1
|
Tang S, Yen A, Wang K, Albuquerque K, Wang J. Progression-Free Survival Prediction for Locally Advanced Cervical Cancer After Chemoradiotherapy With MRI-based Radiomics. Clin Oncol (R Coll Radiol) 2025; 38:103702. [PMID: 39706142 DOI: 10.1016/j.clon.2024.103702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
AIMS A significant proportion of locally advanced cervical cancer (LACC) patients experience disease progression post chemoradiotherapy (CRT). Currently existing clinical variables are suboptimal predictors of treatment response. This study reported a radiomics-based model leveraging information extracted from magnetic resonance (MR) T2-weighted image (T2WI) to predict the progression-free survival (PFS) for LACC following CRT. MATERIALS AND METHODS Radiomics features were extracted from pre-treatment MR T2WI in 105 LACC patients. Following pre-feature selection and a step forward feature selection method, an optimal feature set was determined with a Cox proportional hazard (CPH) model. The PFS predictions were generated through a radiomics-clinical combined model utilized five repeated nested 5-fold cross-validation (5-fold CV). Disease progression risk was stratified into high- and low-risk groups based on the predicted PFS and assessed by Kaplan-Meier analysis. RESULTS The radiomics texture feature extracted from MR T2WI significantly predict PFS in LACC after CRT. In comparison with the model using clinical variables alone, the radiomics-clinical combined model achieves significantly improved performance in testing patient cohort, achieving higher C-index (0.748 vs 0.655) and area under the curve (0.798 vs 0.660 for 2-year PFS). Meanwhile, the proposed method significantly differentiated the high- and low-risk patients groups for disease progression (P < 0.001). CONCLUSION An MR T2WI-based radiomics and clinical combined model provided improved prognostic capabilities in predicting the PFS for LACC patients treated with CRT, outperforming a model using clinical variables alone. The incorporation of MR T2WI-based radiomics is promising in assisting in personalized management in LACC, indicating the potential of MR T2WI radiomics as imaging biomarker.
Collapse
Affiliation(s)
- S Tang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging and Informatics for Radiation Therapy Laboratory and Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A Yen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - K Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging and Informatics for Radiation Therapy Laboratory and Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - K Albuquerque
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging and Informatics for Radiation Therapy Laboratory and Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Drayson OGG, Montay-Gruel P, Limoli CL. Radiomics approach for identifying radiation-induced normal tissue toxicity in the lung. Sci Rep 2024; 14:24256. [PMID: 39415029 PMCID: PMC11484882 DOI: 10.1038/s41598-024-75993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
The rapidly evolving field of radiomics has shown that radiomic features are able to capture characteristics of both tumor and normal tissue that can be used to make accurate and clinically relevant predictions. In the present study we sought to determine if radiomic features can characterize the adverse effects caused by normal tissue injury as well as identify if human embryonic stem cell (hESC) derived extracellular vesicle (EV) treatment can resolve certain adverse complications. A cohort of 72 mice (n = 12 per treatment group) were exposed to X-ray radiation to the whole lung (3 × 8 Gy) or to the apex of the right lung (3 × 12 Gy), immediately followed by retro-orbital injection of EVs. Cone-Beam Computed Tomography images were acquired before and 2 weeks after treatment. In total, 851 radiomic features were extracted from the whole lungs and < 20 features were selected to train and validate a series of random forest classification models trained to predict radiation status, EV status and treatment group. It was found that all three classification models achieved significantly high prediction accuracies on a validation subset of the dataset (AUCs of 0.91, 0.86 and 0.80 respectively). In the locally irradiated lung, a significant difference between irradiated and unirradiated groups as well as an EV sparing effect were observed in several radiomic features that were not seen in the unirradiated lung (including wavelet-LLH Kurtosis, wavelet HLL Large Area High Gray Level Emphasis, and Gray Level Non-Uniformity). Additionally, a radiation difference was not observed in a secondary comparison cohort, but there was no impact of imaging machine parameters on the radiomic signature of unirradiated mice. Our data demonstrate that radiomics has the potential to identify radiation-induced lung injury and could be applied to predict therapeutic efficacy at early timepoints.
Collapse
Affiliation(s)
- Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA.
- Dept. of Radiation Oncology, University of California, Irvine, CA, 92617-2695, USA.
| | - Pierre Montay-Gruel
- Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA
- Antwerp Research in Radiation Oncology (AReRO), Centre for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA
| |
Collapse
|
3
|
Jeong J, Choi H, Kim M, Kim SS, Goh J, Hwang J, Kim J, Cho HH, Eom K. Computed tomography radiomics models of tumor differentiation in canine small intestinal tumors. Front Vet Sci 2024; 11:1450304. [PMID: 39376912 PMCID: PMC11457012 DOI: 10.3389/fvets.2024.1450304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Radiomics models have been widely exploited in oncology for the investigation of tumor classification, as well as for predicting tumor response to treatment and genomic sequence; however, their performance in veterinary gastrointestinal tumors remains unexplored. Here, we sought to investigate and compare the performance of radiomics models in various settings for differentiating among canine small intestinal adenocarcinoma, lymphoma, and spindle cell sarcoma. Forty-two small intestinal tumors were contoured using four different segmentation methods: pre- or post-contrast, each with or without the inclusion of intraluminal gas. The mesenteric lymph nodes of pre- and post-contrast images were also contoured. The bin settings included bin count and bin width of 16, 32, 64, 128, and 256. Multinomial logistic regression, random forest, and support vector machine models were used to construct radiomics models. Using features from both primary tumors and lymph nodes showed significantly better performance than modeling using only the radiomics features of primary tumors, which indicated that the inclusion of mesenteric lymph nodes aids model performance. The support vector machine model exhibited significantly superior performance compared with the multinomial logistic regression and random forest models. Combining radiologic findings with radiomics features improved performance compared to using only radiomics features, highlighting the importance of radiologic findings in model building. A support vector machine model consisting of radiologic findings, primary tumors, and lymph node radiomics features with bin count 16 in post-contrast images with the exclusion of intraluminal gas showed the best performance among the various models tested. In conclusion, this study suggests that mesenteric lymph node segmentation and radiological findings should be integrated to build a potent radiomics model capable of differentiating among small intestinal tumors.
