1
|
Sloan MA, Scott A, Aghabi D, Mrvova L, Harding CR. Iron-mediated post-transcriptional regulation in Toxoplasma gondii. PLoS Pathog 2025; 21:e1012857. [PMID: 39899594 PMCID: PMC11801735 DOI: 10.1371/journal.ppat.1012857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2025] [Accepted: 12/21/2024] [Indexed: 02/05/2025] Open
Abstract
Iron is required to support almost all life; however, levels must be carefully regulated to maintain homeostasis. Although the obligate parasite Toxoplasma gondii requires iron, how it responds upon iron limitation has not been investigated. Here, we show that iron depletion triggers significant transcriptional changes in the parasite, including in iron-dependent pathways. We find that a subset of T. gondii transcripts contain stem-loop structures, which have been associated with post-transcriptional iron-mediated regulation in other cellular systems. We validate one of these (found in the 3' UTR of TGME49_261720) using a reporter cell line. We show that the presence of the stem-loop-containing UTR is sufficient to confer accumulation at the transcript and protein levels under low iron. This response is dose and time-dependent and is specific for iron. The accumulation of transcript is likely driven by an increased reporter mRNA stability under low iron. Interestingly, we find iron-mediated changes in mRNA stability in around 400 genes. To examine the potential mechanism of this stability, we tested aconitase interaction with mRNA in low iron and found 43 enriched transcripts, but no specific interaction with our reporter UTR. However, the endogenous UTR led to maintenance of protein levels and increased survival of the parasite under low iron. Our data demonstrate the existence of iron-mediated post-transcriptional regulation in Toxoplasma for the first time; and suggests iron-mediated regulation may be important to the parasite in low iron environments.
Collapse
Affiliation(s)
- Megan A. Sloan
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Adam Scott
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Dana Aghabi
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Lucia Mrvova
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Clare R. Harding
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Yang J, Zhong B, Yang L, Luo Z, Jia L, Zheng K, Tang W, Shang W, Jiang X, Lyu Z, Gai Q, Chen J, Chen G. Ulp1 Regulates Cell Proliferation Through INO1 in Pichia pastoris. Genes (Basel) 2024; 15:1459. [PMID: 39596659 PMCID: PMC11593471 DOI: 10.3390/genes15111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Ulp1 is a vital regulator of the cell cycle, with its absence leading to G2/M phase arrest in Saccharomyces cerevisiae. This study aims to investigate the role of Ulp1 in cell cycle regulation in Pichia pastoris and to elucidate its mechanisms of action, particularly through the modulation of the gene INO1. METHODS We generated Ulp1 knockout strains in Pichia pastoris using the FLP-FRT system and performed RNA sequencing (RNA-seq) to analyze gene expression changes. We assessed cell proliferation in Ulp1 knockout and INO1 overexpressing strains, as well as the effects of inositol supplementation. RESULTS Our findings revealed significant downregulation of INO1 and other genes in Ulp1 knockout strains. Importantly, overexpression of INO1 restored cell proliferation, indicating that Ulp1 regulates this process via INO1. Notably, supplementation with exogenous inositol did not rescue cell proliferation, suggesting that the enzymatic activity of INO1 is not required for Ulp1's regulatory function. CONCLUSIONS This study demonstrates that Ulp1 modulates cell proliferation in Pichia pastoris through INO1, independent of its enzymatic activity. These insights enhance our understanding of Ulp1's role in cell cycle regulation and open new avenues for exploring the molecular mechanisms governing yeast cell division. Further investigations are warranted to delineate the intricate regulatory pathways involved in this process.
Collapse
Affiliation(s)
- Junjie Yang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Bo Zhong
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Lan Yang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Zhan Luo
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Lei Jia
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Kaixi Zheng
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Wenjie Tang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Wenna Shang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Xiaofeng Jiang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
| | - Zhengbing Lyu
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312369, China
| | - Qijing Gai
- Zhejiang Q-Peptide Biotechnology Co., Ltd., Shaoxing 312366, China;
| | - Jianqing Chen
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.Y.); (B.Z.); (L.Y.); (Z.L.); (L.J.); (K.Z.); (W.T.); (W.S.); (X.J.); (Z.L.)
