1
|
Ceballos-Rasgado M, Brazier AKM, Gupta S, Moran VH, Pierella E, Fekete K, Lowe NM. Methods of Assessment of Zinc Status in Humans: An Updated Review and Meta-analysis. Nutr Rev 2025; 83:e778-e800. [PMID: 38917458 PMCID: PMC11819495 DOI: 10.1093/nutrit/nuae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
CONTEXT The assessment of zinc status is difficult but essential for the identification of zinc deficiency and evaluation of interventions to improve zinc status. OBJECTIVE The purpose of this systematic review (SR) and meta-analysis was to update the previously published SR of biomarkers of zinc status, conducted by the European Micronutrient Recommendations Aligned (EURRECA) network in 2009, to answer the question: Which putative measures (biomarkers) of zinc status appropriately reflect a change in zinc intake of at least 2 weeks? DATA SOURCES A structured search strategy was used to identify articles published between January 2007 and September 2022 from MEDLINE (Ovid), Embase (Ovid), Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials (CENTRAL). Relevant articles were identified using previously defined eligibility criteria. DATA EXTRACTION Data were extracted and combined with data from the previous SR. DATA ANALYSIS A random-effects model was used to calculate pooled mean differences using STATA (StataCorp). The risk of bias and the certainty of evidence for all outcomes were assessed. Additional data on 7 of the 32 previously reported biomarkers were identified, along with data on an additional 40 putative biomarkers from studies published since 2007. Pooled data analysis confirmed that, in healthy participants, both plasma/serum zinc concentration and urinary zinc excretion responded to changes in zinc intake (plasma/serum: mean effect [95% CI], controlled studies: 2.17 µmol/L [1.73, 2.61]; P < .005, I2 = 97.8; before-and-after studies: 2.87 µmol/L [2.45, 3.30]; P < .005, I2 = 98.1%; urine zinc: 0.39 mmol/mol creatinine [0.17, 0.62]; P < .005, I2 = 81.2; 3.09 µmol/day [0.16, 6.02]; P = .039, I2 = 94.3). CONCLUSION The updated analyses support the conclusion that plasma/serum and urinary zinc respond to changes in zinc intake in studies of healthy participants. Several additional putative biomarkers were identified, but more studies are needed to assess the sensitivity and reliability. SYSTEMATIC REVIEW REGISTRATION PROSPERO no. CRD42020219843.
Collapse
Affiliation(s)
- Marena Ceballos-Rasgado
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Anna K M Brazier
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Swarnim Gupta
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Victoria H Moran
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Elisa Pierella
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Katalin Fekete
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs 7624, Hungary
| | - Nicola M Lowe
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| |
Collapse
|
2
|
Sirivarasai J, Tristitworn P, Shantavasinkul PC, Roytrakul S, Chansirikarnjana S, Ruangritchankul S, Chanprasertyothin S, Charernwat P, Panpunuan P, Sura T, Sritara P. Genetic Polymorphism of Zinc Transporter-8 Gene (SLC30A8), Serum Zinc Concentrations, and Proteome Profiles Related to Type 2 Diabetes in Elderly. J Clin Med 2025; 14:790. [PMID: 39941463 PMCID: PMC11818826 DOI: 10.3390/jcm14030790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Background and Aims: Older adults are particularly susceptible to type 2 diabetes mellitus (T2DM) due to factors such as age-related insulin resistance, decreased physical activity, and deficiency of micronutrients, especially zinc. Studies have suggested that the risk allele of the zinc transporter 8 gene (SLC30A8) single-nucleotide poly-morphism (SNP) rs13266634 may contribute to T2DM susceptibility in addition to the complex protein interactions and alterations in the protein expressions and modifications associated with T2DM. This study was implemented to study the associations between SLC30A8 polymorphism, serum zinc levels, and the profiles of proteins differentially expressed in nondiabetic (n = 116) and prediabetic/diabetic (n = 149) subjects. Methods: SNP genotyping using TaqMan® assay and proteomic analysis by LC-MS/MS were performed in each group. Results: The results showed a higher risk of diabetes in individuals with the risk genotype CC accompanied by a low serum zinc level than in those with other genotypes. Profiles of proteins differentially expressed between the groups were identified and shown to be particularly associated with zinc-related functions, zinc transporter 8, and glucose metabolism. Proteins exclusively expressed in prediabetes/diabetes were assigned to a Reactome pathway related to zinc transporter and insulin processing. Conclusions: Our findings suggest that individuals carrying at least one copy of SLC30A8 rs13266634 accompanied by a low serum zinc level might be susceptible to T2DM, which could be due to alterations in insulin signaling and zinc metabolism. Understanding this relationship deepens our understanding of the genetic and molecular mechanisms underlying T2DM risk, offering potential targets for therapeutic intervention and prevention strategies.
