1
|
Zheng Y, Zong J, Chen Y, Guo J, Lu T, Xin X, Chen Y. Lack of association between XRCC1 SNPs and acute radiation‑induced injury or prognosis in patients with nasopharyngeal carcinoma. Oncol Lett 2023; 26:544. [PMID: 38020297 PMCID: PMC10660173 DOI: 10.3892/ol.2023.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/05/2023] [Indexed: 12/01/2023] Open
Abstract
The response to radiation therapy (RT) is closely associated with DNA damage repair. X-ray repair cross-complementing group-1 (XRCC1) is a key gene in the DNA damage repair pathway, and SNPs in this gene alter the expression and activity of its effector protein, which may in turn affect sensitivity to RT. Therefore, the course of tumor treatment and local control rate can be influenced. In the present study, a group of 158 patients with nasopharyngeal carcinoma (NPC) who received intensity-modulated RT at Fujian Cancer Hospital (Fuzhou, China) between July 2012 and October 2013 were included in retrospective chart review and followed up. Plasma was collected before treatment for genotype analysis of the three SNPs of XRCC1, namely Arg194Trp, Arg280His and Arg399Gln. Acute radiation-induced injuries sustained during treatment was graded according to the Radiation Therapy Oncology Group scoring criteria. Post-treatment follow-up was performed until August 2020. In the 158 cases of NPC, no statistically significant association was observed between the three SNPs of the XRCC1 gene and the severity of acute radiation-induced injury or prognosis. However, the AA genotype of XRCC1-Arg399Gln tended to be associated with worse progression-free survival (PFS) compared with the GA + GG genotype, although this was not significant (P=0.069). In addition, multivariate logistic analysis showed that nodal stage was significantly associated with the occurrence of acute severe radiation-induced oral mucositis (P=0.018), and there was also a trend towards an association between nodal stage and the incidence of acute severe radiation-induced pharyngitis; however, this was not statistically significant (P=0.061). Furthermore, multivariate Cox regression analysis showed that older age, distant metastasis and higher clinical stage were independent risk factors for PFS in patients with NPC. In conclusion, relying solely on the aforementioned SNPs of the XRCC1 gene may not provide a robust enough basis to predict the response to RT or prognosis in patients with NPC.
Collapse
Affiliation(s)
- Yuhong Zheng
- Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Jingfeng Zong
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yansong Chen
- Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Junying Guo
- Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Tianzhu Lu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Xiaoqin Xin
- Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yan Chen
- Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| |
Collapse
|
2
|
Someya M, Hasegawa T, Nakamura AJ, Tsuchiya T, Kitagawa M, Gocho T, Mafune S, Ikeuchi Y, Tauchi H, Sakata KI. Prediction of late adverse events in pelvic cancer patients receiving definitive radiotherapy using radiation-induced gamma-H2AX foci assay. JOURNAL OF RADIATION RESEARCH 2023; 64:948-953. [PMID: 37839163 PMCID: PMC10665300 DOI: 10.1093/jrr/rrad079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Radiation can induce DNA double-stranded breaks, which are typically detected by the fluorescence of phosphorylated histone H2AX. In this study, we examined the usefulness of the dynamics of radiation-induced gamma-H2AX foci of peripheral blood lymphocytes (PBLs), as a marker of DNA repair ability, in predicting late adverse events from radiotherapy. A total of 46 patients with cervical, vaginal and anal canal cancers treated with radical radiotherapy between 2014 and 2019 were included in this analysis. Concurrent chemotherapy was administered in 36 cases (78.3%). Peripheral blood was obtained before treatment, and then irradiated ex vivo with 1 Gy X-ray. The ratio of radiation-induced gamma-H2AX foci in PBLs measured at 30 min and at 4 h was defined as the foci decay ratio (FDR). With a median follow-up of 54 months, 9 patients (19.6%) were observed to have late genitourinary or gastrointestinal (GU/GI) toxicity. The FDR ranged from 0.51 to 0.74 (median 0.59), with a significantly higher incidence of Grade 1 or higher late adverse events in the FDR ≥ 0.59 group. In multivariate analysis, FDR ≥ 0.59 and hypertension also emerged as significant factors associated with the development of late toxicities. Overall, our results suggest that measurement of radiation-induced gamma-H2AX foci in PBLs may predict the risk of late GU/GI toxicities from chemoradiotherapy, which can enable tailoring the radiation dose to minimize adverse effects.