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312369, China
- Zhejiang Q-Peptide Biotechnology Co., Ltd., Shaoxing 312366, China;
| | - Guodong Chen
- School of Life Sciences, Central South University, Changsha 410031, China
| |
Collapse
|
3
|
Nevoit G, Jarusevicius G, Potyazhenko M, Mintser O, Bumblyte IA, Vainoras A. Mitochondrial Dysfunction and Risk Factors for Noncommunicable Diseases: From Basic Concepts to Future Prospective. Diseases 2024; 12:277. [PMID: 39589951 PMCID: PMC11592525 DOI: 10.3390/diseases12110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Noncommunicable diseases (NCDs) are a very important medical problem. The key role of mitochondrial dysfunction (MD) in the occurrence and progression of NCDs has been proven. However, the etiology and pathogenesis of MD itself in many NCDs has not yet been clarified, which makes it one of the most serious medical problems in the modern world, according to many scientists. METHODS An extensive research in the literature was implemented in order to elucidate the role of MD and NCDs' risk factors in the pathogenesis of NCDs. RESULTS The authors propose to take a broader look at the problem of the pathogenesis of NCDs. It is important to understand exactly how NCD risk factors lead to MD. The review is structured in such a way as to answer this question. Based on a systematic analysis of scientific data, a theoretical concept of modern views on the occurrence of MD under the influence of risk factors for the occurrence of NCDs is presented. This was done in order to update MD issues in clinical medicine. MD and NCDs progress throughout a patient's life. Based on this, the review raised the question of the existence of an NCDs continuum. CONCLUSIONS MD is a universal mechanism that causes organ dysfunction and comorbidity of NCDs. Prevention of MD involves diagnosing and eliminating the factors that cause it. Mitochondria are an important therapeutic target.
Collapse
Affiliation(s)
- Ganna Nevoit
- Laboratory of Population Studies, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Gediminas Jarusevicius
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Maksim Potyazhenko
- Department of Internal Medicine and Emergency Medicine, Poltava State Medical University, 36011 Poltava, Ukraine;
| | - Ozar Mintser
- Department of Fundamental Disciplines and Informatics, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine;
| | - Inga Arune Bumblyte
- Department of Nephrology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Alfonsas Vainoras
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| |
Collapse
|
4
|
Andrés-Bordería A, Mazuque-Pons L, Romeu-Perales M, Garcia-Molina A, Andrés-Colás N, Martínez-Pastor MT, Sanz A, Puig S, Peñarrubia L, Perea-García A. The role of the Arabidopsis tandem zinc-finger C3H15 protein in metal homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109123. [PMID: 39276674 DOI: 10.1016/j.plaphy.2024.109123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Living organisms have developed finely regulated homeostatic networks to mitigate the effects of environmental fluctuations in transition metal micronutrients, including iron, zinc, and copper. In Saccharomyces cerevisiae, the tandem zinc-finger protein Cth2 post-transcriptionally regulates gene expression under conditions of iron deficiency by controlling the levels of mRNAs that code for non-essential ferroproteins. The molecular mechanism involves Cth2 binding to AU-rich elements present in the 3' untranslated region of target mRNAs, negatively affecting their stability and translation. Arabidopsis thaliana has two TZF proteins homologous to yeast Cth2, C3H14 and C3H15, which participate in cell wall remodelling. The present work examines the expression of representative metal homeostasis genes with putative AREs in plants with altered levels of C3H14 and C3H15 grown under varying metal availabilities. The results suggest that C3H15 may act as a post-transcriptional plant modulator of metal adequacy, as evidenced by the expression of SPL7, the main transcriptional regulator under copper deficiency, and PETE2, which encodes plastocyanin. In contrast to S. cerevisiae, the plant C3H15 affects copper and zinc homeostasis rather than iron. When grown under copper-deficient conditions, adult C3H15OE plants exhibit lower chlorophyll content and photosynthetic efficiency compared to control plants, suggesting accelerated senescence. Likewise, metal content in C3H15OE plants under copper deficiency shows altered mobilization of copper and zinc to seeds. These data suggest that the C3H15 protein plays a role in modulating both cell wall remodelling and metal homeostasis. The interaction between these processes may be the cause of altered metal translocation.