Collapse
Affiliation(s)
- Jintana Sirivarasai
- Nutrition Unit, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Pimvaree Tristitworn
- Master of Science Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand;
| | | | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Pathum Thani 12120, Thailand;
| | - Sirintorn Chansirikarnjana
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.C.S.); (S.C.); (S.R.); (P.C.); (P.P.); (T.S.); (P.S.)
| | - Sirasa Ruangritchankul
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.C.S.); (S.C.); (S.R.); (P.C.); (P.P.); (T.S.); (P.S.)
| | - Suwannee Chanprasertyothin
- Research & Innovation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Piangporn Charernwat
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.C.S.); (S.C.); (S.R.); (P.C.); (P.P.); (T.S.); (P.S.)
| | - Pachara Panpunuan
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.C.S.); (S.C.); (S.R.); (P.C.); (P.P.); (T.S.); (P.S.)
| | - Thanyachai Sura
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.C.S.); (S.C.); (S.R.); (P.C.); (P.P.); (T.S.); (P.S.)
| | - Piyamitr Sritara
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.C.S.); (S.C.); (S.R.); (P.C.); (P.P.); (T.S.); (P.S.)
| |
Collapse
|
3
|
Inoue M. Zinc Deficiency Presenting With Diverse Symptoms in a Young Patient: A Case Report. Cureus 2024; 16:e66034. [PMID: 39221327 PMCID: PMC11366421 DOI: 10.7759/cureus.66034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Despite its prevalence, zinc deficiency often goes undiagnosed due to nonspecific symptoms. This study examined the case of an 18-year-old woman who presented with urinary tract infection, anemia, and insulin dysfunction and was ultimately diagnosed with zinc deficiency. Oral zinc supplementation significantly improved the patient's condition. Zinc is essential for the activity of numerous enzymes and affects immune function, protein structure, and endocrine regulation, but the cause is often unknown because symptoms and data abnormalities are nonspecific. The patient's diet was high in foods that inhibited zinc absorption, likely exacerbating the deficiency. This case illustrates the importance of considering zinc deficiency in patients with diverse and unexplained symptoms. Prompt recognition and treatment with zinc supplementation can lead to rapid and complete recovery. We hope that this case will contribute to the future diagnosis of zinc deficiency for clinicians.
Collapse
|
4
|
Allen LH, Fenech M, LeVatte MA, West KP, Wishart DS. Multiomics: Functional Molecular Biomarkers of Micronutrients for Public Health Application. Annu Rev Nutr 2024; 44:125-153. [PMID: 39207879 DOI: 10.1146/annurev-nutr-062322-022751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Adequate micronutrient intake and status are global public health goals. Vitamin and mineral deficiencies are widespread and known to impair health and survival across the life stages. However, knowledge of molecular effects, metabolic pathways, biological responses to variation in micronutrient nutriture, and abilities to assess populations for micronutrient deficiencies and their pathology remain lacking. Rapidly evolving methodological capabilities in genomics, epigenomics, proteomics, and metabolomics offer unparalleled opportunities for the nutrition research community to link micronutrient exposure to cellular health; discover new, arguably essential micronutrients of microbial origin; and integrate methods of molecular biology, epidemiology, and intervention trials to develop novel approaches to assess and prevent micronutrient deficiencies in populations. In this review article, we offer new terminology to specify nutritional application of multiomic approaches and encourage collaboration across the basic to public health sciences to advance micronutrient deficiency prevention.