Collapse
Affiliation(s)
- Masanori Someya
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Tomokazu Hasegawa
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Asako J Nakamura
- Department of Biological Sciences, College of Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Takaaki Tsuchiya
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Mio Kitagawa
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Toshio Gocho
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Sho Mafune
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Yutaro Ikeuchi
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Hiroshi Tauchi
- Department of Biological Sciences, Faculty of Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Koh-ichi Sakata
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| |
Collapse
|
3
|
Murray LJ, Appelt AL, Ajithkumar T, Bedford JL, Burnet NG, Lalondrelle S, Manolopoulos S, O'Cathail SM, Robinson M, Short SC, Slevin F, Thomson DJ. Re-irradiation: From Cell Lines to Patients, Filling the (Science) Gap in the Market. Clin Oncol (R Coll Radiol) 2023; 35:318-322. [PMID: 36842937 DOI: 10.1016/j.clon.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Affiliation(s)
- L J Murray
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - A L Appelt
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - T Ajithkumar
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - J L Bedford
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - N G Burnet
- The Christie NHS Foundation Trust, Manchester, UK
| | - S Lalondrelle
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, Sutton, UK
| | - S Manolopoulos
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Cumberland Infirmary, Carlisle, UK
| | - S M O'Cathail
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - M Robinson
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| | - S C Short
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - F Slevin
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - D J Thomson
- The Christie NHS Foundation Trust, Manchester, UK; The University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Xi J, Sun D, Chang C, Zhou S, Huang Q. An omics-to-omics joint knowledge association subtensor model for radiogenomics cross-modal modules from genomics and ultrasonic images of breast cancers. Comput Biol Med 2023; 155:106672. [PMID: 36805226 DOI: 10.1016/j.compbiomed.2023.106672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
The radiogenomics analysis can provide the connections between genomics and radiomics, which can infer the genomic features of tumors from their radiogenomic associations through the low-cost and non-invasiveness screening ultrasonic images. Although there are a number of pioneer approaches exploring the connections between genomic aberrations and ultrasonic features, these studies mainly focus on the relationship between ultrasonic features and only the most popular cancer genes, confronting two difficulties: missing many-to-many relationships as omics-to-omics view, and confounding group-specific associations with whole sample associations. To overcome the difficulty of omics-to-omics view and the issue of tumor heterogeneity, we propose an omics-to-omics joint knowledge association subtensor model. Specifically, the subtensor factorization framework can successfully discover the joint cross-modal module via an omics-to-omics view, while the sparse weight sample indication strategy can mine sample subgroups from the multi-omic data with tumor heterogeneity. The experimental evaluation result shows the jointness of the discovered modules across omics, their association with tumorigenesis contribution, and their relation for cancer related functions. In summary, our proposed omics-to-omics joint knowledge association subtensor model can serve as an efficient tool for radiogenomic knowledge associations, promoting the cross-modal knowledge graph construction of in explainable artificial intelligence cancer diagnosis.
Collapse
Affiliation(s)
- Jianing Xi
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Donghui Sun
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Cai Chang
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Shichong Zhou
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qinghua Huang
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
5
|
Nie K, Xiao Y. Radiomics in clinical trials: perspectives on standardization. Phys Med Biol 2022; 68. [PMID: 36384049 DOI: 10.1088/1361-6560/aca388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
The term biomarker is used to describe a biological measure of the disease behavior. The existing imaging biomarkers are associated with the known tissue biological characteristics and follow a well-established roadmap to be implemented in routine clinical practice. Recently, a new quantitative imaging analysis approach named radiomics has emerged. It refers to the extraction of a large number of advanced imaging features with high-throughput computing. Extensive research has demonstrated its value in predicting disease behavior, progression, and response to therapeutic options. However, there are numerous challenges to establishing it as a clinically viable solution, including lack of reproducibility and transparency. The data-driven nature also does not offer insights into the underpinning biology of the observed relationships. As such, additional effort is needed to establish it as a qualified biomarker to inform clinical decisions. Here we review the technical difficulties encountered in the clinical applications of radiomics and current effort in addressing some of these challenges in clinical trial designs. By addressing these challenges, the true potential of radiomics can be unleashed.
