Brial F, Lussier CR, Belleville K, Sarret P, Boudreau F. Ghrelin Inhibition Restores Glucose Homeostasis in Hepatocyte Nuclear Factor-1α (MODY3)-Deficient Mice.
Diabetes 2015;
64:3314-20. [PMID:
25979074 DOI:
10.2337/db15-0124]
[Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 05/11/2015] [Indexed: 11/13/2022]
Abstract
Hepatocyte nuclear factor-1α (HNF1α) is a transcription factor expressed in tissues of endoderm origin. Mutations in HNF1A are associated with maturity-onset diabetes of the young 3 (MODY3). Mice deficient for Hnf1α are hyperglycemic, with their pancreatic β-cells being defective in glucose-sensing insulin secretion. The specific mechanisms involved in this defect are unclear. Gut hormones control glucose homeostasis. Our objective was to explore whether changes in these hormones play a role in glucose homeostasis in the absence of Hnf1α. An increase in ghrelin gene transcript and a decrease in glucose-dependent insulinotropic polypeptide (GIP) gene transcripts were observed in the gut of Hnf1α-null mice. These changes correlated with an increase of ghrelin and a decrease of GIP-labeled cells. Ghrelin serological levels were significantly induced in Hnf1α-null mice. Paradoxically, GIP levels were also induced in these mice. Treatment of Hnf1α-null mice with a ghrelin antagonist led to a recovery of the diabetic symptoms. We conclude that upregulation of ghrelin in the absence of Hnf1α impairs insulin secretion and can be reversed by pharmacological inhibition of ghrelin/GHS-R interaction. These observations open up on future strategies to counteract ghrelin action in a program that could become beneficial in controlling non-insulin-dependent diabetes.
Collapse