1
|
Hutchison A, Sibanda C, Hulme M, Anwar S, Gur B, Thomas R, Lowery LA. Re-examining the evidence that ivermectin induces a melanoma-like state in Xenopus embryos. Bioessays 2024; 46:e2300143. [PMID: 37985957 PMCID: PMC10841629 DOI: 10.1002/bies.202300143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Modeling metastasis in animal systems has been an important focus for developing cancer therapeutics. Xenopus laevis is a well-established model, known for its use in identifying genetic mechanisms underlying diseases and disorders in humans. Prior literature has suggested that the drug, ivermectin, can be used in Xenopus to induce melanocytes to convert into a metastatic melanoma-like state, and thus could be ideal for testing possible melanoma therapies in vivo. However, there are notable inconsistencies between ivermectin studies in Xenopus and the application of ivermectin in mammalian systems, that are relevant to cancer and melanoma research. In this review, we examine the ivermectin-induced phenotypes in Xenopus, and we explore the current uses of ivermectin in human research. We conclude that while ivermectin may be a useful drug for many biomedical purposes, it is not ideal to induce a metastatic melanocyte phenotype in Xenopus for testing the effects of potential melanoma therapeutics.
Collapse
Affiliation(s)
- Ainsley Hutchison
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Chiedza Sibanda
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Mackenzie Hulme
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Sarah Anwar
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Bengisu Gur
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Rachael Thomas
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Laura Anne Lowery
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Hu X, Ju Y, Zhang YK. Ivermectin as a potential therapeutic strategy for glioma. J Neurosci Res 2024; 102:e25254. [PMID: 37814994 DOI: 10.1002/jnr.25254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Ivermectin (IVM), a semi-synthetic macrolide parasiticide, has demonstrated considerable effectiveness in combating internal and external parasites, particularly nematodes and arthropods. Its remarkable ability to control parasites has earned it significant recognition, culminating in Satoshi Omura and William C. Campbell's receipt of the 2015 Nobel Prize in Physiology or Medicine for their contributions to the development of IVM. In recent years, investigations have revealed that IVM possesses antitumor properties. It can suppress the growth of various cancer cells, including glioma, through a multitude of mechanisms such as selective targeting of tumor-specific proteins, inducing programmed cell death, and modulation of tumor-related signaling pathways. Hence, IVM holds tremendous potential as a novel anticancer drug. This review seeks to provide an overview of the underlying mechanisms that enable IVM's capacity to suppress glioma. Furthermore, it aims to elucidate the challenges and prospects associated with utilizing IVM as a new anticancer agent.
Collapse
Affiliation(s)
- Xing Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yan Ju
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yue-Kang Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
3
|
Reisenauer KN, Aroujo J, Tao Y, Ranganathan S, Romo D, Taube JH. Therapeutic vulnerabilities of cancer stem cells and effects of natural products. Nat Prod Rep 2023; 40:1432-1456. [PMID: 37103550 PMCID: PMC10524555 DOI: 10.1039/d3np00002h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Covering: 1995 to 2022Tumors possess both genetic and phenotypic heterogeneity leading to the survival of subpopulations post-treatment. The term cancer stem cells (CSCs) describes a subpopulation that is resistant to many types of chemotherapy and which also possess enhanced migratory and anchorage-independent growth capabilities. These cells are enriched in residual tumor material post-treatment and can serve as the seed for future tumor re-growth, at both primary and metastatic sites. Elimination of CSCs is a key goal in enhancing cancer treatment and may be aided by application of natural products in conjunction with conventional treatments. In this review, we highlight molecular features of CSCs and discuss synthesis, structure-activity relationships, derivatization, and effects of six natural products with anti-CSC activity.