Collapse
Affiliation(s)
- Jeongyun Jeong
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyunji Choi
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Minjoo Kim
- Shine Animal Medical Center, Seoul, Republic of Korea
| | - Sung-Soo Kim
- VIP Animal Medical Center, Seoul, Republic of Korea
| | - Jinhyong Goh
- Daegu Animal Medical Center, Daegu, Republic of Korea
- Busan Jeil Animal Medical Center, Busan, Republic of Korea
| | | | - Jaehwan Kim
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hwan-Ho Cho
- Department of Electronics Engineering, Incheon National University, Incheon, Republic of Korea
| | - Kidong Eom
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Sheen H, Cho W, Kim C, Han MC, Kim H, Lee H, Kim DW, Kim JS, Hong CS. Radiomics-based hybrid model for predicting radiation pneumonitis: A systematic review and meta-analysis. Phys Med 2024; 123:103414. [PMID: 38906047 DOI: 10.1016/j.ejmp.2024.103414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
PURPOSE This study reviewed and meta-analyzed evidence on radiomics-based hybrid models for predicting radiation pneumonitis (RP). These models are crucial for improving thoracic radiotherapy plans and mitigating RP, a common complication of thoracic radiotherapy. We examined and compared the RP prediction models developed in these studies with the radiomics features employed in RP models. METHODS We systematically searched Google Scholar, Embase, PubMed, and MEDLINE for studies published up to April 19, 2024. Sixteen studies met the inclusion criteria. We compared the RP prediction models developed in these studies and the radiomics features employed. RESULTS Radiomics, as a single-factor evaluation, achieved an area under the receiver operating characteristic curve (AUROC) of 0.73, accuracy of 0.69, sensitivity of 0.64, and specificity of 0.74. Dosiomics achieved an AUROC of 0.70. Clinical and dosimetric factors showed lower performance, with AUROCs of 0.59 and 0.58. Combining clinical and radiomic factors yielded an AUROC of 0.78, while combining dosiomic and radiomics factors produced an AUROC of 0.81. Triple combinations, including clinical, dosimetric, and radiomics factors, achieved an AUROC of 0.81. The study identifies key radiomics features, such as the Gray Level Co-occurrence Matrix (GLCM) and Gray Level Size Zone Matrix (GLSZM), which enhance the predictive accuracy of RP models. CONCLUSIONS Radiomics-based hybrid models are highly effective in predicting RP. These models, combining traditional predictive factors with radiomic features, particularly GLCM and GLSZM, offer a clinically feasible approach for identifying patients at higher RP risk. This approach enhances clinical outcomes and improves patient quality of life. PROTOCOL REGISTRATION The protocol of this study was registered on PROSPERO (CRD42023426565).
Collapse
Affiliation(s)
- Heesoon Sheen
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, South Korea
| | - Wonyoung Cho
- Research Institute, Oncosoft Inc., Seoul, South Korea
| | - Changhwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Cheol Han
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hojin Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ho Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Dong Wook Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Sung Kim
- Research Institute, Oncosoft Inc., Seoul, South Korea; Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea.
| | - Chae-Seon Hong
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
5
|
Brown KH, Kerr BN, Pettigrew M, Connor K, Miller IS, Shiels L, Connolly C, McGarry C, Byrne AT, Butterworth KT. A comparative analysis of preclinical computed tomography radiomics using cone-beam and micro-computed tomography scanners. Phys Imaging Radiat Oncol 2024; 31:100615. [PMID: 39157293 PMCID: PMC11328005 DOI: 10.1016/j.phro.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Background and purpose Radiomics analysis extracts quantitative data (features) from medical images. These features could potentially reflect biological characteristics and act as imaging biomarkers within precision medicine. However, there is a lack of cross-comparison and validation of radiomics outputs which is paramount for clinical implementation. In this study, we compared radiomics outputs across two computed tomography (CT)-based preclinical scanners. Materials and methods Cone beam CT (CBCT) and µCT scans were acquired using different preclinical CT imaging platforms. The reproducibility of radiomics features on each scanner was assessed using a phantom across imaging energies (40 & 60 kVp) and segmentation volumes (44-238 mm3). Retrospective mouse scans were used to compare feature reliability across varying tissue densities (lung, heart, bone), scanners and after voxel size harmonisation. Reliable features had an intraclass correlation coefficient (ICC) > 0.8. Results First order and GLCM features were the most reliable on both scanners across different volumes. There was an inverse relationship between tissue density and feature reliability, with the highest number of features in lung (CBCT=580, µCT=734) and lowest in bone (CBCT=110, µCT=560). Comparable features for lung and heart tissues increased when voxel sizes were harmonised. We have identified tissue-specific preclinical radiomics signatures in mice for the lung (133), heart (35), and bone (15). Conclusions Preclinical CBCT and µCT scans can be used for radiomics analysis to support the development of meaningful radiomics signatures. This study demonstrates the importance of standardisation and emphasises the need for multi-centre studies.
