1
|
Sornlek W, Sonthirod C, Tangphatsornruang S, Ingsriswang S, Runguphan W, Eurwilaichtr L, Champreda V, Tanapongpipat S, Schaap PJ, Martins Dos Santos VAP. Genes controlling hydrolysate toxin tolerance identified by QTL analysis of the natural Saccharomyces cerevisiae BCC39850. Appl Microbiol Biotechnol 2024; 108:21. [PMID: 38159116 DOI: 10.1007/s00253-023-12843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 01/03/2024]
Abstract
Lignocellulosic material can be converted to valorized products such as fuels. Pretreatment is an essential step in conversion, which is needed to increase the digestibility of the raw material for microbial fermentation. However, pretreatment generates by-products (hydrolysate toxins) that are detrimental to microbial growth. In this study, natural Saccharomyces strains isolated from habitats in Thailand were screened for their tolerance to synthetic hydrolysate toxins (synHTs). The Saccharomyces cerevisiae natural strain BCC39850 (toxin-tolerant) was crossed with the laboratory strain CEN.PK2-1C (toxin-sensitive), and quantitative trait locus (QTL) analysis was performed on the segregants using phenotypic scores of growth (OD600) and glucose consumption. VMS1, DET1, KCS1, MRH1, YOS9, SYO1, and YDR042C were identified from QTLs as candidate genes associated with the tolerance trait. CEN.PK2-1C knockouts of the VMS1, YOS9, KCS1, and MRH1 genes exhibited significantly greater hydrolysate toxin sensitivity to growth, whereas CEN.PK2-1C knock-ins with replacement of VMS1 and MRH1 genes from the BCC39850 alleles showed significant increased ethanol production titers compared with the CEN.PK2-1C parental strain in the presence of synHTs. The discovery of VMS1, YOS9, MRH1, and KCS1 genes associated with hydrolysate toxin tolerance in S. cerevisiae indicates the roles of the endoplasmic-reticulum-associated protein degradation pathway, plasma membrane protein association, and the phosphatidylinositol signaling system in this trait. KEY POINTS: • QTL analysis was conducted using a hydrolysate toxin-tolerant S. cerevisiae natural strain • Deletion of VMS1, YOS9, MRH1, and KCS1 genes associated with hydrolysate toxin-sensitivity • Replacement of VMS1 and MRH1 with natural strain alleles increased ethanol production titers in the presence of hydrolysate toxins.
Collapse
Affiliation(s)
- Warasirin Sornlek
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
- The Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Lily Eurwilaichtr
- National Energy Technology Center, 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Sutipa Tanapongpipat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
| | - Peter J Schaap
- The Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- The Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- Bioprocess Engineering Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163, Berlin, Germany.
| |
Collapse
|
2
|
Mohanrao R, Manorama R, Ganguli S, Madhusudhanan MC, Bhandari R, Sureshan KM. Novel Substrates for Kinases Involved in the Biosynthesis of Inositol Pyrophosphates and Their Enhancement of ATPase Activity of a Kinase. Molecules 2021; 26:molecules26123601. [PMID: 34208421 PMCID: PMC8231259 DOI: 10.3390/molecules26123601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
IP6K and PPIP5K are two kinases involved in the synthesis of inositol pyrophosphates. Synthetic analogs or mimics are necessary to understand the substrate specificity of these enzymes and to find molecules that can alter inositol pyrophosphate synthesis. In this context, we synthesized four scyllo-inositol polyphosphates-scyllo-IP5, scyllo-IP6, scyllo-IP7 and Bz-scyllo-IP5-from myo-inositol and studied their activity as substrates for mouse IP6K1 and the catalytic domain of VIP1, the budding yeast variant of PPIP5K. We incubated these scyllo-inositol polyphosphates with these kinases and ATP as the phosphate donor. We tracked enzyme activity by measuring the amount of radiolabeled scyllo-inositol pyrophosphate product formed and the amount of ATP consumed. All scyllo-inositol polyphosphates are substrates for both the kinases but they are weaker than the corresponding myo-inositol phosphate. Our study reveals the importance of axial-hydroxyl/phosphate for IP6K1 substrate recognition. We found that all these derivatives enhance the ATPase activity of VIP1. We found very weak ligand-induced ATPase activity for IP6K1. Benzoyl-scyllo-IP5 was the most potent ligand to induce IP6K1 ATPase activity despite being a weak substrate. This compound could have potential as a competitive inhibitor.
Collapse
Affiliation(s)
- Raja Mohanrao
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India; (R.M.); (M.C.M.)
| | - Ruth Manorama
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; (R.M.); (S.G.)