Collapse
Affiliation(s)
- Lindsay H Allen
- Western Human Nutrition Research Center, United States Department of Agriculture, Agricultural Research Service, Davis, California, USA
- Department of Nutrition, University of California, Davis, California, USA
| | - Michael Fenech
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Genome Health Foundation, North Brighton, South Australia, Australia
| | - Marcia A LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Keith P West
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Wang F, Zhong J, Zhang R, Sun Y, Dong Y, Wang M, Sun C. Zinc and COVID-19: Immunity, Susceptibility, Severity and Intervention. Crit Rev Food Sci Nutr 2022; 64:1969-1987. [PMID: 36094452 DOI: 10.1080/10408398.2022.2119932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic and continuing emergence of viral mutants, there has been a lack of effective treatment methods. Zinc maintains immune function, with direct and indirect antiviral activities. Zinc nutritional status is a critical factor in antiviral immune responses. Importantly, COVID-19 and zinc deficiency overlap in high-risk population. Hence, the potential effect of zinc as a preventive and adjunct therapy for COVID-19 is intriguing. Here, this review summarizes the immune and antiviral function of zinc, the relationship between zinc levels, susceptibility, and severity of COVID-19, and the effect of zinc supplementation on COVID-19. Existing studies have confirmed that zinc deficiency was associated with COVID-19 susceptibility and severity. Zinc supplementation plays a potentially protective role in enhancing immunity, decreasing susceptibility, shortening illness duration, and reducing the severity of COVID-19. We recommend that zinc levels should be monitored, particularly in COVID-19 patients, and zinc as a preventive and adjunct therapy for COVID-19 should be considered for groups at risk of zinc deficiency to reduce susceptibility and disease severity.
Collapse
Affiliation(s)
- Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Jiayi Zhong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Rui Zhang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yongzhi Sun
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yingran Dong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Maoqing Wang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Changhao Sun
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Sun Y, Zhao J, Song X, Sun Z, Zhang R, Zhong J, Huang X, Dong Y, Yu Q, Dong F, Li Z, Fan L, Wang M, Peng C, Wang F. Effects of marginal zinc deficiency on learning and memory ability after birth. Food Funct 2022; 13:7204-7214. [PMID: 35713090 DOI: 10.1039/d2fo01074g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc deficiency during pregnancy and severe zinc deficiency after birth both impaired learning and memory ability, but the effects of marginal zinc deficiency (MZD) after birth on learning and memory are unclear. In the first experiment, 4-week-old male rats were randomly divided into three groups: the marginal zinc-deficient group (MZG, 10 mg kg-1, 1/3 RNI), normal zinc group (NZG, 30 mg kg-1, RNI), and paired zinc group (PZG, 30 mg kg-1). After a 4-week feeding period, the brain weight, brain coefficient, and serum zinc concentration were measured, and hippocampal proteomics analysis was performed. In the second experiment, 4-week-old male rats were fed the same diet for 8 weeks. In addition to the previously mentioned indicators, the Morris water maze results, brain pathology, post-translational modifications (PTMs) of hippocampal proteins, and the concentrations of indicators known to be related to learning and memory were analyzed. In both experiments, compared with those of the NZG, the food intake, body weight and serum zinc of the MZG were significantly decreased, and the brain weight was unchanged, but the brain coefficient was increased. Two hippocampal proteomics analyses and PTM screening showed that MZD did not change the expression and PTM of proteins. The brain pathology, learning, memory and the concentrations of indicators known to be related to learning and memory were not changed by MZD. Our study confirmed that marginal zinc deficiency (10 mg kg-1, 1/3 RNI) had no effect on the learning and memory abilities of rats after birth.