Collapse
Affiliation(s)
- Kathryn H Brown
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Brianna N Kerr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Mihaela Pettigrew
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Kate Connor
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ian S Miller
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- National Preclinical Imaging Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Liam Shiels
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Colum Connolly
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Conor McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
- Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Belfast, United Kingdom
| | - Annette T Byrne
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- National Preclinical Imaging Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
6
|
Lastrucci A, Wandael Y, Ricci R, Maccioni G, Giansanti D. The Integration of Deep Learning in Radiotherapy: Exploring Challenges, Opportunities, and Future Directions through an Umbrella Review. Diagnostics (Basel) 2024; 14:939. [PMID: 38732351 PMCID: PMC11083654 DOI: 10.3390/diagnostics14090939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This study investigates, through a narrative review, the transformative impact of deep learning (DL) in the field of radiotherapy, particularly in light of the accelerated developments prompted by the COVID-19 pandemic. The proposed approach was based on an umbrella review following a standard narrative checklist and a qualification process. The selection process identified 19 systematic review studies. Through an analysis of current research, the study highlights the revolutionary potential of DL algorithms in optimizing treatment planning, image analysis, and patient outcome prediction in radiotherapy. It underscores the necessity of further exploration into specific research areas to unlock the full capabilities of DL technology. Moreover, the study emphasizes the intricate interplay between digital radiology and radiotherapy, revealing how advancements in one field can significantly influence the other. This interdependence is crucial for addressing complex challenges and advancing the integration of cutting-edge technologies into clinical practice. Collaborative efforts among researchers, clinicians, and regulatory bodies are deemed essential to effectively navigate the evolving landscape of DL in radiotherapy. By fostering interdisciplinary collaborations and conducting thorough investigations, stakeholders can fully leverage the transformative power of DL to enhance patient care and refine therapeutic strategies. Ultimately, this promises to usher in a new era of personalized and optimized radiotherapy treatment for improved patient outcomes.
Collapse
Affiliation(s)
- Andrea Lastrucci
- Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (A.L.); (Y.W.); (R.R.)
| | - Yannick Wandael
- Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (A.L.); (Y.W.); (R.R.)
| | - Renzo Ricci
- Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (A.L.); (Y.W.); (R.R.)
| | | | | |
Collapse
|
7
|
Luo W, Xiu Z, Wang X, McGarry R, Allen J. A Novel Method for Evaluating Early Tumor Response Based on Daily CBCT Images for Lung SBRT. Cancers (Basel) 2023; 16:20. [PMID: 38201447 PMCID: PMC10778260 DOI: 10.3390/cancers16010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND We aimed to develop a new tumor response assessment method for lung SBRT. METHODS In total, 132 lung cancer patients with 134 tumors who received SBRT treatment with daily CBCT were included in this study. The information about tumor size (area), contrast (contrast-to-noise ratio (CNR)), and density/attenuation (μ) was derived from the CBCT images for the first and the last fractions. The ratios of tumor area, CNR, and μ (RA, RCNR, Rμ) between the last and first fractions were calculated for comparison. The product of the three rations was defined as a new parameter (R) for assessment. Tumor response was independently assessed by a radiologist based on a comprehensive analysis of the CBCT images. RESULTS R ranged from 0.27 to 1.67 with a mean value of 0.95. Based on the radiologic assessment results, a receiver operation characteristic (ROC) curve with the area under the curve (AUC) of 95% was obtained and the optimal cutoff value (RC) was determined as 1.1. The results based on RC achieved a 94% accuracy, 94% specificity, and 90% sensitivity. CONCLUSION The results show that R was correlated with early tumor response to lung SBRT and that using R for evaluating tumor response to SBRT would be viable and efficient.
Collapse
Affiliation(s)
- Wei Luo
- Department of Radiation Medicine, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA; (Z.X.); (R.M.)
| | - Zijian Xiu
- Department of Radiation Medicine, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA; (Z.X.); (R.M.)
| | - Xiaoqin Wang
- Department of Radiology, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA;
| | - Ronald McGarry
- Department of Radiation Medicine, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA; (Z.X.); (R.M.)
| | - Joshua Allen
- AdventHealth, 2501 N Orange Ave, Orlando, FL 32804, USA;
| |
Collapse
|
8
|
Zhou T, Tu W, Dong P, Duan S, Zhou X, Ma Y, Wang Y, Liu T, Zhang H, Feng Y, Huang W, Ge Y, Liu S, Li Z, Fan L. CT-Based Radiomic Nomogram for the Prediction of Chronic Obstructive Pulmonary Disease in Patients with Lung cancer. Acad Radiol 2023; 30:2894-2903. [PMID: 37062629 DOI: 10.1016/j.acra.2023.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/18/2023]
Abstract
RATIONALE AND OBJECTIVES To develop and validate a model for predicting chronic obstructive pulmonary disease (COPD) in patients with lung cancer based on computed tomography (CT) radiomic signatures and clinical and imaging features. MATERIALS AND METHODS We retrospectively enrolled 443 patients with lung cancer who underwent pulmonary function test as the primary cohort. They were randomly assigned to the training (n = 311) or validation (n = 132) set in a 7:3 ratio. Additionally, an independent external cohort of 54 patients was evaluated. The radiomic lung nodule signature was constructed using the least absolute shrinkage and selection operator algorithm, while key variables were selected using logistic regression to develop the clinical and combined models presented as a nomogram. RESULTS COPD was significantly related to the radiomics signature in both cohorts. Moreover, the signature served as an independent predictor of COPD in the multivariate regression analysis. For the training, internal, and external cohorts, the area under the receiver operating characteristic curve (ROC, AUC) values of our radiomics signature for COPD prediction were 0.85, 0.85, and 0.76, respectively. Additionally, the AUC values of the radiomic nomogram for COPD prediction were 0.927, 0.879, and 0.762 for the three cohorts, respectively, which outperformed the other two models. CONCLUSION The present study presents a nomogram that incorporates radiomics signatures and clinical and radiological features, which could be used to predict the risk of COPD in patients with lung cancer with one-stop chest CT scanning.