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; (R.M.); (S.G.)
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Mithun C. Madhusudhanan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India; (R.M.); (M.C.M.)
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; (R.M.); (S.G.)
- Correspondence: (R.B.); (K.M.S.)
| | - Kana M. Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India; (R.M.); (M.C.M.)
- Correspondence: (R.B.); (K.M.S.)
| |
Collapse
|
3
|
Hatch AJ, Odom AR, York JD. Inositol phosphate multikinase dependent transcriptional control. Adv Biol Regul 2017; 64:9-19. [PMID: 28342784 PMCID: PMC6198329 DOI: 10.1016/j.jbior.2017.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
Production of lipid-derived inositol phosphates including IP4 and IP5 is an evolutionarily conserved process essential for cellular adaptive responses that is dependent on both phospholipase C and the inositol phosphate multikinase Ipk2 (also known as Arg82 and IPMK). Studies of Ipk2, along with Arg82 prior to demonstrating its IP kinase activity, have provided an important link between control of gene expression and IP metabolism as both kinase dependent and independent functions are required for proper transcriptional complex function that enables cellular adaptation in response to extracellular queues such as nutrient availability. Here we define a promoter sequence cis-element, 5'-CCCTAAAAGG-3', that mediates both kinase-dependent and independent functions of Ipk2. Using a synthetic biological strategy, we show that proper gene expression in cells lacking Ipk2 may be restored through add-back of two components: IP4/IP5 production and overproduction of the MADS box DNA binding protein, Mcm1. Our results are consistent with a mechanism by which Ipk2 harbors a dual functionality that stabilizes transcription factor levels and enzymatically produces a small molecule code, which together coordinate control of biological processes and gene expression.
Collapse
Affiliation(s)
- Ace J Hatch
- Departments of Pharmacology and Cancer Biology and of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Audrey R Odom
- Departments of Pharmacology and Cancer Biology and of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - John D York
- Departments of Pharmacology and Cancer Biology and of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37232-0146, USA.
| |
Collapse
|
4
|
Ejzykowicz DE, Locken KM, Ruiz FJ, Manandhar SP, Olson DK, Gharakhanian E. Hygromycin B hypersensitive (hhy) mutants implicate an intact trans-Golgi and late endosome interface in efficient Tor1 vacuolar localization and TORC1 function. Curr Genet 2016; 63:531-551. [PMID: 27812735 DOI: 10.1007/s00294-016-0660-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/18/2022]
Abstract
Saccharomyces cerevisiae vacuoles are functionally analogous to mammalian lysosomes. Both also serve as physical platforms for Tor Complex 1 (TORC1) signal transduction, the master regulator of cellular growth and proliferation. Hygromycin B is a eukaryotic translation inhibitor. We recently reported on hygromycin B hypersensitive (hhy) mutants that fail to grow at subtranslation inhibitory concentrations of the drug and exhibit vacuolar defects (Banuelos et al. in Curr Genet 56:121-137, 2010). Here, we show that hhy phenotype is not due to increased sensitivity to translation inhibition and establish a super HHY (s-HHY) subgroup of genes comprised of ARF1, CHC1, DRS2, SAC1, VPS1, VPS34, VPS45, VPS52, and VPS54 that function exclusively or inclusively at trans-Golgi and late endosome interface. Live cell imaging of s-hhy mutants revealed that hygromycin B treatment disrupts vacuolar morphology and the localization of late endosome marker Pep12, but not that of late endosome-independent vacuolar SNARE Vam3. This, along with normal post-late endosome trafficking of the vital dye FM4-64, establishes that severe hypersensitivity to hygromycin B correlates specifically with compromised trans-Golgi and late endosome interface. We also show that Tor1p vacuolar localization and TORC1 anabolic functions, including growth promotion and phosphorylation of its direct substrate Sch9, are compromised in s-hhy mutants. Thus, an intact trans-Golgi and late endosome interface is a requisite for efficient Tor1 vacuolar localization and TORC1 function.