Collapse
Affiliation(s)
- Yongzhi Sun
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Jiali Zhao
- Yiwu Maternity and Children Hospital, Yiwu, Zhejiang, China
| | - Xinyu Song
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Zhaohui Sun
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Rui Zhang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Jiayi Zhong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Xiaocai Huang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Yingran Dong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Qingli Yu
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Feng Dong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Zixiang Li
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Lina Fan
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Maoqing Wang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Chenghai Peng
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150081, China.
| | - Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China.
| |
Collapse
|
7
|
Maares M, Hackler J, Haupt A, Heller RA, Bachmann M, Diegmann J, Moghaddam A, Schomburg L, Haase H. Free Zinc as a Predictive Marker for COVID-19 Mortality Risk. Nutrients 2022; 14:nu14071407. [PMID: 35406020 PMCID: PMC9002649 DOI: 10.3390/nu14071407] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Free zinc is considered to be the exchangeable and biological active form of zinc in serum, and is discussed to be a suitable biomarker for alterations in body zinc homeostasis and related diseases. Given that coronavirus disease 2019 (COVID-19) is characterized by a marked decrease in total serum zinc, and clinical data indicate that zinc status impacts the susceptibility and severity of the infection, we hypothesized that free zinc in serum might be altered in response to SARS-CoV-2 infection and may reflect disease severity. To test this hypothesis, free zinc concentrations in serum samples of survivors and nonsurvivors of COVID-19 were analyzed by fluorometric microassay. Similar to the reported total serum zinc deficit measured by total reflection X-ray fluorescence, free serum zinc in COVID-19 patients was considerably lower than that in control subjects, and surviving patients displayed significantly higher levels of free zinc than those of nonsurvivors (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0004). In contrast to recovering total zinc concentrations (r = 0.706, p < 0.001) or the declining copper−zinc ratio (r = −0.646; p < 0.001), free zinc concentrations remained unaltered with time in COVID-19 nonsurvivors. Free serum zinc concentrations were particularly low in male as compared to female patients (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0003). This is of particular interest, as the male sex is described as a risk factor for severe COVID-19. Overall, results indicate that depressed free serum zinc levels are associated with increased risk of death in COVID-19, suggesting that free zinc may serve as a novel prognostic marker for the severity and course of COVID-19.
Collapse
Affiliation(s)
- Maria Maares
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (M.M.); (A.H.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany;
| | - Alessia Haupt
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (M.M.); (A.H.)
| | - Raban Arved Heller
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany;
- Bundeswehr Hospital Berlin, Department of Traumatology and Orthopaedics, Septic and Reconstructive Surgery, 10115 Berlin, Germany
- Department of General Practice and Health Services Research, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Manuel Bachmann
- ATORG, Aschaffenburg Trauma and Orthopedic Research Group, Center for Orthopedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, 63739 Aschaffenburg, Germany; (M.B.); (J.D.)
| | - Joachim Diegmann
- ATORG, Aschaffenburg Trauma and Orthopedic Research Group, Center for Orthopedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, 63739 Aschaffenburg, Germany; (M.B.); (J.D.)
| | - Arash Moghaddam
- Orthopedic and Trauma Surgery, Frohsinnstraße 12, 63739 Aschaffenburg, Germany;
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany;
- Correspondence: (L.S.); (H.H.); Tel.: +49-30-450524289 (L.S.); +49-(0)-30-31472701 (H.H.); Fax: +49-30-4507524289 (L.S.); +49-(0)-30-31472823 (H.H.)
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (M.M.); (A.H.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
- Correspondence: (L.S.); (H.H.); Tel.: +49-30-450524289 (L.S.); +49-(0)-30-31472701 (H.H.); Fax: +49-30-4507524289 (L.S.); +49-(0)-30-31472823 (H.H.)
| |
Collapse
|