Collapse
Affiliation(s)
- TaoHu Zhou
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China; School of Medical Imaging, Weifang Medical University, Weifang, SD, China
| | - WenTing Tu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Peng Dong
- School of Medical Imaging, Weifang Medical University, Weifang, SD, China
| | - ShaoFeng Duan
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - XiuXiu Zhou
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - YanQing Ma
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, ZJ, China
| | - Yun Wang
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Tian Liu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - HanXiao Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, JS, China
| | - Yan Feng
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - WenJun Huang
- School of Medical Imaging, Weifang Medical University, Weifang, SD, China
| | - YanMing Ge
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, SD, China
| | - Shiyuan Liu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Zhaobin Li
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Fan
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
9
|
Gupta S, Nayak K, Pendem S. Impact of slice thickness on reproducibility of CT radiomic features of lung tumors. F1000Res 2023; 12:1319. [PMID: 38454921 PMCID: PMC10918310 DOI: 10.12688/f1000research.141148.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 03/09/2024] Open
Abstract
Background Radiomics posits that quantified characteristics from radiographic images reflect underlying pathophysiology. Lung cancer (LC) is one of the prevalent forms of cancer, causing mortality. Slice thickness (ST) of computed tomography (CT) images is a crucial factor influencing the generalizability of radiomic features (RF) in oncology. There is scarcity of research that how ST affects variability of RF in LC. The present study helps in identifying the specific RF categories affected by variations in ST and provides valuable insights for researchers and clinicians working with RF in the field of LC.Hence, aim of the study is to evaluate influence of ST on reproducibility of CT-RF for lung tumors. Methods This is a prospective study, 32 patients with confirmed histopathological diagnosis of lung tumors were included. Contrast Enhanced CT (CECT) thorax was performed using a 128- Incisive CT (Philips Health Care). The image acquisition was performed with 5-mm and 2 mm STwas reconstructed retrospectively. RF were extracted from the CECT thorax images of both ST. We conducted a paired t-test to evaluate the disparity in RF between the two thicknesses. Lin's Concordance Correlation Coefficient (CCC) was performed to identify the reproducibility of RF between the two thicknesses. Results Out of 107 RF, 66 (61.6%) exhibited a statistically significant distinction (p<0.05) when comparing two ST and while 41 (38.3%) RF did not show significant distinction (p>0.05) between the two ST measurements. 29 features (CCC ≥ 0.90) showed excellent to moderate reproducibility, and 78 features (CCC ≤ 0.90) showed poor reproducibility. Among the 7 RF categories, the shape-based features (57.1%) showed the maximum reproducibility whereas NGTDM-based features showed negligible reproducibility. Conclusions The ST had a notable impact on the majority of CT-RF of lung tumors. Shape based features (57.1%). First order (44.4%) features showed highest reproducibility compared to other RF categories.
Collapse
Affiliation(s)
- Sanat Gupta
- Manipal College of Health Professions, Department of Medical Imaging Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kaushik Nayak
- Manipal College of Health Professions, Department of Medical Imaging Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Saikiran Pendem
- Manipal College of Health Professions, Department of Medical Imaging Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
10
|
Wang Z, Zhang N, Liu J, Liu J. Predicting micropapillary or solid pattern of lung adenocarcinoma with CT-based radiomics, conventional radiographic and clinical features. Respir Res 2023; 24:282. [PMID: 37964254 PMCID: PMC10647174 DOI: 10.1186/s12931-023-02592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND To build prediction models with radiomics features, clinical/conventional radiographic signs and combined scores for the discrimination of micropapillary or solid subtypes (high-risk subtypes) of lung adenocarcinoma. METHODS This retrospective study enrolled 351 patients with and without high-risk subtypes. Least Absolute Shrinkage and Selection Operator (LASSO) regression with cross-validation was performed to determine the optimal features of radiomics model. Missing clinical data were imputed by Multiple Imputation with Chain Equations (MICE). Clinical model with radiographic signs was built and scores of both models were integrated to establish combined model. Receiver operating characteristics (ROC) curves, area under ROC curves and decision curve analysis (DCA) were plotted to evaluate the model performance and clinical application. RESULTS Stratified splitting allocated 246 patients into training set. MICE for missing values obtained complete and unbiased data for the following analysis. Ninety radiomic features and four clinical/conventional radiographic signs were used to predict the high-risk subtypes. The radiomic model, clinical model and combined model achieved AUCs of 0.863 (95%CI: 0.817-0.909), 0.771 (95%CI: 0.713-0.713) and 0.872 (95%CI: 0.829-0.916) in the training set, and 0.849 (95%CI: 0.774-0.924), 0.778 (95%CI: 0.687-0.868) and 0.853 (95%CI: 0.782-0.925) in the test set. Decision curve showed that the radiomic and combined models were more clinically useful when the threshold reached 37.5%. CONCLUSIONS Radiomics features could facilitate the prediction of subtypes of lung adenocarcinoma. A simple combination of radiomics and clinical scores generated a robust model with high performance for the discrimination of micropapillary or solid subtype of lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhe Wang
- Hebei Medical University Fourth Hospital, Thoracic Surgery. 12 Jiankang Road, Shijiazhuang, China
| | - Ning Zhang
- Department of Radiology, Hebei Medical University Fourth Hospital, 12 Jiankang Road, Shijiazhuang, China
| | - Junhong Liu
- Hebei Medical University Fourth Hospital, Thoracic Surgery. 12 Jiankang Road, Shijiazhuang, China
| | - Junfeng Liu
- Hebei Medical University Fourth Hospital, Thoracic Surgery. 12 Jiankang Road, Shijiazhuang, China.
