1
|
Yalcin BH, Macas J, Wiercinska E, Harter PN, Fawaz M, Schmachtel T, Ghiro I, Bieniek E, Kosanovic D, Thom S, Fruttiger M, Taketo MM, Schermuly RT, Rieger MA, Plate KH, Bonig H, Liebner S. Wnt/β-Catenin-Signaling Modulates Megakaryopoiesis at the Megakaryocyte-Erythrocyte Progenitor Stage in the Hematopoietic System. Cells 2023; 12:2765. [PMID: 38067194 PMCID: PMC10706863 DOI: 10.3390/cells12232765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
The bone marrow (BM) hematopoietic system (HS) gives rise to blood cells originating from hematopoietic stem cells (HSCs), including megakaryocytes (MKs) and red blood cells (erythrocytes; RBCs). Many steps of the cell-fate decision remain to be elucidated, being important for cancer treatment. To explore the role of Wnt/β-catenin for MK and RBC differentiation, we activated β-catenin signaling in platelet-derived growth factor b (Pdgfb)-expressing cells of the HS using a Cre-lox approach (Ctnnb1BM-GOF). FACS analysis revealed that Pdgfb is mainly expressed by megakaryocytic progenitors (MKPs), MKs and platelets. Recombination resulted in a lethal phenotype in mutants (Ctnnb1BM-GOFwt/fl, Ctnnb1BM-GOFfl/fl) 3 weeks after tamoxifen injection, showing an increase in MKs in the BM and spleen, but no pronounced anemia despite reduced erythrocyte counts. BM transplantation (BMT) of Ctnnb1BM-GOF BM into lethally irradiated wildtype recipients (BMT-Ctnnb1BM-GOF) confirmed the megakaryocytic, but not the lethal phenotype. CFU-MK assays in vitro with BM cells of Ctnnb1BM-GOF mice supported MK skewing at the expense of erythroid colonies. Molecularly, the runt-related transcription factor 1 (RUNX1) mRNA, known to suppress erythropoiesis, was upregulated in Ctnnb1BM-GOF BM cells. In conclusion, β-catenin activation plays a key role in cell-fate decision favoring MK development at the expense of erythroid production.
Collapse
Affiliation(s)
- Burak H. Yalcin
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (J.M.); (I.G.); (K.H.P.)
| | - Jadranka Macas
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (J.M.); (I.G.); (K.H.P.)
| | - Eliza Wiercinska
- Institute for Transfusion Medicine and Immunohaematology, and DRK-Blutspendedienst BaWüHe, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Patrick N. Harter
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (J.M.); (I.G.); (K.H.P.)
| | - Malak Fawaz
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (M.A.R.)
| | - Tessa Schmachtel
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (M.A.R.)
| | - Ilaria Ghiro
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (J.M.); (I.G.); (K.H.P.)
| | - Ewa Bieniek
- German Center for Lung Research (DZL), Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (E.B.); (D.K.)
| | - Djuro Kosanovic
- German Center for Lung Research (DZL), Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (E.B.); (D.K.)
| | - Sonja Thom
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (J.M.); (I.G.); (K.H.P.)
| | | | - Makoto M. Taketo
- Kyoto University Hospital-iACT Graduate School of Medicine, Kyoto University, Kyoto 06-8501, Japan
| | - Ralph T. Schermuly
- German Center for Lung Research (DZL), Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (E.B.); (D.K.)
| | - Michael A. Rieger
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (M.A.R.)
- German Cancer Consortium (DKTK) at the German Cancer Research Center, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany
| | - Karl H. Plate
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (J.M.); (I.G.); (K.H.P.)
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohaematology, and DRK-Blutspendedienst BaWüHe, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
- Department of Medicine/Division of Hematology, University of Washington, Seattle, WA 98195, USA
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany (J.M.); (I.G.); (K.H.P.)