Collapse
Affiliation(s)
- Ke Nie
- Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, Department of Radiation Oncology, New Brunswick, NJ, 08901, United States of America
| | - Ying Xiao
- University of Pennsylvania, Department of Radiation Oncology, 3400 Civic Center Blvd, TRC-2 West Philadelphia, PA 19104, United States of America
| |
Collapse
|
6
|
Brothwell MRS, Barnett GC. Cancer Genetics and Genomics - Part 1. Clin Oncol (R Coll Radiol) 2022; 34:e254-e261. [PMID: 35339325 DOI: 10.1016/j.clon.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
Affiliation(s)
- M R S Brothwell
- Department of Oncology, Colchester Hospital, Colchester, UK.
| | - G C Barnett
- University of Cambridge, Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
7
|
Burnet NG, Mee T, Gaito S, Kirkby NF, Aitkenhead AH, Anandadas CN, Aznar MC, Barraclough LH, Borst G, Charlwood FC, Clarke M, Colaco RJ, Crellin AM, Defourney NN, Hague CJ, Harris M, Henthorn NT, Hopkins KI, Hwang E, Ingram SP, Kirkby KJ, Lee LW, Lines D, Lingard Z, Lowe M, Mackay RI, McBain CA, Merchant MJ, Noble DJ, Pan S, Price JM, Radhakrishna G, Reboredo-Gil D, Salem A, Sashidharan S, Sitch P, Smith E, Smith EAK, Taylor MJ, Thomson DJ, Thorp NJ, Underwood TSA, Warmenhoven JW, Wylie JP, Whitfield G. Estimating the percentage of patients who might benefit from proton beam therapy instead of X-ray radiotherapy. Br J Radiol 2022; 95:20211175. [PMID: 35220723 PMCID: PMC10993980 DOI: 10.1259/bjr.20211175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES High-energy Proton Beam Therapy (PBT) commenced in England in 2018 and NHS England commissions PBT for 1.5% of patients receiving radical radiotherapy. We sought expert opinion on the level of provision. METHODS Invitations were sent to 41 colleagues working in PBT, most at one UK centre, to contribute by completing a spreadsheet. 39 responded: 23 (59%) completed the spreadsheet; 16 (41%) declined, arguing that clinical outcome data are lacking, but joined six additional site-specialist oncologists for two consensus meetings. The spreadsheet was pre-populated with incidence data from Cancer Research UK and radiotherapy use data from the National Cancer Registration and Analysis Service. 'Mechanisms of Benefit' of reduced growth impairment, reduced toxicity, dose escalation and reduced second cancer risk were examined. RESULTS The most reliable figure for percentage of radical radiotherapy patients likely to benefit from PBT was that agreed by 95% of the 23 respondents at 4.3%, slightly larger than current provision. The median was 15% (range 4-92%) and consensus median 13%. The biggest estimated potential benefit was from reducing toxicity, median benefit to 15% (range 4-92%), followed by dose escalation median 3% (range 0 to 47%); consensus values were 12 and 3%. Reduced growth impairment and reduced second cancer risk were calculated to benefit 0.5% and 0.1%. CONCLUSIONS The most secure estimate of percentage benefit was 4.3% but insufficient clinical outcome data exist for confident estimates. The study supports the NHS approach of using the evidence base and developing it through randomised trials, non-randomised studies and outcomes tracking. ADVANCES IN KNOWLEDGE Less is known about the percentage of patients who may benefit from PBT than is generally acknowledged. Expert opinion varies widely. Insufficient clinical outcome data exist to provide robust estimates. Considerable further work is needed to address this, including international collaboration; much is already underway but will take time to provide mature data.