| |
Collapse
|
11
|
Li Y, Juergens RA, Finley C, Swaminath A. Current and Future Treatment Options in the Management of Stage III NSCLC. J Thorac Oncol 2023; 18:1478-1491. [PMID: 37574133 DOI: 10.1016/j.jtho.2023.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
For much of the past two decades, the treatment options for patients with stage III NSCLC were mostly stagnant. In the past 5 years, ongoing innovations have dovetailed alongside advances in biomarker testing, novel therapeutics, precision surgery, and radiotherapy, all of which are leading to an increase in more personalized option for the treatment. This review article will focus on several completed and ongoing initiatives involving treatment of patients with stage III NSCLC. First, it will tackle the progress made in curative treatment of unresectable stage III NSCLC, starting with PACIFIC, and branching out into topics such as concurrent immunotherapy and chemoradiation, intensification of consolidative immunotherapy, dual immunotherapy consolidation, and a reflection on those subpopulations that may not benefit from consolidative immunotherapy. Second, there will be discussion of novel strategies in the setting of resectable stage III disease, most notably neoadjuvant therapy using combined chemoimmunotherapy and immunotherapy alone before surgical resection. Third, it will delve into recent data evaluating adjuvant immunotherapy for resectable stage III NSCLC, including adjuvant targeted therapy (for those harboring driver mutations) and postoperative radiotherapy. Finally, a look to future trials/initiatives will be interspersed throughout the review, to reveal the ongoing efforts being made to continue to improve outcomes in this group of patients.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Oncology, McMaster University, Juravinski Cancer Centre, Hamilton, Ontario, Canada
| | - Rosalyn Anne Juergens
- Department of Oncology, McMaster University, Juravinski Cancer Centre, Hamilton, Ontario, Canada
| | - Christian Finley
- Department of Surgery, McMaster University, St. Joseph's Healthcare Hamilton, Ontario, Canada
| | - Anand Swaminath
- Department of Oncology, McMaster University, Juravinski Cancer Centre, Hamilton, Ontario, Canada.
| |
Collapse
|
12
|
Tang FH, Fong YW, Yung SH, Wong CK, Tu CL, Chan MT. Radiomics-Clinical AI Model with Probability Weighted Strategy for Prognosis Prediction in Non-Small Cell Lung Cancer. Biomedicines 2023; 11:2093. [PMID: 37626590 PMCID: PMC10452490 DOI: 10.3390/biomedicines11082093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we propose a radiomics clinical probability-weighted model for the prediction of prognosis for non-small cell lung cancer (NSCLC). The model combines radiomics features extracted from radiotherapy (RT) planning images with clinical factors such as age, gender, histology, and tumor stage. CT images with radiotherapy structures of 422 NSCLC patients were retrieved from The Cancer Imaging Archive (TCIA). Radiomic features were extracted from gross tumor volumes (GTVs). Five machine learning algorithms, namely decision trees (DT), random forests (RF), extreme boost (EB), support vector machine (SVM) and generalized linear model (GLM) were optimized by a voted ensemble machine learning (VEML) model. A probabilistic weighted approach is used to incorporate the uncertainty associated with both radiomic and clinical features and to generate a probabilistic risk score for each patient. The performance of the model is evaluated using a receiver operating characteristic (ROC). The Radiomic model, clinical factor model, and combined radiomic clinical probability-weighted model demonstrated good performance in predicting NSCLC survival with AUC of 0.941, 0.856 and 0.949, respectively. The combined radiomics clinical probability-weighted enhanced model achieved significantly better performance than the radiomic model in 1-year survival prediction (chi-square test, p < 0.05). The proposed model has the potential to improve NSCLC prognosis and facilitate personalized treatment decisions.
Collapse
Affiliation(s)
- Fuk-Hay Tang
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
13
|
Brown KH, Illyuk J, Ghita M, Walls GM, McGarry CK, Butterworth KT. Assessment of Variabilities in Lung-Contouring Methods on CBCT Preclinical Radiomics Outputs. Cancers (Basel) 2023; 15:2677. [PMCID: PMC10216427 DOI: 10.3390/cancers15102677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Simple Summary This study is the first to evaluate the impact of contouring differences on radiomics analysis in preclinical CBCT scans. We found that the variation in quantitative image readouts was greater between segmentation tools than between observers. Abstract Radiomics image analysis has the potential to uncover disease characteristics for the development of predictive signatures and personalised radiotherapy treatment. Inter-observer and inter-software delineation variabilities are known to have downstream effects on radiomics features, reducing the reliability of the analysis. The purpose of this study was to investigate the impact of these variabilities on radiomics outputs from preclinical cone-beam computed tomography (CBCT) scans. Inter-observer variabilities were assessed using manual and semi-automated contours of mouse lungs (n = 16). Inter-software variabilities were determined between two tools (3D Slicer and ITK-SNAP). The contours were compared using Dice similarity coefficient (DSC) scores and the 95th percentile of the Hausdorff distance (HD95p) metrics. The good reliability of the radiomics outputs was defined using intraclass correlation coefficients (ICC) and their 95% confidence intervals. The median DSC scores were high (0.82–0.94), and the HD95p metrics were within the submillimetre range for all comparisons. the shape and NGTDM features were impacted the most. Manual contours had the most reliable features (73%), followed by semi-automated (66%) and inter-software (51%) variabilities. From a total of 842 features, 314 robust features overlapped across all contouring methodologies. In addition, our results have a 70% overlap with features identified from clinical inter-observer studies.
Collapse
Affiliation(s)
- Kathryn H. Brown
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
| | - Jacob Illyuk
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
| | - Mihaela Ghita
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
| | - Gerard M. Walls
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
- Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Belfast BT9 7JL, UK
| | - Conor K. McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
- Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Belfast BT9 7JL, UK
| | - Karl T. Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
| |
Collapse
|
14
|
Brown KH, Payan N, Osman S, Ghita M, Walls GM, Patallo IS, Schettino G, Prise KM, McGarry CK, Butterworth KT. Development and optimisation of a preclinical cone beam computed tomography-based radiomics workflow for radiation oncology research. Phys Imaging Radiat Oncol 2023; 26:100446. [PMID: 37252250 PMCID: PMC10213103 DOI: 10.1016/j.phro.2023.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Background and purpose Radiomics features derived from medical images have the potential to act as imaging biomarkers to improve diagnosis and predict treatment response in oncology. However, the complex relationships between radiomics features and the biological characteristics of tumours are yet to be fully determined. In this study, we developed a preclinical cone beam computed tomography (CBCT) radiomics workflow with the aim to use in vivo models to further develop radiomics signatures. Materials and methods CBCT scans of a mouse phantom were acquired using onboard imaging from a small animal radiotherapy research platform (SARRP, Xstrahl). The repeatability and reproducibility of radiomics outputs were compared across different imaging protocols, segmentation sizes, pre-processing parameters and materials. Robust features were identified and used to compare scans of two xenograft mouse tumour models (A549 and H460). Results Changes to the radiomics workflow significantly impact feature robustness. Preclinical CBCT radiomics analysis is feasible with 119 stable features identified from scans imaged at 60 kV, 25 bin width and 0.26 mm slice thickness. Large variation in segmentation volumes reduced the number of reliable radiomics features for analysis. Standardization in imaging and analysis parameters is essential in preclinical radiomics analysis to improve accuracy of outputs, leading to more consistent and reproducible findings. Conclusions We present the first optimised workflow for preclinical CBCT radiomics to identify imaging biomarkers. Preclinical radiomics has the potential to maximise the quantity of data captured in in vivo experiments and could provide key information supporting the wider application of radiomics.