Collapse
Affiliation(s)
- Amparo Andrés-Bordería
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Laia Mazuque-Pons
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - Marta Romeu-Perales
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - Antoni Garcia-Molina
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - Nuria Andrés-Colás
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - María Teresa Martínez-Pastor
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain; Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - Amparo Sanz
- Departament de Biologia Vegetal, Universitat de València, Burjassot, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - Ana Perea-García
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain.
| |
Collapse
|
5
|
Yang Z, Wei Y, Fu Y, Wang X, Shen W, Shi A, Zhang H, Li H, Song X, Wang J, Jin M, Zheng H, Tao J, Wang Y. Folic acids promote in vitro maturation of bovine oocytes by inhibition of ferroptosis via upregulated glutathione and downregulated Fe 2+ accumulation. Anim Reprod Sci 2024; 270:107605. [PMID: 39362062 DOI: 10.1016/j.anireprosci.2024.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Bovine embryos by in vitro fertilization have become the primary source of commercial embryo transfers globally. However, the developmental capacity of in vitro maturation (IVM) oocytes is considerably lower than that of in vivo maturation (IVO) oocytes, owing to the production of reactive oxygen species (ROS) via mitochondrial metabolism, which was higher in IVM oocytes than in IVO oocytes. To avoid the negative effects of ROS on embryo quality, folic acid (FA) was supplemented directly into the IVM medium to antagonize ROS production, however, the mechanisms remain unknown. In the present study, five levels of FA (0, 25, 50, 100, and 200 µM) were supplemented into the bovine oocyte culture medium. The maturation, cleavage, and blastocyst formation rates increased by 8.95 %, 6.94 %, and 4.36 %, respectively, in the 50 µM group compared to the 0 µM group. Moreover, 7904 differential genes were identified between 0 µM and 50 µM groups by transcriptome sequencing, and they were mainly enriched in 8 pathways. The glutathione, ROS, and Fe2+ levels in oocytes were found to be associated with ferroptosis. Our results revealed that 50 µM FA promoted the IVM of bovine oocytes and affected the expression of genes involved in the ferroptosis pathway. The downregulation of TFR1 and STEAP3 led to a decrease in intracellular Fe2+ accumulation, and the upregulation of GCL increased oocyte GSH levels, thereby reducing the production of ROS in the ferroptosis pathway. Our study provides a new insight into the molecular mechanisms by which FA promotes bovine oocyte development in vitro.
Collapse
Affiliation(s)
- Zhuo Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaochang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yu Fu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xiaoyan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Wenjuan Shen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - An Shi
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Han Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Heqiang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xuexiao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jie Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Mengdong Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Hao Zheng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jinzhong Tao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
6
|
Wangsanut T, Amsri A, Kalawil T, Sukantamala P, Jeenkeawpieam J, Andrianopoulos A, Pongpom M. AcuM and AcuK: The global regulators controlling multiple cellular metabolisms in a dimorphic fungus Talaromyces marneffei. PLoS Negl Trop Dis 2024; 18:e0012145. [PMID: 39231117 PMCID: PMC11373862 DOI: 10.1371/journal.pntd.0012145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
Talaromycosis is a fungal infection caused by an opportunistic dimorphic fungus Talaromyces marneffei. During infection, T. marneffei resides inside phagosomes of human host macrophages where the fungus encounters nutrient scarcities and host-derived oxidative stressors. Previously, we showed that the deletion of acuK, a gene encoding Zn(2)Cys(6) transcription factor, caused a decreased ability for T. marneffei to defend against macrophages, as well as a growth impairment in T. marneffei on both low iron-containing medium and gluconeogenic substrate-containing medium. In this study, a paralogous gene acuM was deleted and characterized. The ΔacuM mutant showed similar defects with the ΔacuK mutant, suggesting their common role in gluconeogenesis and iron homeostasis. Unlike the pathogenic mold Aspergillus fumigatus, the ΔacuK and ΔacuM mutants unexpectedly exhibited normal siderophore production and did not show lower expression levels of genes involved in iron uptake and siderophore synthesis. To identify additional target genes of AcuK and AcuM, RNA-sequencing analysis was performed in the ΔacuK and ΔacuM strains growing in a synthetic dextrose medium with 1% glucose at 25 °C for 36 hours. Downregulated genes in both mutants participated in iron-consuming processes, especially in mitochondrial metabolism and anti-oxidative stress. Importantly, the ΔacuM mutant was sensitive to the oxidative stressors menadione and hydrogen peroxide while the ΔacuK mutant was sensitive to only hydrogen peroxide. The yeast form of both mutants demonstrated a more severe defect in antioxidant properties than the mold form. Moreover, ribosomal and ribosomal biogenesis genes were expressed at significantly lower levels in both mutants, suggesting that AcuK and AcuM could affect the protein translation process in T. marneffei. Our study highlighted the role of AcuK and AcuM as global regulators that control multiple cellular adaptations under various harsh environmental conditions during host infection. These transcription factors could be potentially exploited as therapeutic targets for the treatment of this neglected infectious disease.