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Stakheev D, Taborska P, Kalkusova K, Bartunkova J, Smrz D. LL-37 as a Powerful Molecular Tool for Boosting the Performance of Ex Vivo-Produced Human Dendritic Cells for Cancer Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14122747. [PMID: 36559241 PMCID: PMC9780902 DOI: 10.3390/pharmaceutics14122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Ex vivo-produced dendritic cells (DCs) constitute the core of active cellular immunotherapy (ACI) for cancer treatment. After many disappointments in clinical trials, the current protocols for their preparation are attempting to boost their therapeutic efficacy by enhancing their functionality towards Th1 response and capability to induce the expansion of cytotoxic tumor-specific CD8+ T cells. LL-37 is an antimicrobial peptide with strong immunomodulatory potential. This potential was previously found to either enhance or suppress the desired anti-tumor DC functionality when used at different phases of their ex vivo production. In this work, we show that LL-37 can be implemented during the whole process of DC production in a way that allows LL-37 to enhance the anti-tumor functionality of produced DCs. We found that the supplementation of LL-37 during the differentiation of monocyte-derived DCs showed only a tendency to enhance their in vitro-induced lymphocyte enrichment with CD8+ T cells. The supplementation of LL-37 also during the process of DC antigen loading (pulsation) and maturation significantly enhanced the cell culture enrichment with CD8+ T cells. Moreover, this enrichment was also associated with the downregulated expression of PD-1 in CD8+ T cells, significantly higher frequency of tumor cell-reactive CD8+ T cells, and superior in vitro cytotoxicity against tumor cells. These data showed that LL-37 implementation into the whole process of the ex vivo production of DCs could significantly boost their anti-tumor performance in ACI.
Collapse
|
3
|
Wang W, Cho U, Yoo A, Jung CL, Kim B, Kim H, Lee J, Jo H, Han Y, Song MH, Lee JO, Kim SI, Lee M, Ku JL, Lee C, Song YS. Wnt/β-Catenin Inhibition by CWP232291 as a Novel Therapeutic Strategy in Ovarian Cancer. Front Oncol 2022; 12:852260. [PMID: 35646632 PMCID: PMC9134752 DOI: 10.3389/fonc.2022.852260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
The poor prognosis of ovarian cancer patients mainly results from a lack of early diagnosis approaches and a high rate of relapse. Only a very modest improvement has been made in ovarian cancer patient survival with traditional treatments. More targeted therapies precisely matching each patient are strongly needed. The aberrant activation of Wnt/β-catenin signaling pathway plays a fundamental role in cancer development and progression in various types of cancer including ovarian cancer. Recent insight into this pathway has revealed the potential of targeting Wnt/β-catenin in ovarian cancer treatment. This study aims to investigate the effect of CWP232291, a small molecular Wnt/β-catenin inhibitor on ovarian cancer progression. Various in vitro, in vivo and ex vivo models are established for CWP232291 testing. Results show that CWP232291 could significantly attenuate ovarian cancer growth through inhibition of β-catenin. Noticeably, CWP232291 could also s suppress the growth of cisplatin-resistant cell lines and ovarian cancer patient-derived organoids. Overall, this study has firstly demonstrated the anti-tumor effect of CWP232291 in ovarian cancer and proposed Wnt/β-catenin pathway inhibition as a novel therapeutic strategy against ovarian cancer.
Collapse
Affiliation(s)
- Wenyu Wang
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Untack Cho
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Anna Yoo
- Drug Discovery Center, JW Pharmaceutical Corporation, Seoul, South Korea
| | - Chae-Lim Jung
- Drug Discovery Center, JW Pharmaceutical Corporation, Seoul, South Korea
| | - Boyun Kim
- Department of Biosafety, College of Life and Health Science, Kyungsung University, Busan, South Korea
| | - Heeyeon Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Juwon Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - HyunA Jo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Youngjin Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Myoung-Hyun Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Ja-Oh Lee
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ja-Lok Ku
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Yong Sang Song
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Kolawole OR, Kashfi K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. Int J Mol Sci 2022; 23:1432. [PMID: 35163356 PMCID: PMC8836048 DOI: 10.3390/ijms23031432] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation or resolved inflammation is an adaptive host defense mechanism and is self-limiting, which returns the body to a state of homeostasis. However, unresolved, uncontrolled, or chronic inflammation may lead to various maladies, including cancer. Important evidence that links inflammation and cancer is that nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, reduce the risk and mortality from many cancers. The fact that NSAIDs inhibit the eicosanoid pathway prompted mechanistic drug developmental work focusing on cyclooxygenase (COX) and its products. The increased prostaglandin E2 levels and the overexpression of COX-2 in the colon and many other cancers provided the rationale for clinical trials with COX-2 inhibitors for cancer prevention or treatment. However, NSAIDs do not require the presence of COX-2 to prevent cancer. In this review, we highlight the effects of NSAIDs and selective COX-2 inhibitors (COXIBs) on targets beyond COX-2 that have shown to be important against many cancers. Finally, we hone in on specialized pro-resolving mediators (SPMs) that are biosynthesized locally and, in a time, -dependent manner to promote the resolution of inflammation and subsequent tissue healing. Different classes of SPMs are reviewed, highlighting aspirin's potential in triggering the production of these resolution-promoting mediators (resolvins, lipoxins, protectins, and maresins), which show promise in inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Oluwafunke R. Kolawole
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|
5
|
Lambert J, Saliba J, Calderon C, Sii-Felice K, Salma M, Edmond V, Alvarez JC, Delord M, Marty C, Plo I, Kiladjian JJ, Soler E, Vainchenker W, Villeval JL, Rousselot P, Prost S. PPARγ agonists promote the resolution of myelofibrosis in preclinical models. J Clin Invest 2021; 131:136713. [PMID: 33914703 DOI: 10.1172/jci136713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Myelofibrosis (MF) is a non-BCR-ABL myeloproliferative neoplasm associated with poor outcomes. Current treatment has little effect on the natural history of the disease. MF results from complex interactions between (a) the malignant clone, (b) an inflammatory context, and (c) remodeling of the bone marrow (BM) microenvironment. Each of these points is a potential target of PPARγ activation. Here, we demonstrated the therapeutic potential of PPARγ agonists in resolving MF in 3 mouse models. We showed that PPARγ agonists reduce myeloproliferation, modulate inflammation, and protect the BM stroma in vitro and ex vivo. Activation of PPARγ constitutes a relevant therapeutic target in MF, and our data support the possibility of using PPARγ agonists in clinical practice.