Collapse
Affiliation(s)
- Kathryn H. Brown
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
| | - Neree Payan
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
| | - Sarah Osman
- University College London Hospitals NHS Foundation Trust Department of Radiotherapy, London, UK
| | - Mihaela Ghita
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
| | - Gerard M. Walls
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
- Cancer Centre, Belfast Health & Social Care Trust, Lisburn Road, Belfast BT9 7AB, Northern Ireland, UK
| | | | | | - Kevin M. Prise
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
| | - Conor K. McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
- Cancer Centre, Belfast Health & Social Care Trust, Lisburn Road, Belfast BT9 7AB, Northern Ireland, UK
| | - Karl T. Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Northern Ireland, UK
| |
Collapse
|
15
|
Zhang N, Zhang X, Li J, Ren J, Li L, Dong W, Liu Y. CT-derived radiomic analysis for predicting the survival rate of patients with non-small cell lung cancer receiving radiotherapy. Phys Med 2023; 107:102546. [PMID: 36796178 DOI: 10.1016/j.ejmp.2023.102546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 12/09/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Radiomics provides an opportunity to minimize adverse effects and optimize the efficacy of treatments noninvasively. This study aims to develop a computed tomography (CT) derived radiomic signature to predict radiological response for the patients with non-small cell lung cancer (NSCLC) receiving radiotherapy. METHODS Total 815 NSCLC patients receiving radiotherapy were sourced from public datasets. Using CT images of 281 NSCLC patients, we adopted genetic algorithm to establish a predictive radiomic signature for radiotherapy that had optimal C-index value by Cox model. Survival analysis and receiver operating characteristic curve were performed to estimate the predictive performance of the radiomic signature. Furthermore, radiogenomics analysis was performed in a dataset with matched images and transcriptome data. RESULTS Radiomic signature consisting of three features was established and then validated in the validation dataset (log-rank P = 0.0047) including 140 patient, and showed a significant predictive power in two independent datasets totaling 395 NSCLC patients with binary 2-year survival endpoint. Furthermore, the novel proposed radiomic nomogram significantly improved the prognostic performance (concordance index) of clinicopathological factors. Radiogenomics analysis linked our signature with important tumor biological processes (e.g. Mismatch repair, Cell adhesion molecules and DNA replication) associated with clinical outcomes. CONCLUSIONS The radiomic signature, reflecting tumor biological processes, could noninvasively predict therapeutic efficacy of NSCLC patients receiving radiotherapy and demonstrate unique advantage for clinical application.
Collapse
Affiliation(s)
- Nannan Zhang
- Modern Educational Technology and Experiment Center, Harbin Normal University, Harbin, China
| | - Xinxin Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Junheng Li
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Jie Ren
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Luyang Li
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Wenlei Dong
- Department of Radiotherapy Technology Center, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Yixin Liu
- Basic Medicine College, Harbin Medical University, Harbin, China.
| |
Collapse
|
16
|
Spadarella G, Stanzione A, Akinci D'Antonoli T, Andreychenko A, Fanni SC, Ugga L, Kotter E, Cuocolo R. Systematic review of the radiomics quality score applications: an EuSoMII Radiomics Auditing Group Initiative. Eur Radiol 2023; 33:1884-1894. [PMID: 36282312 PMCID: PMC9935718 DOI: 10.1007/s00330-022-09187-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The main aim of the present systematic review was a comprehensive overview of the Radiomics Quality Score (RQS)-based systematic reviews to highlight common issues and challenges of radiomics research application and evaluate the relationship between RQS and review features. METHODS The literature search was performed on multiple medical literature archives according to PRISMA guidelines for systematic reviews that reported radiomic quality assessment through the RQS. Reported scores were converted to a 0-100% scale. The Mann-Whitney and Kruskal-Wallis tests were used to compare RQS scores and review features. RESULTS The literature research yielded 345 articles, from which 44 systematic reviews were finally included in the analysis. Overall, the median of RQS was 21.00% (IQR = 11.50). No significant differences of RQS were observed in subgroup analyses according to targets (oncological/not oncological target, neuroradiology/body imaging focus and one imaging technique/more than one imaging technique, characterization/prognosis/detection/other). CONCLUSIONS Our review did not reveal a significant difference of quality of radiomic articles reported in systematic reviews, divided in different subgroups. Furthermore, low overall methodological quality of radiomics research was found independent of specific application domains. While the RQS can serve as a reference tool to improve future study designs, future research should also be aimed at improving its reliability and developing new tools to meet an ever-evolving research space. KEY POINTS • Radiomics is a promising high-throughput method that may generate novel imaging biomarkers to improve clinical decision-making process, but it is an inherently complex analysis and often lacks reproducibility and generalizability. • The Radiomics Quality Score serves a necessary role as the de facto reference tool for assessing radiomics studies. • External auditing of radiomics studies, in addition to the standard peer-review process, is valuable to highlight common limitations and provide insights to improve future study designs and practical applicability of the radiomics models.