Collapse
Affiliation(s)
- Tanaporn Wangsanut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Artid Amsri
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Thitisuda Kalawil
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Juthatip Jeenkeawpieam
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | - Alex Andrianopoulos
- Molecular, Cellular, and Developmental Biology, School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Monsicha Pongpom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Barlit H, Romero AM, Gülhan A, Patnaik PK, Tyshkovskiy A, Martínez-Pastor MT, Gladyshev VN, Puig S, Labunskyy VM. Ribosome profiling reveals the role of yeast RNA-binding proteins Cth1 and Cth2 in translational regulation. iScience 2024; 27:109868. [PMID: 38779483 PMCID: PMC11109004 DOI: 10.1016/j.isci.2024.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Iron serves as a cofactor for enzymes involved in several steps of protein translation, but the control of translation during iron limitation is not understood at the molecular level. Here, we report a genome-wide analysis of protein translation in response to iron deficiency in yeast using ribosome profiling. We show that iron depletion affects global protein synthesis and leads to translational repression of multiple genes involved in iron-related processes. Furthermore, we demonstrate that the RNA-binding proteins Cth1 and Cth2 play a central role in this translational regulation by repressing the activity of the iron-dependent Rli1 ribosome recycling factor and inhibiting mitochondrial translation and heme biosynthesis. Additionally, we found that iron deficiency represses MRS3 mRNA translation through increased expression of antisense long non-coding RNA. Together, our results reveal complex gene expression and protein synthesis remodeling in response to low iron, demonstrating how this important metal affects protein translation at multiple levels.
Collapse
Affiliation(s)
- Hanna Barlit
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Antonia M. Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ali Gülhan
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Praveen K. Patnaik
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - María T. Martínez-Pastor
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Valencia, Spain
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Vyacheslav M. Labunskyy
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
8
|
Dancis A, Pandey AK, Pain D. Mitochondria function in cytoplasmic FeS protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119733. [PMID: 38641180 DOI: 10.1016/j.bbamcr.2024.119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Iron‑sulfur (FeS) clusters are cofactors of numerous proteins involved in essential cellular functions including respiration, protein translation, DNA synthesis and repair, ribosome maturation, anti-viral responses, and isopropylmalate isomerase activity. Novel FeS proteins are still being discovered due to the widespread use of cryogenic electron microscopy (cryo-EM) and elegant genetic screens targeted at protein discovery. A complex sequence of biochemical reactions mediated by a conserved machinery controls biosynthesis of FeS clusters. In eukaryotes, a remarkable epistasis has been observed: the mitochondrial machinery, termed ISC (Iron-Sulfur Cluster), lies upstream of the cytoplasmic machinery, termed CIA (Cytoplasmic Iron‑sulfur protein Assembly). The basis for this arrangement is the production of a hitherto uncharacterized intermediate, termed X-S or (Fe-S)int, produced in mitochondria by the ISC machinery, exported by the mitochondrial ABC transporter Atm1 (ABCB7 in humans), and then utilized by the CIA machinery for the cytoplasmic/nuclear FeS cluster assembly. Genetic and biochemical findings supporting this sequence of events are herein presented. New structural views of the Atm1 transport phases are reviewed. The key compartmental roles of glutathione in cellular FeS cluster biogenesis are highlighted. Finally, data are presented showing that every one of the ten core components of the mitochondrial ISC machinery and Atm1, when mutated or depleted, displays similar phenotypes: mitochondrial and cytoplasmic FeS clusters are both rendered deficient, consistent with the epistasis noted above.
