1
|
Renaud L, Donzel M, Decroocq J, Decazes P, Galtier J, Burroni B, Veresezan EL, Sesboüé C, Dartigues P, Chassagne-Clément C, Martin L, Mauduit C, Kaltenbach S, Penther D, Etancelin P, Sibon D, Bailly S, Martin V, Durot E, Kirova Y, Grenier A, Maerevoet M, Bernard W, Naveau L, Cabannes-Hamy A, Cottereau AS, Jacquet-Francillon N, Noel R, Reichert T, Sarkozy C, Bussot L, Bailly S, Amorim S, Krzisch D, Cornillon J, Legendre H, Chevillon F, Cavalieri D, Sesques P, Minard-Colin V, Haioun C, Morschhauser F, Houot R, Jardin F, Tilly H, Traverse-Glehen A, Camus V. Primary mediastinal B-cell lymphoma (PMBCL): The LYSA pragmatic guidelines. Eur J Cancer 2025; 220:115369. [PMID: 40157284 DOI: 10.1016/j.ejca.2025.115369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025]
Abstract
Primary mediastinal B-cell lymphoma (PMBCL) is a distinct subtype of large B-cell lymphoma with unique clinical, histopathological, and molecular characteristics. Despite its aggressive nature, PMBCL has a high cure rate when managed appropriately. Advances in the understanding of PMBCL biological characteristics, coupled with improvements in diagnostic tools and therapeutic approaches, have significantly improved patient outcomes in recent years. In this article, we present a set of pragmatic guidelines developed by the Lymphoma Study Association (LYSA) for the management of PMBCL. These guidelines address key aspects of diagnosis, staging, response evaluation, and treatment, integrating the latest evidence from clinical trials, expert consensus, and real-world practice. The aim of the guidelines is to provide clinicians with a clear, practical framework to optimize care for patients with PMBCL, ensuring that the best available evidence is translated into clinical practice.
Collapse
Affiliation(s)
- Loïc Renaud
- Gustave Roussy, Department of Hematology, Villejuif 94805, France
| | - Marie Donzel
- Hospices Civils de Lyon, Hopital Lyon Sud, Department of Pathology, Claude Bernard Lyon-1 University, Pierre-Bénite, France
| | - Justine Decroocq
- Hopital Cochin, Department of Hematology, APHP, University Paris Cité, Paris, France
| | - Pierre Decazes
- Centre Henri Becquerel, Department of Nuclear Medicine, Université de Rouen Normandie, Rouen, France
| | - Jean Galtier
- CHU de Bordeaux, Department of Hematology-Transplantation, Bordeaux, France
| | - Barbara Burroni
- Hopital Cochin, Department of Pathology, APHP, University Paris Cité, Paris, France
| | | | - Côme Sesboüé
- CHU de Bordeaux, Department of Pathology, University of Bordeaux, Bordeaux, France
| | - Peggy Dartigues
- Gustave Roussy, Department of Pathology, Villejuif 94805, France
| | | | | | - Claire Mauduit
- Hospices Civils de Lyon, Department of Pathology, Claude Bernard Lyon 1 University, Lyon Sud Hospital, Pierre-Bénite, Lyon, France
| | - Sophie Kaltenbach
- Department of Biological Oncohematology, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Dominique Penther
- Department of Genetic Oncology, Centre Henri Becquerel, Rouen, France
| | | | - David Sibon
- Hopital Henri Mondor, Lymphoid Hematology Department, AP-HP, Creteil, France
| | - Sarah Bailly
- Cliniques Universitaires Saint Luc, Department of Hematology, Bruxelles, Belgium
| | - Valentine Martin
- Gustave Roussy, Department of Radiotherapy, Villejuif 94805, France
| | - Eric Durot
- Centre Hospitalier Universitaire, Hopital Robert Debré, Department of Hematology, Reims, France
| | - Youlia Kirova
- Institut Curie, Department of Radiation Oncology, Paris 75005, France
| | - Adrien Grenier
- Hopital Pitié Salpetriere, Department of Hematology, AP-HP, Paris, France
| | - Marie Maerevoet
- Institut Jules Bordet, Hôpital Universitaire de Bruxelles, Department of Hematology, Université Libre de Bruxelles, Belgium
| | - Wivine Bernard
- CHU UCL Namur - Site Godinne, Department of Hematology, Yvoir, Belgium
| | - Louise Naveau
- Hôpital Saint-Joseph, Department of Hematology, Paris, France
| | | | - Anne-Ségolène Cottereau
- Hopital Cochin, Department of Nuclear Medicine, AP-HP, University of Paris Cité, Paris, France
| | - Nicolas Jacquet-Francillon
- Hospices Civils de Lyon, Department of Nuclear Medicine, Claude Bernard Lyon 1 University, Lyon Sud Hospital, Pierre-Bénite, Lyon, France
| | - Robin Noel
- Institut Paoli-Calmettes, Department of Hematology, Marseille, France
| | - Thibaut Reichert
- Institut Paoli-Calmettes, Department of Nuclear Medicine, Marseille, France
| | | | - Lucile Bussot
- Grenoble-Alpes University Hospital, Department of Hematology, Grenoble, France
| | - Sébastien Bailly
- Centre Hospitalier Universitaire Estaing, Department of Hematology, Clermont-Ferrand, France