Collapse
Affiliation(s)
- Neil G Burnet
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Thomas Mee
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Simona Gaito
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Norman F Kirkby
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Adam H Aitkenhead
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Carmel N Anandadas
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Marianne C Aznar
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Lisa H Barraclough
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Gerben Borst
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Frances C Charlwood
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Matthew Clarke
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Rovel J Colaco
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Adrian M Crellin
- NHS England National Clinical Lead Proton Beam Therapy, Leeds
Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds and St James's
Institute of Oncology, Leeds Teaching Hospitals NHS Trust, Beckett
Street, Leeds, LS9 7TF, UK, Leeds,
United Kingdom
| | - Noemie N Defourney
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Christina J Hague
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Margaret Harris
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Nicholas T Henthorn
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Kirsten I Hopkins
- International Atomic Energy Agency, Vienna International
Centre, Vienna,
Austria
| | - E Hwang
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Department of Radiation Oncology, Sydney West Radiation
Oncology Network, Crown Princess Mary Cancer Centre,
Sydney, New South Wales, Australia and
Institute of Medical Physics, School of Physics, University of Sydney,
Sydney, New South Wales, Australia
| | - Sam P Ingram
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Karen J Kirkby
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Lip W Lee
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - David Lines
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Zoe Lingard
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Matthew Lowe
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Ranald I Mackay
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Catherine A McBain
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Michael J Merchant
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - David J Noble
- Department of Clinical Oncology, Edinburgh Cancer Centre,
Western General Hospital,
Edinburgh, United Kingdom
| | - Shermaine Pan
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - James M Price
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | | | - David Reboredo-Gil
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Ahmed Salem
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | | | - Peter Sitch
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Ed Smith
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Proton Clinical Outcomes Unit, The Christie NHS Foundation
Trust, Manchester, United
Kingdom
| | - Edward AK Smith
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Michael J Taylor
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - David J Thomson
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Nicola J Thorp
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Tracy SA Underwood
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - John W Warmenhoven
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - James P Wylie
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Gillian Whitfield
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| |
Collapse
|
8
|
Welsh FK, Connell JJ, Kelly M, Gooding S, Banerjee R, Rees M. Precision medicine for liver tumours with quantitative MRI and whole genome sequencing (Precision1 trial): study protocol for observational cohort study. BMJ Open 2022; 12:e057163. [PMID: 35383076 PMCID: PMC8984042 DOI: 10.1136/bmjopen-2021-057163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Radiogenomic analysis of patients being considered for liver resection is seldom performed in the clinic despite recent evidence indicating that quantitative MRI could improve posthepatectomy outcomes. Meanwhile, the increasingly accessible results from whole genome sequencing reporting on clinically actionable genetic biomarkers are yet to be fully integrated into the clinical care pathway. METHODS AND ANALYSIS A prospective observational cohort study of up to 200 participants is planned, recruiting adults with primary or secondary liver cancer being considered for liver resection at Hampshire Hospitals NHS Foundation Trust. The data will be evaluated to address the primary endpoint to calculate the proportion of participants in which the results from whole genome sequencing would have resulted in a change in clinical management. Participants will be offered an additional non-invasive quantitative MRI scan prior to the operation and the impact of the imaging results on treatment decision-making will be evaluated. ETHICS AND DISSEMINATION This study was reviewed by the NHS Health Research Authority and given favourable opinion by the Brighton and Sussex Research Ethics Committee (REC reference: 20/PR/0222). Research findings will be discussed with a patient and public involvement and engagement group, presented at relevant scientific conferences and published in open access journals. TRIAL REGISTRATION NUMBER NCT04597710.
Collapse
Affiliation(s)
- Fenella K Welsh
- Department of Hepatobiliary Surgery, Basingstoke and North Hampshire Hospital, Basingstoke, UK
| | | | | | - Sarah Gooding
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Myrddin Rees
- Department of Hepatobiliary Surgery, Basingstoke and North Hampshire Hospital, Basingstoke, UK
| |
Collapse
|
9
|
de Aguiar BRL, Ferreira EB, Normando AGC, Guerra ENS, Assad DX, Mazzeu JF, dos Reis PED. Single nucleotide polymorphisms to predict acute radiation dermatitis in breast cancer patients: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2022; 173:103651. [DOI: 10.1016/j.critrevonc.2022.103651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
|
10
|
Harreld J, Zou P, Sabin N, Edwards A, Han Y, Li Y, Bieri O, Khan R, Gajjar A, Robinson G, Merchant T. Pretreatment Normal WM Magnetization Transfer Ratio Predicts Risk of Radiation Necrosis in Patients with Medulloblastoma. AJNR Am J Neuroradiol 2022; 43:299-303. [PMID: 35058296 PMCID: PMC8985672 DOI: 10.3174/ajnr.a7393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Radiation necrosis, for which abnormal WM enhancement is a hallmark, is an uncommon complication of craniospinal irradiation in children with medulloblastoma. The magnetization transfer ratio measures macromolecular content, dominated by myelin in the WM. We investigated whether the pretreatment supratentorial (nonsurgical) WM magnetization transfer ratio could predict patients at risk for radiation necrosis after radiation therapy for medulloblastoma. MATERIALS AND METHODS Ninety-five eligible patients with medulloblastoma (41% female; mean age, 11.0 [SD, 5.4] years) had baseline balanced steady-state free precession MR imaging before proton or photon radiation therapy. Associations among baseline supratentorial magnetization transfer ratio, radiation necrosis (spontaneously resolving/improving parenchymal enhancement within the radiation field)3, age, and the presence of visible brain metastases were explored by logistic regression and parametric/nonparametric techniques as appropriate. RESULTS Twenty-three of 95 (24.2%) children (44% female; mean age, 10.7 [SD, 6.7] years) developed radiation necrosis after radiation therapy (19 infratentorial, 1 supratentorial, 3 both). The mean pretreatment supratentorial WM magnetization transfer ratio was significantly lower in these children (43.18 versus 43.50, P = .03). There was no association between the supratentorial WM magnetization transfer ratio and age, sex, risk/treatment stratum, or the presence of visible brain metastases. CONCLUSIONS A lower baseline supratentorial WM magnetization transfer ratio may indicate underlying structural WM susceptibility to radiation necrosis and may identify children at risk for developing radiation necrosis after craniospinal irradiation for medulloblastoma.