Collapse
Affiliation(s)
- Daniele E Ejzykowicz
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Kristopher M Locken
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Fiona J Ruiz
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.,Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Surya P Manandhar
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Daniel K Olson
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.,Inouye Center for Microbial Oceanography, Research and Education, University of Hawaii, Manoa, Honolulu, HI, 96822, USA
| | - Editte Gharakhanian
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.
| |
Collapse
|
5
|
Capolicchio S, Thakor DT, Linden A, Jessen HJ. Synthesis of unsymmetric diphospho-inositol polyphosphates. Angew Chem Int Ed Engl 2013; 52:6912-6. [PMID: 23712702 DOI: 10.1002/anie.201301092] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/29/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Samanta Capolicchio
- Organic Chemistry Institute, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
6
|
Capolicchio S, Thakor DT, Linden A, Jessen HJ. Synthesis of Unsymmetric Diphospho-Inositol Polyphosphates. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
McLennan AG. Substrate ambiguity among the nudix hydrolases: biologically significant, evolutionary remnant, or both? Cell Mol Life Sci 2013; 70:373-85. [PMID: 23184251 PMCID: PMC11113851 DOI: 10.1007/s00018-012-1210-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 12/20/2022]
Abstract
Many members of the nudix hydrolase family exhibit considerable substrate multispecificity and ambiguity, which raises significant issues when assessing their functions in vivo and gives rise to errors in database annotation. Several display low antimutator activity when expressed in bacterial tester strains as well as some degree of activity in vitro towards mutagenic, oxidized nucleotides such as 8-oxo-dGTP. However, many of these show greater activity towards other nucleotides such as ADP-ribose or diadenosine tetraphosphate (Ap(4)A). The antimutator activities have tended to gain prominence in the literature, whereas they may in fact represent the residual activity of an ancestral antimutator enzyme that has become secondary to the more recently evolved major activity after gene duplication. Whether any meaningful antimutagenic function has also been retained in vivo requires very careful assessment. Then again, other examples of substrate ambiguity may indicate as yet unexplored regulatory systems. For example, bacterial Ap(4)A hydrolases also efficiently remove pyrophosphate from the 5' termini of mRNAs, suggesting a potential role for Ap(4)A in the control of bacterial mRNA turnover, while the ability of some eukaryotic mRNA decapping enzymes to degrade IDP and dIDP or diphosphoinositol polyphosphates (DIPs) may also be indicative of new regulatory networks in RNA metabolism. DIP phosphohydrolases also degrade diadenosine polyphosphates and inorganic polyphosphates, suggesting further avenues for investigation. This article uses these and other examples to highlight the need for a greater awareness of the possible significance of substrate ambiguity among the nudix hydrolases as well as the need to exert caution when interpreting incomplete analyses.
Collapse
Affiliation(s)
- Alexander G McLennan
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown St., Liverpool, L69 7ZB, UK.
| |
Collapse
|
8
|
Inositol phosphate kinase Vip1p interacts with histone chaperone Asf1p in Saccharomyces cerevisiae. Mol Biol Rep 2011; 39:4989-96. [PMID: 22160571 DOI: 10.1007/s11033-011-1295-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 11/30/2011] [Indexed: 12/25/2022]
Abstract
Histone eviction and deposition are critical steps in many nuclear processes. The histone H3/H4 chaperone Asf1p is highly conserved and is involved in DNA replication, DNA repair, and transcription. To identify the factors concerned with anti-silencing function 1 (ASF1), we purified Asf1p-associated factors from the yeast Saccharomyces cerevisiae by a GST pull-down experiment, and mass spectrometry analysis was performed. Several factors are specifically associated with Asf1p, including Vip1p. VIP1 is conserved from yeast to humans and encodes inositol hexakisphoshate and inositol heptakisphosphate kinase. Vip1p interacted with Asf1p as a dimer or in a complex with another protein(s). Deletion of VIP1 did not affect the interaction between Asf1p and other Asf1p-associated factors. An in vitro GST pull-down assay indicated a direct interaction between Asf1p and Vip1p, and the interaction between the two factors in vivo was detected by an immunoprecipitation experiment. Furthermore, genetic experiments revealed that VIP1 disruption increased sensitivity to 6-azauracil (6-AU), but not to DNA-damaging reagents in wild-type and ASF1-deleted strains. It is thought that 6-AU decreases nucleotide levels and reduces transcription elongation. These observations suggest that the association of Asf1p and Vip1p may be implicated in transcription elongation.
Collapse
|
9
|
Abstract
Lipid-derived inositol phosphates (InsPs) comprise a family of second messengers that arise through the action of six classes of InsP kinases, generally referred to as IPKs. Genetic studies have indicated that InsPs play critical roles in embryonic development, but the mechanisms of action for InsPs in mammalian cellular function are largely unknown. This chapter outlines a method for manipulating cellular InsP profiles through the coexpression of a constitutively active G protein and various IPKs. It provides a mechanism by which the metabolism of a variety of InsPs can be upregulated, enabling the evaluation of the effects of these InsPs on cellular functions.