Collapse
Affiliation(s)
- Andrew Dancis
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
9
|
Lindahl PA. Iron Homeostatic Regulation in Saccharomyces cerevisiae: Introduction to a Computational Modeling Method. Methods Mol Biol 2024; 2839:3-29. [PMID: 39008245 PMCID: PMC11514128 DOI: 10.1007/978-1-0716-4043-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Over the past 30 years, much has been learned regarding iron homeostatic regulation in budding yeast, S. cerevisiae, including the identity of many of the proteins and molecular-level regulatory mechanisms involved. Most advances have involved inferring such mechanisms based on the analysis of iron-dysregulation phenotypes arising in various genetic mutant strains. Still lacking is a cellular- or system-level understanding of iron homeostasis. These experimental advances are summarized in this review, and a method for developing cellular-level regulatory mechanisms in yeast is presented. The method employs the results of Mössbauer spectroscopy of whole cells and organelles, iron quantification of the same, and ordinary differential equation-based mathematical models. Current models are simplistic when compared to the complexity of iron homeostasis in real cells, yet they hold promise as a useful, perhaps even required, complement to the popular genetics-based approach. The fundamental problem in comprehending cellular regulatory mechanisms is that, given the complexities involved, different molecular-level mechanisms can often give rise to virtually indistinguishable cellular phenotypes. Mathematical models cannot eliminate this problem, but they can minimize it.
Collapse
Affiliation(s)
- Paul A Lindahl
- Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
10
|
Pijuan J, Moreno DF, Yahya G, Moisa M, Ul Haq I, Krukiewicz K, Mosbah R, Metwally K, Cavalu S. Regulatory and pathogenic mechanisms in response to iron deficiency and excess in fungi. Microb Biotechnol 2023; 16:2053-2071. [PMID: 37804207 PMCID: PMC10616654 DOI: 10.1111/1751-7915.14346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
Iron is an essential element for all eukaryote organisms because of its redox properties, which are important for many biological processes such as DNA synthesis, mitochondrial respiration, oxygen transport, lipid, and carbon metabolism. For this reason, living organisms have developed different strategies and mechanisms to optimally regulate iron acquisition, transport, storage, and uptake in different environmental responses. Moreover, iron plays an essential role during microbial infections. Saccharomyces cerevisiae has been of key importance for decrypting iron homeostasis and regulation mechanisms in eukaryotes. Specifically, the transcription factors Aft1/Aft2 and Yap5 regulate the expression of genes to control iron metabolism in response to its deficiency or excess, adapting to the cell's iron requirements and its availability in the environment. We also review which iron-related virulence factors have the most common fungal human pathogens (Aspergillus fumigatus, Cryptococcus neoformans, and Candida albicans). These factors are essential for adaptation in different host niches during pathogenesis, including different fungal-specific iron-uptake mechanisms. While being necessary for virulence, they provide hope for developing novel antifungal treatments, which are currently scarce and usually toxic for patients. In this review, we provide a compilation of the current knowledge about the metabolic response to iron deficiency and excess in fungi.
Collapse
Affiliation(s)
- Jordi Pijuan
- Laboratory of Neurogenetics and Molecular MedicineInstitut de Recerca Sant Joan de DéuBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIIIMadridSpain
| | - David F. Moreno
- Department of Molecular Cellular and Developmental BiologyYale UniversityNew HavenConnecticutUSA
- Systems Biology InstituteYale UniversityWest HavenConnecticutUSA
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of PharmacyZagazig UniversityAl SharqiaEgypt
| | - Mihaela Moisa
- Faculty of Medicine and PharmacyUniversity of OradeaOradeaRomania
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Polymers TechnologySilesian University of TechnologyGliwicePoland
- Programa de Pós‐graduação em Inovação TecnológicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Polymers TechnologySilesian University of TechnologyGliwicePoland
- Centre for Organic and Nanohybrid ElectronicsSilesian University of TechnologyGliwicePoland
| | - Rasha Mosbah
- Infection Control UnitHospitals of Zagazig UniversityZagazigEgypt
| | - Kamel Metwally
- Department of Medicinal Chemistry, Faculty of PharmacyUniversity of TabukTabukSaudi Arabia
- Department of Pharmaceutical Medicinal Chemistry, Faculty of PharmacyZagazig UniversityZagazigEgypt
| | - Simona Cavalu
- Faculty of Medicine and PharmacyUniversity of OradeaOradeaRomania
| |
Collapse
|
11
|
Jordá T, Rozès N, Martínez-Pastor MT, Puig S. The yeast mRNA-binding protein Cth2 post-transcriptionally modulates ergosterol biosynthesis in response to iron deficiency. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194959. [PMID: 37453649 DOI: 10.1016/j.bbagrm.2023.194959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Sterol synthesis is an iron-dependent metabolic pathway in eukaryotes. Consequently, fungal ergosterol biosynthesis (ERG) is down-regulated in response to iron deficiency. In this report, we show that, upon iron limitation or overexpression of the iron-regulated mRNA-binding protein Cth2, the yeast Saccharomyces cerevisiae down-regulates the three initial enzymatic steps of ergosterol synthesis (ERG1, ERG7 and ERG11). Mechanistically, we show that Cth2 protein limits the translation and promotes the decrease in the mRNA levels of these specific ERG genes, which contain consensus Cth2-binding sites defined as AU-rich elements (AREs). Thus, expression of CTH2 leads to the accumulation of initial sterol intermediates, such as squalene, and to the drop of ergosterol levels. Changes in CTH2 expression levels disturb the response of yeast cells to stresses related to membrane integrity such as high ethanol and sorbitol concentrations. Therefore, CTH2 should be considered as a critical regulatory factor of ergosterol biosynthesis during iron deficiency.