Collapse
Affiliation(s)
- J.H. Harreld
- From the Department of Radiology (J.H.H.), Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire,Geisel School of Medicine (J.H.H.), Dartmouth College, Hanover, New Hampshire
| | - P. Zou
- Departments of Diagnostic Imaging (P.Z., N.D.S., A.E.)
| | - N.D. Sabin
- Departments of Diagnostic Imaging (P.Z., N.D.S., A.E.)
| | - A. Edwards
- Departments of Diagnostic Imaging (P.Z., N.D.S., A.E.)
| | - Y. Han
- Biostatistics (Y.H., Y.L.)
| | - Y. Li
- Biostatistics (Y.H., Y.L.)
| | - O. Bieri
- Department of Radiology (O.B.), Division of Radiological Physics, University Hospital Basel, Basel, Switzerland,Department of Biomedical Engineering (O.B), University of Basel, Allschwil, Switzerland
| | | | - A. Gajjar
- Department of Pediatrics, and Departments of Neuro-Oncology (A.G., G.R.)
| | - G. Robinson
- Department of Pediatrics, and Departments of Neuro-Oncology (A.G., G.R.)
| | - T.E. Merchant
- Radiation Oncology (T.E.M.), St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
11
|
Krauze AV, Camphausen K. Molecular Biology in Treatment Decision Processes-Neuro-Oncology Edition. Int J Mol Sci 2021; 22:13278. [PMID: 34948075 PMCID: PMC8703419 DOI: 10.3390/ijms222413278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Computational approaches including machine learning, deep learning, and artificial intelligence are growing in importance in all medical specialties as large data repositories are increasingly being optimised. Radiation oncology as a discipline is at the forefront of large-scale data acquisition and well positioned towards both the production and analysis of large-scale oncologic data with the potential for clinically driven endpoints and advancement of patient outcomes. Neuro-oncology is comprised of malignancies that often carry poor prognosis and significant neurological sequelae. The analysis of radiation therapy mediated treatment and the potential for computationally mediated analyses may lead to more precise therapy by employing large scale data. We analysed the state of the literature pertaining to large scale data, computational analysis, and the advancement of molecular biomarkers in neuro-oncology with emphasis on radiation oncology. We aimed to connect existing and evolving approaches to realistic avenues for clinical implementation focusing on low grade gliomas (LGG), high grade gliomas (HGG), management of the elderly patient with HGG, rare central nervous system tumors, craniospinal irradiation, and re-irradiation to examine how computational analysis and molecular science may synergistically drive advances in personalised radiation therapy (RT) and optimise patient outcomes.