Collapse
Affiliation(s)
- Juliette Lambert
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France.,Department of Hematology and Oncology, Centre Hospitalier de Versailles, Le Chesnay, France.,Opale Carnot Institute, Paris, France
| | - Joseph Saliba
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Carolina Calderon
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France.,Opale Carnot Institute, Paris, France
| | - Karine Sii-Felice
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Mohammad Salma
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Université de Paris, Laboratory of Excellence GR-Ex, Paris, France
| | - Valérie Edmond
- INSERM, UMR1287, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Jean-Claude Alvarez
- Département de Pharmacologie-Toxicologie, Hôpitaux Universitaires Paris Ile-de-France Ouest, AP-HP, Hôpital Raymond-Poincaré, FHU Sepsis, Garches, France.,MasSpecLab, Plateforme de spectrométrie de masse, INSERM U-1173, Université Paris-Saclay (Versailles Saint-Quentin-en-Yvelines), UFR des sciences de la santé, Montigny-le-Bretonneux, France
| | - Marc Delord
- Recherche Clinique, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Caroline Marty
- INSERM, UMR1287, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Jean-Jacques Kiladjian
- Opale Carnot Institute, Paris, France.,Université de Paris, AP-HP, Hôpital Saint-Louis, Centre d'Investigations Cliniques CIC 1427, INSERM, Paris, France
| | - Eric Soler
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Université de Paris, Laboratory of Excellence GR-Ex, Paris, France
| | | | - Jean-Luc Villeval
- INSERM, UMR1287, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Philippe Rousselot
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France.,Department of Hematology and Oncology, Centre Hospitalier de Versailles, Le Chesnay, France.,Opale Carnot Institute, Paris, France.,Université Paris-Saclay (Versailles Saint-Quentin-en-Yvelines), UFR des sciences de la santé, Montigny-le-Bretonneux, France
| | - Stéphane Prost
- Division of Innovative Therapies, CEA/DRF/François Jacob Biology Institute, UMR1184 IMVA-HB/IDMIT, Université Paris-Saclay, Fontenay-aux-Roses, France.,Opale Carnot Institute, Paris, France
| |
Collapse
|
6
|
Saeed BM, Getta HA, Khoshnaw N, Abdulqader G, Abdulqader AMR, Mohammed AI. Prevalence of JAK2 V617F, CALR, and MPL W515L Gene Mutations in Patients with Essential Thrombocythemia in Kurdistan Region of Iraq. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2021. [DOI: 10.15324/kjcls.2021.53.1.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
| | - Hisham Arif Getta
- Department of Pathology, College of Medicine, University of Sulaymaniyah, Sulaymaniyah, Iraq
| | - Najmaddin Khoshnaw
- Department of Hematology, Hiwa Hemato-Oncology Center, Sulaymaniyah, Iraq
| | - Goran Abdulqader
- Department of Pathology, College of Medicine, University of Sulaymaniyah, Sulaymaniyah, Iraq
| | | | - Ali Ibrahim Mohammed
- Department of Pathology, College of Medicine, University of Sulaymaniyah, Sulaymaniyah, Iraq
| |
Collapse
|
7
|
Mejía-Ochoa M, Acevedo Toro PA, Cardona-Arias JA. Systematization of analytical studies of polycythemia vera, essential thrombocythemia and primary myelofibrosis, and a meta-analysis of the frequency of JAK2, CALR and MPL mutations: 2000-2018. BMC Cancer 2019; 19:590. [PMID: 31208359 PMCID: PMC6580484 DOI: 10.1186/s12885-019-5764-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/28/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Research into Philadelphia-negative chronic myeloproliferative neoplasms is heterogeneous. In addition, no systematization of studies of polycythemia vera (PV), essential thrombocythemia (ET) or primary myelofibrosis (PMF) have been carried out. The objective of this review is to characterize studies on BCR-ABL1-negative chronic myeloproliferative neoplasms and to compare the frequency of JAK2, MPL and CALR mutations in PV, ET and PMF. METHOD A systematic review of the scientific literature was conducted, as was meta-analysis with an ex-ante selection of protocol, according to phases of the PRISMA guide in three interdisciplinary databases. To guarantee reproducibility in the pursuit and retrieval