Collapse
Affiliation(s)
- Gaia Spadarella
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Anna Andreychenko
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Healthcare Department, Moscow, Russia
| | | | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Elmar Kotter
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, Italy
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
17
|
Li G, Wu X, Ma X. Artificial intelligence in radiotherapy. Semin Cancer Biol 2022; 86:160-171. [PMID: 35998809 DOI: 10.1016/j.semcancer.2022.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
Abstract
Radiotherapy is a discipline closely integrated with computer science. Artificial intelligence (AI) has developed rapidly over the past few years. With the explosive growth of medical big data, AI promises to revolutionize the field of radiotherapy through highly automated workflow, enhanced quality assurance, improved regional balances of expert experiences, and individualized treatment guided by multi-omics. In addition to independent researchers, the increasing number of large databases, biobanks, and open challenges significantly facilitated AI studies on radiation oncology. This article reviews the latest research, clinical applications, and challenges of AI in each part of radiotherapy including image processing, contouring, planning, quality assurance, motion management, and outcome prediction. By summarizing cutting-edge findings and challenges, we aim to inspire researchers to explore more future possibilities and accelerate the arrival of AI radiotherapy.
Collapse
Affiliation(s)
- Guangqi Li
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Xin Wu
- Head & Neck Oncology ward, Division of Radiotherapy Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Xuelei Ma
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| |
Collapse
|
18
|
Moro F, Boldrini L, Lenkowicz J, Scambia G, Testa AC, Fanfani F. Reply. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:299-300. [PMID: 35913380 DOI: 10.1002/uog.24963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- F Moro
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Rome, Italy
| | - L Boldrini
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Rome, Italy
| | - J Lenkowicz
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Rome, Italy
| | - G Scambia
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Rome, Italy
- Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Rome, Italy
| | - A C Testa
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Rome, Italy
- Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Rome, Italy
| | - F Fanfani
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Rome, Italy
- Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Rome, Italy
| |
Collapse
|
19
|
Walls GM, O'Kane R, Ghita M, Kuburas R, McGarry CK, Cole AJ, Jain S, Butterworth KT. Murine models of radiation cardiotoxicity: A systematic review and recommendations for future studies. Radiother Oncol 2022; 173:19-31. [PMID: 35533784 DOI: 10.1016/j.radonc.2022.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE The effects of radiation on the heart are dependent on dose, fractionation, overall treatment time, and pre-existing cardiovascular pathology. Murine models have played a central role in improving our understanding of the radiation response of the heart yet a wide range of exposure parameters have been used. We evaluated the study design of published murine cardiac irradiation experiments to assess gaps in the literature and to suggest guidance for the harmonisation of future study reporting. METHODS AND MATERIALS A systematic review of mouse/rat studies published 1981-2021 that examined the effect of radiation on the heart was performed. The protocol was published on PROSPERO (CRD42021238921) and the findings were reported in accordance with the PRISMA guidance. Risk of bias was assessed using the SYRCLE checklist. RESULTS 159 relevant full-text original articles were reviewed. The heart only was the target volume in 67% of the studies and simulation details were unavailable for 44% studies. Dosimetry methods were reported in 31% studies. The pulmonary effects of whole and partial heart irradiation were reported in 13% studies. Seventy-eight unique dose-fractionation schedules were evaluated. Large heterogeneity was observed in the endpoints measured, and the reporting standards were highly variable. CONCLUSIONS Current murine models of radiation cardiotoxicity cover a wide range of irradiation configurations and latency periods. There is a lack of evidence describing clinically relevant dose-fractionations, circulating biomarkers and radioprotectants. Recommendations for the consistent reporting of methods and results of in vivo cardiac irradiation studies are made to increase their suitability for informing the design of clinical studies.
Collapse
Affiliation(s)
- Gerard M Walls
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland.
| | - Reagan O'Kane
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Mihaela Ghita
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Refik Kuburas
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Conor K McGarry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Aidan J Cole
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Suneil Jain
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Karl T Butterworth
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| |
Collapse
|
20
|
Manafi-Farid R, Askari E, Shiri I, Pirich C, Asadi M, Khateri M, Zaidi H, Beheshti M. [ 18F]FDG-PET/CT radiomics and artificial intelligence in lung cancer: Technical aspects and potential clinical applications. Semin Nucl Med 2022; 52:759-780. [PMID: 35717201 DOI: 10.1053/j.semnuclmed.2022.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Molecular imaging using [18F]fluorodeoxyglucose Positron Emission Tomography and/or Computed Tomography ([18F]FDG-PET/CT) plays an essential role in the diagnosis, evaluation of response to treatment, and prediction of outcomes. The images are evaluated using qualitative and conventional quantitative indices. However, there is far more information embedded in the images, which can be extracted by sophisticated algorithms. Recently, the concept of uncovering and analyzing the invisible data extracted from medical images, called radiomics, is gaining more attention. Currently, [18F]FDG-PET/CT radiomics is growingly evaluated in lung cancer to discover if it enhances the diagnostic performance or implication of [18F]FDG-PET/CT in the management of lung cancer. In this review, we provide a short overview of the technical aspects, as they are discussed in different articles of this special issue. We mainly focus on the diagnostic performance of the [18F]FDG-PET/CT-based radiomics and the role of artificial intelligence in non-small cell lung cancer, impacting the early detection, staging, prediction of tumor subtypes, biomarkers, and patient's outcomes.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Emran Askari
- Department of Nuclear Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mahboobeh Asadi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Khateri
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
21
|
Barragán-Montero A, Bibal A, Dastarac MH, Draguet C, Valdés G, Nguyen D, Willems S, Vandewinckele L, Holmström M, Löfman F, Souris K, Sterpin E, Lee JA. Towards a safe and efficient clinical implementation of machine learning in radiation oncology by exploring model interpretability, explainability and data-model dependency. Phys Med Biol 2022; 67:10.1088/1361-6560/ac678a. [PMID: 35421855 PMCID: PMC9870296 DOI: 10.1088/1361-6560/ac678a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/14/2022] [Indexed: 01/26/2023]
Abstract
The interest in machine learning (ML) has grown tremendously in recent years, partly due to the performance leap that occurred with new techniques of deep learning, convolutional neural networks for images, increased computational power, and wider availability of large datasets. Most fields of medicine follow that popular trend and, notably, radiation oncology is one of those that are at the forefront, with already a long tradition in using digital images and fully computerized workflows. ML models are driven by data, and in contrast with many statistical or physical models, they can be very large and complex, with countless generic parameters. This inevitably raises two questions, namely, the tight dependence between the models and the datasets that feed them, and the interpretability of the models, which scales with its complexity. Any problems in the data used to train the model will be later reflected in their performance. This, together with the low interpretability of ML models, makes their implementation into the clinical workflow particularly difficult. Building tools for risk assessment and quality assurance of ML models must involve then two main points: interpretability and data-model dependency. After a joint introduction of both radiation oncology and ML, this paper reviews the main risks and current solutions when applying the latter to workflows in the former. Risks associated with data and models, as well as their interaction, are detailed. Next, the core concepts of interpretability, explainability, and data-model dependency are formally defined and illustrated with examples. Afterwards, a broad discussion goes through key applications of ML in workflows of radiation oncology as well as vendors' perspectives for the clinical implementation of ML.