Collapse
Affiliation(s)
- Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD 20892, USA;
| | | |
Collapse
|
12
|
Gorbunov NV, Kiang JG. Brain Damage and Patterns of Neurovascular Disorder after Ionizing Irradiation. Complications in Radiotherapy and Radiation Combined Injury. Radiat Res 2021; 196:1-16. [PMID: 33979447 PMCID: PMC8297540 DOI: 10.1667/rade-20-00147.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Exposure to ionizing radiation, mechanical trauma, toxic chemicals or infections, or combinations thereof (i.e., combined injury) can induce organic injury to brain tissues, the structural disarrangement of interactive networks of neurovascular and glial cells, as well as on arrays of the paracrine and systemic destruction. This leads to subsequent decline in cognitive capacity and decompensation of mental health. There is an ongoing need for improvement in mitigating and treating radiation- or combined injury-induced brain injury. Cranial irradiation per se can cause a multifactorial encephalopathy that occurs in a radiation dose- and time-dependent manner due to differences in radiosensitivity among the various constituents of brain parenchyma and vasculature. Of particular concern are the radiosensitivity and inflammation susceptibility of: 1. the neurogenic and oligodendrogenic niches in the subependymal and hippocampal domains; and 2. the microvascular endothelium. Thus, cranial or total-body irradiation can cause a plethora of biochemical and cellular disorders in brain tissues, including: 1. decline in neurogenesis and oligodendrogenesis; 2. impairment of the blood-brain barrier; and 3. ablation of vascular capillary. These changes, along with cerebrovascular inflammation, underlie different stages of encephalopathy, from the early protracted stage to the late delayed stage. It is evident that ionizing radiation combined with other traumatic insults such as penetrating wound, burn, blast, systemic infection and chemotherapy, among others, can exacerbate the radiation sequelae (and vice versa) with increasing severity of neurogenic and microvascular patterns of radiation brain damage.
Collapse
Affiliation(s)
| | - Juliann G. Kiang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
13
|
Gupta A, Mathew D, Bhat SA, Ghoshal S, Pal A. Genetic Variants of DNA Repair Genes as Predictors of Radiation-Induced Subcutaneous Fibrosis in Oropharyngeal Carcinoma. Front Oncol 2021; 11:652049. [PMID: 34079756 PMCID: PMC8165303 DOI: 10.3389/fonc.2021.652049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate the impact of genetic variants of DNA repair and pro-fibrotic pathway genes on the severity of radiation-induced subcutaneous fibrosis in patients of oropharyngeal carcinoma treated with radical radiotherapy. Materials and Methods Patients of newly diagnosed squamous cell carcinoma of oropharynx being treated with two-dimensional radical radiotherapy were enrolled in the study. Patients who had undergone surgery or were receiving concurrent chemotherapy were excluded. Patients were followed up at 6 weeks post completion of radiotherapy and every 3 months thereafter for a median of 16 months. Subcutaneous fibrosis was graded according to the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC) grading system and the maximum grade was recorded over the length of the patient’s follow-up. Patients with severe fibrosis (≥G3), were compared to patients with minor (≤G2) fibrotic reactions. Eight single nucleotide polymorphisms of 7 DNA repair genes and 2 polymorphisms of a single pro-fibrotic pathway gene were analyzed by Polymerase Chain Reaction and Restriction Fragment Length Polymorphism and were correlated with the severity of subcutaneous fibrosis. Results 179 patients were included in the analysis. Subcutaneous fibrosis was seen in 168 (93.9%) patients. 36 (20.1%) patients had severe (grade 3) fibrosis. On multivariate logistic regression analysis, Homozygous CC genotype of XRCC3 (722C>T, rs861539) (p=0.013*, OR 2.350, 95% CI 1.089-5.382), Homozygous AA genotype of ERCC4 Ex8 (1244G>A, rs1800067) (p=0.001**, OR 11.626, 95% CI 2.490-275.901) and Homozygous TT genotype of XRCC5 (1401G>T, rs828907) (p=0.020*, OR 2.188, 95% CI 1.652-7.334) were found to be predictive of severe subcutaneous fibrosis. On haplotype analysis, the cumulative risk of developing severe fibrosis was observed in patients carrying both haplotypes of variant Homozygous AA genotype of ERCC4 Ex8 (1244G>A, rs1800067) and Homozygous TT genotype of XRCC5 (1401 G>T, rs828907) (p=0.010*, OR 26.340, 95% CI 4.014-76.568). Conclusion We demonstrated significant associations between single nucleotide polymorphisms of DNA repair genes and radiation-induced subcutaneous fibrosis in patients of oropharyngeal carcinoma treated with radiotherapy. We propose to incorporate these genetic markers into predictive models for identifying patients genetically predisposed to the development of radiation-induced fibrosis, thus guiding personalized treatment protocols.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Don Mathew
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shabir Ahmad Bhat