| | - Sandy Amorim
- Hopital Saint Vincent de Paul, Department of Hematology & Cellular Therapy, Université Catholique de Lille, Lille, France
| | - Daphné Krzisch
- Hopital Pitié Salpetriere, Department of Hematology, AP-HP, Paris, France
| | - Jérôme Cornillon
- CHU de Saint-Étienne, Department of Hematology & Cellular Therapy, Saint-Étienne, France
| | - Hugo Legendre
- CHU Sud Réunion, Department of Hematology, La Réunion, France
| | - Florian Chevillon
- Hopital Saint Louis, Department of Adolescent Young Adult, AP-HP, Paris, France
| | - Doriane Cavalieri
- Hopital Claude Huriez, Department of Hematology, Lille University Hospital, Lille, France
| | - Pierre Sesques
- Hospices Civils de Lyon, Hopital Lyon-Sud, Department of Hematology, Claude Bernard Lyon 1 University, Pierre-Benite, France
| | - Véronique Minard-Colin
- Gustave Roussy, Department of Pediatric and Adolescent Oncology, Université Paris-Saclay, Villejuif, France
| | - Corinne Haioun
- Hopital Henri Mondor, Lymphoid Hematology Department, AP-HP, Creteil, France
| | - Franck Morschhauser
- Hopital Claude Huriez, Department of Hematology, Lille University Hospital, Lille, France
| | - Roch Houot
- Centre Hospitalier Universitaire de Rennes, Department of Hematology, Université de Rennes, INSERM U1236, Etablissement Français du Sang, Rennes, France
| | - Fabrice Jardin
- Centre Henri Becquerel, Department of Hematology, Rouen, France
| | - Hervé Tilly
- Centre Henri Becquerel, Department of Hematology, Rouen, France
| | - Alexandra Traverse-Glehen
- Hospices Civils de Lyon, Hopital Lyon Sud, Department of Pathology, Claude Bernard Lyon-1 University, Pierre-Bénite, France
| | - Vincent Camus
- Centre Henri Becquerel, Department of Hematology, Rouen, France.
| |
Collapse
|
2
|
Gao J, Liu S, Zhao M, Zhang H, Jing H. Prognostic role of interim PET-CT demonstrating partial metabolic response in diffuse large B-Cell lymphoma: a retrospective study. Ann Hematol 2025:10.1007/s00277-025-06368-0. [PMID: 40240514 DOI: 10.1007/s00277-025-06368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE Interim 18F-FDG PET/CT (iPET/CT) imaging demonstrates potential in assessing the early therapeutic response in lymphoma. Nevertheless, the prognostic significance of interim PET-CT in diffuse large B-cell lymphoma (DLBCL) remains controversial. This study aimed to evaluate whether semi-quantitative PET/CT metabolic parameters and other metrics could enhance the prognostic value of interim PET/CT in DLBCL patients exhibiting partial metabolic remission (PMR). METHODS A retrospective analysis was performed from January 2018 to December 2023, focusing on patients with DLBCL who achieved PMR on interim PET-CT. Patient demographics, clinical characteristics, and semi-quantitative PET/CT metabolic parameters were extracted from the medical records. Multivariate analyses were conducted to identify the risk factors associated with failure to achieve complete metabolic remission (CMR) at the end of treatment (EOT). Receiver operating characteristic (ROC) curve analysis was employed to determine the optimal cut-off values for continuous predictive variables. Progression-free survival (PFS) and overall survival (OS) were estimated using Kaplan-Meier methods, and risk factors were evaluated using Cox regression models. RESULTS In a cohort consisting of 80 newly diagnosed DLBCL cases that exhibited PMR on interim PET scans, 50 cases ultimately achieved CMR, while the remaining 30 cases still had positive PET findings at EOT. Analysis revealed that the interim lesion-to-liver maximum standardized uptake value ratio (RLL) and bone marrow involvement were independent prognostic factors for positive PET-CT outcomes at EOT. Notably, an interim RLL threshold greater than 1.66 emerged as a reliable predictor with a sensitivity of 73.3% and a specificity of 72.0%. Additionally, the International Prognostic Index (IPI) and interim RLL were identified as independent prognostic indicators for both progression-free survival (PFS) and overall survival (OS). CONCLUSION Our study revealed that within the cohort of DLBCL patients exhibiting PMR on interim PET scans, an interim RLL greater than 1.66 and bone marrow involvement emerged as independent risk factors for positive PET results at the end of treatment. Additionally, the IPI and interim RLL were identified as independent prognostic markers for both progression-free survival and overall survival. The integration of clinical characteristics with semi-quantitative PET/CT parameters has the potential to enhance the prognostic role of interim PET/CT exhibiting PMR in DLBCL cases.