Collapse
Affiliation(s)
| | - Jaquelin Aroujo
- Department of Chemistry and Biochemistry, Baylor Univesrity, Waco, TX, USA
| | - Yongfeng Tao
- Department of Chemistry and Biochemistry, Baylor Univesrity, Waco, TX, USA
| | | | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor Univesrity, Waco, TX, USA
| | - Joseph H Taube
- Department of Biology, Baylor University, Waco, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Pedroso C, Vaz S, Netto EM, Souza D, Deminco F, Mayoral R, Menezes E, da Cunha APA, Moreira-Soto A, Drexler JF, Brites C. Self-prescribed Ivermectin use is associated with a lower rate of seroconversion in health care workers diagnosed with COVID, in a dose-dependent response. Braz J Infect Dis 2021; 25:101603. [PMID: 34390646 PMCID: PMC8358133 DOI: 10.1016/j.bjid.2021.101603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 12/02/2022] Open
Abstract
Background Over-the-counter use of ivermectin amongst other drugs as SARS-CoV-2 treatment has been increasingly common, despite the lack of evidence on its clinical efficacy. Objective To evaluate the effect of ivermectin use on production of antibodies against SARS-CoV-2 in health care workers (HCW) diagnosed with COVID-19 and of Th1/Th2 cytokines by stimulated peripheral blood mononuclear cells of the same cohort (PBMCs). Methods This cross-sectional study evaluated seroconversion and neutralizing antibodies production in HCW at Complexo Hospitalar Universitário Professor Edgard Santos (Salvador, Brazil), diagnosed with COVID-19 from May to July, 2020, as well as in vitro production of antibody against SARS-CoV-2 and Th1/Th2 cytokines. Analyses were performed between December 2020 and February 2021. Participants were stratified according to the use of ivermectin (≤ 1 dose vs. multiple doses) for treatment of COVID-19. Results 45 HCW were included (62% women). Mean age was 39 years, and disease severity was similar across groups. Neutralizing antibodies were detected less frequently in multiple doses (70%) vs. ≤ 1 dose (97%) groups, p = 0.02). PBMCs of patients in multiple doses group also were less likely to produce antibodies against SARS-CoV-2 following in vitro stimulation with purified spike protein in comparison with patients in ≤ 1 dose group (p < 0.001). PBMC´s production of Th1/Th2 cytokines levels was similar across groups. Abdominal pain (15% vs 46%, p = 0.04), diarrhea (21% vs. 55%, p = 0.05) and taste perversion (0% vs. 18%, p = 0.05) were more frequently reported by participants that used multiple doses of ivermectin. Conclusions Although there was no evidence for differential disease severity upon ivermectin use for treatment of COVID-19 it was associated with more gastro-intestinal side-effects and impairment of anti-SARS-CoV2 antibodies production, in a dose dependent manner. This potentially impacts the effectiveness of immune response and the risk of reinfection and warrants additional studies for clarifying the mechanisms and consequences of such immunomodulatory effects.
Collapse
Affiliation(s)
- Célia Pedroso
- Federal University of Bahia, Complexo Hospitalar Universitário Professor Edgard Santos, Laboratório de Pesquisa em Infectologia (LAPI), Bahia, BA, Brazil
| | - Sara Vaz
- Federal University of Bahia, Complexo Hospitalar Universitário Professor Edgard Santos, Laboratório de Pesquisa em Infectologia (LAPI), Bahia, BA, Brazil
| | - Eduardo Martins Netto
- Federal University of Bahia, Complexo Hospitalar Universitário Professor Edgard Santos, Laboratório de Pesquisa em Infectologia (LAPI), Bahia, BA, Brazil
| | - Daniele Souza
- Federal University of Bahia, Complexo Hospitalar Universitário Professor Edgard Santos, Laboratório de Pesquisa em Infectologia (LAPI), Bahia, BA, Brazil
| | - Felice Deminco
- Federal University of Bahia, Complexo Hospitalar Universitário Professor Edgard Santos, Laboratório de Pesquisa em Infectologia (LAPI), Bahia, BA, Brazil
| | - Rafaela Mayoral
- Federal University of Bahia, Complexo Hospitalar Universitário Professor Edgard Santos, Laboratório de Pesquisa em Infectologia (LAPI), Bahia, BA, Brazil
| | - Eliana Menezes
- Federal University of Bahia, Complexo Hospitalar Universitário Professor Edgard Santos, Laboratório de Pesquisa em Infectologia (LAPI), Bahia, BA, Brazil
| | - Ana Patricia Amancio da Cunha
- Federal University of Bahia, Complexo Hospitalar Universitário Professor Edgard Santos, Laboratório de Pesquisa em Infectologia (LAPI), Bahia, BA, Brazil
| | - Andres Moreira-Soto
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; German Centre for Infection Research, Berlin, Germany
| | - Carlos Brites
- Federal University of Bahia, Complexo Hospitalar Universitário Professor Edgard Santos, Laboratório de Pesquisa em Infectologia (LAPI), Bahia, BA, Brazil.
| |
Collapse
|
5
|
Tang M, Hu X, Wang Y, Yao X, Zhang W, Yu C, Cheng F, Li J, Fang Q. Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol Res 2021; 163:105207. [PMID: 32971268 PMCID: PMC7505114 DOI: 10.1016/j.phrs.2020.105207] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/30/2022]
Abstract
Ivermectin is a macrolide antiparasitic drug with a 16-membered ring that is widely used for the treatment of many parasitic diseases such as river blindness, elephantiasis and scabies. Satoshi ōmura and William C. Campbell won the 2015 Nobel Prize in Physiology or Medicine for the discovery of the excellent efficacy of ivermectin against parasitic diseases. Recently, ivermectin has been reported to inhibit the proliferation of several tumor cells by regulating multiple signaling pathways. This suggests that ivermectin may be an anticancer drug with great potential. Here, we reviewed the related mechanisms by which ivermectin inhibited the development of different cancers and promoted programmed cell death and discussed the prospects for the clinical application of ivermectin as an anticancer drug for neoplasm therapy.
Collapse
Affiliation(s)
- Mingyang Tang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Clinical Medical Department, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Xiaodong Hu
- Department of Histology and Embryology, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Yi Wang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Xin Yao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Wei Zhang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Clinical Medical Department, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Chenying Yu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Clinical Medical Department, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Fuying Cheng
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Clinical Medical Department, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Jiangyan Li
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Qiang Fang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province 233030, China; School of Fundamental Sciences, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| |
Collapse
|