of information, the reproducibility and methodological quality of the studies were evaluated by two researchers. RESULTS Fifty-two studies were included, the majority having been carried out in the United States, China, Brazil and Europe. The frequency of the JAK2V617F mutation ranged from 46.7 to 100% in patients with PV, from 31.3 to 72.1% in patients with ET, and from 25.0 to 85.7% in those with PMF. The frequency of the MPL mutation was 0% in PV, from 0.9 to 12.5% in ET, and from 0 to 17.1% in PMF. The CALR mutation occurred at a frequency of 0.0% in PV, whereas in ET, it ranged from 12.6 to 50%, and in PMF, it ranged from 10 to 100%. The risk of this mutation presenting in PV is 3.0 times that found for ET and 4.0 times that found for PMF. CONCLUSION Given the specificity and reported high frequencies of the JAK2V617F, MPL and CALR mutations in this group of neoplasms, the diagnosis of these diseases should not be made on clinical and hematological characteristics alone but should include genetic screening of patients.
Collapse
Affiliation(s)
- Mónica Mejía-Ochoa
- Molecular Hematopathology Research Group, School of Microbiology,University of Antioquia, Laboratorio Médico de referencia, Medellin, Colombia
| | - Paola Andrea Acevedo Toro
- Molecular Hematopathology Research Group, School of Microbiology, University of Antioquia, Medellin, Colombia
| | - Jaiberth Antonio Cardona-Arias
- School of Microbiology University of Antioquia, School of Medicine, Cooperativa Universidad de Colombia, Calle 67 Número 53 - 108, Bloque 5, oficina 103, Medellin, Colombia.
| |
Collapse
|
8
|
Higher Sclerostin/SOST expression is associated with lower percentage of circulatory blasts and better prognosis in patients with myelofibrosis. Ann Hematol 2018. [DOI: 10.1007/s00277-018-3294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Mäkitie RE, Niinimäki R, Kakko S, Honkanen T, Kovanen PE, Mäkitie O. Defective WNT signaling associates with bone marrow fibrosis-a cross-sectional cohort study in a family with WNT1 osteoporosis. Osteoporos Int 2018; 29:479-487. [PMID: 29147753 DOI: 10.1007/s00198-017-4309-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/07/2017] [Indexed: 01/28/2023]
Abstract
UNLABELLED This study explores bone marrow function in patients with defective WNT1 signaling. Bone marrow samples showed increased reticulin and altered granulopoiesis while overall hematopoiesis was normal. Findings did not associate with severity of osteoporosis. These observations provide new insight into the role of WNT signaling in bone marrow homeostasis. INTRODUCTION WNT signaling regulates bone homeostasis and survival and self-renewal of hematopoietic stem cells. Aberrant activation may lead to osteoporosis and bone marrow pathology. We aimed to explore bone marrow findings in a large family with early-onset osteoporosis due to a heterozygous WNT1 mutation. METHODS We analyzed peripheral blood samples, and bone marrow aspirates and biopsies from 10 subjects with WNT1 mutation p.C218G. One subject was previously diagnosed with idiopathic myelofibrosis and others had no previously diagnosed hematologic disorders. The findings were correlated with the skeletal phenotype, as evaluated by number of peripheral and spinal fractures and bone mineral density. RESULTS Peripheral blood samples showed no abnormalities in cell counts, morphology or distributions but mild increase in platelet count. Bone marrow aspirates (from 8/10 subjects) showed mild decrease in bone marrow iron storages in 6 and variation in cell distributions in 5 subjects. Bone marrow biopsies (from 6/10 subjects) showed increased bone marrow reticulin (grade MF-2 in the myelofibrosis subject and grade MF-1 in 4 others), and an increase in overall, and a shift towards early-phase, granulopoiesis. The bone marrow findings did not associate with the severity of skeletal phenotype. CONCLUSIONS Defective WNT signaling associates with a mild increase in bone marrow reticulin and may predispose to myelofibrosis, while overall hematopoiesis and peripheral blood values are unaltered in individuals with a WNT1 mutation. In this family with WNT1 osteoporosis, bone marrow findings were not related to the severity of osteoporosis.