Collapse
Affiliation(s)
- Ana Barragán-Montero
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Adrien Bibal
- PReCISE, NaDI Institute, Faculty of Computer Science, UNamur and CENTAL, ILC, UCLouvain, Belgium
| | - Margerie Huet Dastarac
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Camille Draguet
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
- Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Belgium
| | - Gilmer Valdés
- Department of Radiation Oncology, Department of Epidemiology and Biostatistics, University of California, San Francisco, United States of America
| | - Dan Nguyen
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, United States of America
| | - Siri Willems
- ESAT/PSI, KU Leuven Belgium & MIRC, UZ Leuven, Belgium
| | | | | | | | - Kevin Souris
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Edmond Sterpin
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
- Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Belgium
| | - John A Lee
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| |
Collapse
|
22
|
Bonmatí LM, Miguel A, Suárez A, Aznar M, Beregi JP, Fournier L, Neri E, Laghi A, França M, Sardanelli F, Penzkofer T, Lambin P, Blanquer I, Menzel M, Seymour K, Figueiras S, Krischak K, Martínez R, Mirsky Y, Yang G, Alberich-Bayarri Á. CHAIMELEON Project: Creation of a Pan-European Repository of Health Imaging Data for the Development of AI-Powered Cancer Management Tools. Front Oncol 2022; 12:742701. [PMID: 35280732 PMCID: PMC8913333 DOI: 10.3389/fonc.2022.742701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
The CHAIMELEON project aims to set up a pan-European repository of health imaging data, tools and methodologies, with the ambition to set a standard and provide resources for future AI experimentation for cancer management. The project is a 4 year long, EU-funded project tackling some of the most ambitious research in the fields of biomedical imaging, artificial intelligence and cancer treatment, addressing the four types of cancer that currently have the highest prevalence worldwide: lung, breast, prostate and colorectal. To allow this, clinical partners and external collaborators will populate the repository with multimodality (MR, CT, PET/CT) imaging and related clinical data. Subsequently, AI developers will enable a multimodal analytical data engine facilitating the interpretation, extraction and exploitation of the information stored at the repository. The development and implementation of AI-powered pipelines will enable advancement towards automating data deidentification, curation, annotation, integrity securing and image harmonization. By the end of the project, the usability and performance of the repository as a tool fostering AI experimentation will be technically validated, including a validation subphase by world-class European AI developers, participating in Open Challenges to the AI Community. Upon successful validation of the repository, a set of selected AI tools will undergo early in-silico validation in observational clinical studies coordinated by leading experts in the partner hospitals. Tool performance will be assessed, including external independent validation on hallmark clinical decisions in response to some of the currently most important clinical end points in cancer. The project brings together a consortium of 18 European partners including hospitals, universities, R&D centers and private research companies, constituting an ecosystem of infrastructures, biobanks, AI/in-silico experimentation and cloud computing technologies in oncology.
Collapse
Affiliation(s)
- Luis Martí Bonmatí
- Medical Imaging Department, La Fe University and Polytechnic Hospital & Biomedical Imaging Research Group Grupo de Investigación Biomédica en Imagen (GIBI2) at La Fe University and Polytechnic Hospital and Health Research Institute, Valencia, Spain,*Correspondence: Luis Martí Bonmatí,
| | - Ana Miguel
- Medical Imaging Department, La Fe University and Polytechnic Hospital & Biomedical Imaging Research Group Grupo de Investigación Biomédica en Imagen (GIBI2) at La Fe University and Polytechnic Hospital and Health Research Institute, Valencia, Spain
| | | | | | | | - Laure Fournier
- Collège des enseignants en radiologie de France, Paris, France
| | - Emanuele Neri
- Diagnostic Radiology 3, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Andrea Laghi
- Medicina Traslazionale e Oncologia, Sant Andrea Sapienza Rome, Rome, Italy
| | - Manuela França
- Department of Radiology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Francesco Sardanelli
- Servizio di Diagnostica per Immagini, “Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milanese, Italy
| | - Tobias Penzkofer
- Department of Radiology, CHARITÉ-Universitätsmedizin Berlin, Berlin, Germany
| | - Phillipe Lambin
- Department of Precision Medicine, Maastricht University, Maastricht, Netherlands
| | - Ignacio Blanquer
- Computing Science Department, Universitat Politècnica de València, València, Spain
| | - Marion I. Menzel
- GE Healthcare, München, Germany,Department of Physics, Technical University of Munich, Garching, Germany
| | | | | | - Katharina Krischak
- European Institute for Biomedical Imaging Research, EIBIR gemeinnützige GmbH, Vienna, Austria
| | - Ricard Martínez
- Departamento de Derecho Constitucional, Ciencia Política y Administración, Universitat de València, València, Spain
| | - Yisroel Mirsky
- Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Guang Yang
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|