Collapse
Affiliation(s)
- Jinjie Gao
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Shuozi Liu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Meixin Zhao
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| |
Collapse
|
3
|
Withofs N, Bonnet C, Hustinx R. 2-deoxy-2-[ 18F]FDG PET Imaging for Therapy Assessment in Hodgkin's and Non-Hodgkin Lymphomas. PET Clin 2024; 19:447-462. [PMID: 38945737 DOI: 10.1016/j.cpet.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography combined with computed tomography (PET/CT) has contributed to outcome improvement of patients with lymphoma. The use of [18F]FDG PET/CT for staging and response assessment is successfully applied both in routine clinical practice and in clinical trials. The challenges lie in enhancing the outcomes of lymphoma patients, particularly those with advanced or refractory/relapsed disease, and to minimize the long-term toxicity associated with treatments, including radiation therapy. The objective of this review article is to present contemporary data on the use of [18F]FDG PET/CT for treatment assessment of aggressive lymphomas.
Collapse
Affiliation(s)
- Nadia Withofs
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Quartier Hopital, Avenue de l'hopital 1, Liege, Belgium; GIGA-Nuclear Medicine Lab, University of Liege, CHU - B34 Quartier Hôpital, Avenue de l'Hôpital 11, Liège, BELGIQUE.
| | - Christophe Bonnet
- Department of Hematology, CHU of Liege, Quartier Hôpital, Avenue de l'hôpital 1, 4000 Liege 1, Belgium
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Quartier Hopital, Avenue de l'hopital 1, Liege, Belgium; GIGA-Nuclear Medicine Lab, University of Liege, CHU - B34 Quartier Hôpital, Avenue de l'Hôpital 11, Liège, BELGIQUE
| |
Collapse
|
4
|
Zhao W, Wu X, Huang S, Wang H, Fu H. Evaluation of therapeutic effect and prognostic value of 18F-FDG PET/CT in different treatment nodes of DLBCL patients. EJNMMI Res 2024; 14:20. [PMID: 38372908 PMCID: PMC10876506 DOI: 10.1186/s13550-024-01074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND In the present study, we aimed to investigate the role of baseline (B), interim (I) and end-of-treatment (Eot) 18F-FDG PET/CT in assessing the prognosis of diffuse large B cell lymphoma (DLBCL), so as to identify patients who need intensive treatment at an early stage. METHODS A total of 127 DLBCL patients (62 men; 65 women; median age 62 years) were retrospectively analyzed in this study. Baseline (n = 127), interim (n = 127, after 3-4 cycles) and end-of-treatment (n = 53, after 6-8 cycles) PET/CT images were re-evaluated; semi-quantitative parameters such as maximum standardized uptake value of lesion-to-liver ratio (SUVmax(LLR)) and lesion-to-mediastinum ratio (SUVmax(LMR)), total metabolic tumor volume (TMTV) and total metabolic tumor volume (TLG) were recorded. ΔTLG1 was the change of interim relative to baseline TLG (I to B), ΔTLG2 (Eot to B). ΔSUVmax and ΔTMTV were the same algorithm. The visual Deauville 5-point scale (D-5PS) has been adopted as the major criterion for PET evaluation. Visual analysis (VA) and semi-quantitative parameters were assessed for the ability to predict progression-free survival (PFS) and overall survival (OS) by using Kaplan-Meier method, cox regression and logistic regression analysis. When visual and semi-quantitative analysis are combined, the result is only positive if both are positive. RESULTS At a median follow-up of 34 months, the median PFS and OS were 20 and 32 months. The survival curve analysis showed that advanced stage and IPI score with poor prognosis, ΔSUVmax(LLR)1 < 89.2%, ΔTMTV1 < 91.8% and ΔTLG1 < 98.8%, ΔSUVmax(LLR)2 < 86.4% were significantly related to the shortening of PFS in patient (p < 0.05). ΔSUVmax(LLR)1 < 83.2% and ΔTLG1 < 97.6% were significantly correlated with the shortening of OS in patients (p < 0.05). Visual analysis showed that incomplete metabolic remission at I-PET and Eot-PET increased the risk of progress and death. In terms of predicting recurrence by I-PET, the combination of visual and semi-quantitative parameters showed higher positive predictive value (PPV) and specificity than a single index. CONCLUSION Three to four cycles of R-CHOP treatment may be a time point for early prediction of early recurrence/refractory (R/R) patients and active preemptive treatment. Combined visual analysis with semi-quantitative parameters of 18F-FDG PET/CT at interim can improve prognostic accuracy and may allow for more precise screening of patients requiring early intensive therapy.
Collapse
Affiliation(s)
- Wenyu Zhao
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaodong Wu
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Shuo Huang
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hongliang Fu
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|