Collapse
Affiliation(s)
- R E Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, P.O. Box 63, FIN-00014, Helsinki, Finland.
| | - R Niinimäki
- Department of Children and Adolescents, Oulu University Hospital and Oulu University, Oulu, Finland
| | - S Kakko
- Internal Medicine and Clinical Research Center, University of Oulu, Oulu, Finland
| | - T Honkanen
- Department of Hematology, Päijät-Häme Central Hospital, Lahti, Finland
| | - P E Kovanen
- HUSLAB, Helsinki University Hospital and Department of Pathology, University of Helsinki, Helsinki, Finland
| | - O Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, P.O. Box 63, FIN-00014, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK, Giles FJ. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol 2017; 10:101. [PMID: 28476164 PMCID: PMC5420131 DOI: 10.1186/s13045-017-0471-6] [Citation(s) in RCA: 484] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/25/2017] [Indexed: 02/08/2023] Open
Abstract
Wnt/β-catenin signaling, a highly conserved pathway through evolution, regulates key cellular functions including proliferation, differentiation, migration, genetic stability, apoptosis, and stem cell renewal. The Wnt pathway mediates biological processes by a canonical or noncanonical pathway, depending on the involvement of β-catenin in signal transduction. β-catenin is a core component of the cadherin protein complex, whose stabilization is essential for the activation of Wnt/β-catenin signaling. As multiple aberrations in this pathway occur in numerous cancers, WNT-directed therapy represents an area of significant developmental therapeutics focus. The recently described role of Wnt/β-catenin pathway in regulating immune cell infiltration of the tumor microenvironment renewed the interest, given its potential impact on responses to immunotherapy treatments. This article summarizes the role of Wnt/β-catenin pathway in cancer and ongoing therapeutic strategies involving this pathway.
Collapse
Affiliation(s)
- Sachin Gopalkrishna Pai
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA. .,Current Address: Department of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, USA.
| | - Benedito A Carneiro
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Jose Mauricio Mota
- Instituto do Câncer do Estado de São Paulo, University of São Paulo, São Paulo, Brazil
| | - Ricardo Costa
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | | | | | - Jason Benjamin Kaplan
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Young Kwang Chae
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Francis Joseph Giles
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
11
|
Canonical Wnt/β-Catenin Signaling Pathway Is Dysregulated in Patients With Primary and Secondary Myelofibrosis. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 16:523-526. [PMID: 27381374 DOI: 10.1016/j.clml.2016.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/12/2016] [Accepted: 06/01/2016] [Indexed: 11/21/2022]
Abstract
INTRODUCTION β-Catenin is a central effector molecule of the canonical wingless-related integration site (Wnt) signaling pathway. It is important for maintenance of stem cell homeostasis and its aberrant activation has been implicated in a wide array of malignant hematological disorders. There are few reports suggesting its dysregulation in Philadelphia chromosome-negative (Ph-) myeloproliferative neoplasms (MPNs). PATIENTS AND METHODS We analyzed β-catenin mRNA expression in bone marrow (BM) aspirates of 29 patients with primary (PMF) and 4 patients with secondary, post Ph- MPN, myelofibrosis (SMF) using quantitative real-time polymerase chain reaction (qRT PCR). The control group consisted of 16 BM aspirates from patients with limited-stage aggressive non-Hodgkin lymphoma without BM involvement. We compared relative gene expression with clinical and hematological parameters. RESULTS Relative expression of β-catenin differed significantly among groups (P = .0002), it was significantly higher in patients with PMF and SMF than in the control group, but did not differ between patients with PMF and SMF. A negative correlation was found regarding hemoglobin level in PMF (P = .017). No association according to Janus kinase 2 (JAK2) V617F mutational status or JAK2 V617F allele burden was detected. CONCLUSION Our results show for the first time that β-catenin mRNA expression is increased in patients with PMF and SMF and its upregulation might potentiate anemia. A number of inflammatory cytokines associated with PMF are capable of mediating their effects through increased β-catenin expression. Accordingly, β-catenin can induce expression of a number of genes implicated in processes of cell cycle control, fibrosis, and angiogenesis, which are central to the PMF pathogenesis. Therefore, β-catenin might represent an interesting new therapeutic target in these diseases.
Collapse
|