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sushmita Ghoshal
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
Slevin F, Beasley M, Cross W, Scarsbrook A, Murray L, Henry A. Patterns of Lymph Node Failure in Patients With Recurrent Prostate Cancer Postradical Prostatectomy and Implications for Salvage Therapies. Adv Radiat Oncol 2020; 5:1126-1140. [PMID: 33305073 PMCID: PMC7718540 DOI: 10.1016/j.adro.2020.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/18/2020] [Accepted: 07/15/2020] [Indexed: 02/03/2023] Open
Abstract
PURPOSE There is increasing use of radical prostatectomy to treat patients with high-risk prostate cancer. This has contributed toward a pathologic stage migration, and a greater number of patients are subsequently being diagnosed with biochemical failure. There is increasing use of advanced imaging techniques in the setting of biochemical failure, including positron emission tomography-computed tomography (PET-CT). METHODS AND MATERIALS This critical literature review highlights the evidence for PET-CT in postprostatectomy biochemical failure and identifies sites of pelvic lymph node relapse in the setting of biochemical failure and the potential implications that the locations of these relapses may have for salvage therapies. Potential future directions are then considered. RESULTS The optimal PET-CT tracer remains uncertain but there is increasing use of prostate-specific membrane antigen PET-CT for investigating sites of nodal metastasis at low prostate-specific antigen levels, and this is leading to a blurring of the biochemical and radiologic recurrence phases. The optimal therapeutic approach remains undefined, with current trials investigating postoperative radiation therapy to the whole pelvis in addition to the prostatic fossa, the use of PET-CT in the setting of biochemical recurrence to guide delivery of salvage radiation therapy, and, for patients with node-only relapsed prostate cancer, the addition of whole pelvis radiation therapy to metastasis-directed therapies such as stereotactic ablative radiotherapy. CONCLUSIONS The most appropriate target volume for salvage radiation therapy remains uncertain, and the findings of studies using PET-CT to map nodal recurrences suggest that there could be a role for extending whole pelvis radiation therapy volumes to increase coverage of superior nodal regions. The emerging fields of radiomics and radiogenomics could provide important prognostic information and aid decision making for patients with relapsed prostate cancer.
Collapse
Affiliation(s)
- Finbar Slevin
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
- University of Leeds, Leeds, United Kingdom
| | - Matthew Beasley
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - William Cross
- Department of Urology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Andrew Scarsbrook
- University of Leeds, Leeds, United Kingdom
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Louise Murray
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
- University of Leeds, Leeds, United Kingdom
| | - Ann Henry
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
- University of Leeds, Leeds, United Kingdom
| |
Collapse
|
15
|
Giuranno L, Ient J, De Ruysscher D, Vooijs MA. Radiation-Induced Lung Injury (RILI). Front Oncol 2019; 9:877. [PMID: 31555602 PMCID: PMC6743286 DOI: 10.3389/fonc.2019.00877] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Radiation pneumonitis (RP) and radiation fibrosis (RF) are two dose-limiting toxicities of radiotherapy (RT), especially for lung, and esophageal cancer. It occurs in 5-20% of patients and limits the maximum dose that can be delivered, reducing tumor control probability (TCP) and may lead to dyspnea, lung fibrosis, and impaired quality of life. Both physical and biological factors determine the normal tissue complication probability (NTCP) by Radiotherapy. A better understanding of the pathophysiological sequence of radiation-induced lung injury (RILI) and the intrinsic, environmental and treatment-related factors may aid in the prevention, and better management of radiation-induced lung damage. In this review, we summarize our current understanding of the pathological and molecular consequences of lung exposure to ionizing radiation, and pharmaceutical interventions that may be beneficial in the prevention or curtailment of RILI, and therefore enable a more durable therapeutic tumor response.
Collapse
Affiliation(s)
- Lorena Giuranno
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jonathan Ient
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Dirk De Ruysscher
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marc A Vooijs
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
16
|
Symonds P, Jones GDD. Hot Topics in Radiobiology. Clin Oncol (R Coll Radiol) 2019; 31:269-271. [PMID: 30885531 DOI: 10.1016/j.clon.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Affiliation(s)
- P Symonds
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester, UK.
| | - G D D Jones
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester, UK
| |
Collapse
|