashomer, Israel
- Center of Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Lynn
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
6
|
Poletto S, Paruzzo L, Nepote A, Caravelli D, Sangiolo D, Carnevale-Schianca F. Predictive Factors in Metastatic Melanoma Treated with Immune Checkpoint Inhibitors: From Clinical Practice to Future Perspective. Cancers (Basel) 2023; 16:101. [PMID: 38201531 PMCID: PMC10778365 DOI: 10.3390/cancers16010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The introduction of immunotherapy revolutionized the treatment landscape in metastatic melanoma. Despite the impressive results associated with immune checkpoint inhibitors (ICIs), only a portion of patients obtain a response to this treatment. In this scenario, the research of predictive factors is fundamental to identify patients who may have a response and to exclude patients with a low possibility to respond. These factors can be host-associated, immune system activation-related, and tumor-related. Patient-related factors can vary from data obtained by medical history (performance status, age, sex, body mass index, concomitant medications, and comorbidities) to analysis of the gut microbiome from fecal samples. Tumor-related factors can reflect tumor burden (metastatic sites, lactate dehydrogenase, C-reactive protein, and circulating tumor DNA) or can derive from the analysis of tumor samples (driver mutations, tumor-infiltrating lymphocytes, and myeloid cells). Biomarkers evaluating the immune system activation, such as IFN-gamma gene expression profile and analysis of circulating immune cell subsets, have emerged in recent years as significantly correlated with response to ICIs. In this manuscript, we critically reviewed the most updated literature data on the landscape of predictive factors in metastatic melanoma treated with ICIs. We focus on the principal limits and potentiality of different methods, shedding light on the more promising biomarkers.
Collapse
Affiliation(s)
- Stefano Poletto
- Department of Oncology, University of Turin, AOU S. Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Luca Paruzzo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (L.P.); (D.S.)
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessandro Nepote
- Department of Oncology, University of Turin, AOU S. Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Daniela Caravelli
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCs, 10060 Candiolo, Italy; (D.C.); (F.C.-S.)
| | - Dario Sangiolo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (L.P.); (D.S.)
| | | |
Collapse
|