Collapse
|
10
|
Abstract
The phosphorylated inositol diphosphates, including the diphosphoinositol pentakisphosphate regioisomers, play critical roles in signal transduction and cellular regulation. In particular, the IP(7) isomer 5-PP-Ins(1,2,3,4,6)P(5) is implicated in a nonenzymatic phosphate transfer converting a protein serine phosphate residue to a serine diphosphate. A scalable, practical new synthesis of 5-PP-Ins(1,2,3,4,6)P(5) is described that also allows access to a variety of IP(7) and IP(8) regioisomers. The identity of the synthetic 5-PP-Ins(1,2,3,4,6)P(5) was validated using IP6K1 to catalyze the conversion of IP(7) + ADP to ATP + IP(6).
Collapse
Affiliation(s)
- Honglu Zhang
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257, USA
| | - James Thompson
- Echelon Biosciences, 675 Arapeen Drive, Suite 302, Salt Lake City, UT 84108
| | - Glenn D. Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257, USA
| |
Collapse
|
11
|
Lee YS, Huang K, Quiocho FA, O'Shea EK. Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate. Nat Chem Biol 2008; 4:25-32. [PMID: 18059263 PMCID: PMC2367112 DOI: 10.1038/nchembio.2007.52] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/11/2007] [Indexed: 12/22/2022]
Abstract
When Saccharomyces cerevisiae cells are starved of inorganic phosphate, the Pho80-Pho85 cyclin-cyclin-dependent kinase (CDK) is inactivated by the Pho81 CDK inhibitor (CKI). The regulation of Pho80-Pho85 is distinct from previously characterized mechanisms of CDK regulation: the Pho81 CKI is constitutively associated with Pho80-Pho85, and a small-molecule ligand, inositol heptakisphosphate (IP7), is required for kinase inactivation. We investigated the molecular basis of the IP7- and Pho81-dependent Pho80-Pho85 inactivation using electrophoretic mobility shift assays, enzyme kinetics and fluorescence spectroscopy. We found that IP7 interacts noncovalently with Pho80-Pho85-Pho81 and induces additional interactions between Pho81 and Pho80-Pho85 that prevent substrates from accessing the kinase active site. Using synthetic peptides corresponding to Pho81, we define regions of Pho81 responsible for constitutive Pho80-Pho85 binding and IP7-regulated interaction and inhibition. These findings expand our understanding of the mechanisms of cyclin-CDK regulation and of the biochemical mechanisms of IP7 action.
Collapse
Affiliation(s)
- Young-Sam Lee
- Howard Hughes Medical Institute, Harvard University, Department of Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
12
|
Otto JC, Kelly P, Chiou ST, York JD. Alterations in an inositol phosphate code through synergistic activation of a G protein and inositol phosphate kinases. Proc Natl Acad Sci U S A 2007; 104:15653-8. [PMID: 17895383 PMCID: PMC1994134 DOI: 10.1073/pnas.0705729104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In mammals, many cellular stimuli evoke a response through G protein activation of phospholipase C, which results in the lipid-derived production of inositol 1,4,5-trisphosphate (IP(3)). Although it is well established that IP(3) is converted to numerous inositol phosphates (IPs) and pyrophosphates (PP-IPs) through the action of up to six classes of inositol phosphate kinases (IPKs), it is not clear that these metabolites are influenced by G protein signaling. Here we report that activation of Galpha(q) leads to robust stimulation of IP(3) to IP(8) metabolism. To expose flux through these pathways, genetic perturbation was used to alter IP homeostasis. Coupled expression of a constitutively active Galpha(q)QL and one or more IPK gene products synergistically generated dramatic changes in the patterns of intracellular IP messengers. Many distinct IP profiles were observed through the expression of different combinations of IPKs, including changes in previously unappreciated pools of IP(5) and IP(6), two molecules widely viewed as stable metabolites. Our data link the activation of a trimeric G protein to a plethora of metabolites downstream of IP(3) and provide a framework for suggesting that cells possess the machinery to produce an IPK-dependent IP code. We imply, but do not prove, that agonist-induced alterations in such a code would theoretically be capable of enhancing signaling complexity and specificity. The essential roles for IPKs in organism development and cellular adaptation are consistent with our hypothesis that such an IP code may be relevant to signaling pathways.
Collapse
Affiliation(s)
- James C. Otto
- *Howard Hughes Medical Institute
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Patrick Kelly
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Shean-Tai Chiou
- *Howard Hughes Medical Institute
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - John D. York
- *Howard Hughes Medical Institute
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
- To whom all correspondence should be addressed. E-mail:
| |
Collapse
|