Collapse
Affiliation(s)
- Tania Jordá
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| | - Nicolas Rozès
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - María Teresa Martínez-Pastor
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain; Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Burjassot, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
12
|
Deficiency of the RNA-binding protein Cth2 extends yeast replicative lifespan by alleviating its repressive effects on mitochondrial function. Cell Rep 2022; 40:111113. [PMID: 35858543 PMCID: PMC9382658 DOI: 10.1016/j.celrep.2022.111113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/18/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022] Open
Abstract
Iron dyshomeostasis contributes to aging, but little information is available about the molecular mechanisms. Here, we provide evidence that in Saccharomyces cerevisiae, aging is associated with altered expression of genes involved in iron homeostasis. We further demonstrate that defects in the conserved mRNA-binding protein Cth2, which controls stability and translation of mRNAs encoding iron-containing proteins, increase lifespan by alleviating its repressive effects on mitochondrial function. Mutation of the conserved cysteine residue in Cth2 that inhibits its RNA-binding activity is sufficient to confer longevity, whereas Cth2 gain of function shortens replicative lifespan. Consistent with its function in RNA degradation, Cth2 deficiency relieves Cth2-mediated post-transcriptional repression of nuclear-encoded components of the electron transport chain. Our findings uncover a major role of the RNA-binding protein Cth2 in the regulation of lifespan and suggest that modulation of iron starvation signaling can serve as a target for potential aging interventions. Dysregulation of iron homeostasis contributes to aging, but little information is available about the molecular mechanisms. Here, Patnaik et al. show that the mRNA-binding protein Cth2, which is involved in regulation of iron-dependent genes, is induced during aging and links impaired iron homeostasis with an age-related decline of mitochondrial function.
Collapse
|
13
|
Jordá T, Martínez-Martín A, Martínez-Pastor MT, Puig S. Modulation of yeast Erg1 expression and terbinafine susceptibility by iron bioavailability. Microb Biotechnol 2022; 15:2705-2716. [PMID: 35837730 PMCID: PMC9618313 DOI: 10.1111/1751-7915.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022] Open
Abstract
Ergosterol is a specific sterol component of yeast and fungal membranes. Its biosynthesis is one of the most effective targets for antifungal treatments. However, the emergent resistance to multiple sterol‐based antifungal drugs emphasizes the need for new therapeutic approaches. The allylamine terbinafine, which selectively inhibits squalene epoxidase Erg1 within the ergosterol biosynthetic pathway, is mainly used to treat dermatomycoses, whereas its effectiveness in other fungal infections is limited. Given that ergosterol biosynthesis depends on iron as an essential cofactor, in this report, we used the yeast Saccharomyces cerevisiae to investigate how iron bioavailability influences Erg1 expression and terbinafine susceptibility. We observed that both chemical and genetic depletion of iron decrease ERG1 expression, leading to an increase in terbinafine susceptibility. Deletion of either ROX1 transcriptional repressor or CTH1 and CTH2 post‐transcriptional repressors of ERG1 expression led to an increase in Erg1 protein levels and terbinafine resistance. On the contrary, overexpression of CTH2 led to the opposite effect, lowering Erg1 levels and increasing terbinafine susceptibility. Although strain‐specific particularities exist, opportunistic pathogenic strains of S. cerevisiae displayed a response similar to the laboratory strain. These data indicate that iron bioavailability and particular regulatory factors could be used to modulate susceptibility to terbinafine.
Collapse
Affiliation(s)
- Tania Jordá
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Ana Martínez-Martín
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| |
Collapse
|
14
|
Bomer N, Pavez-Giani MG, Grote Beverborg N, Cleland JGF, van Veldhuisen DJ, van der Meer P. Micronutrient deficiencies in heart failure: Mitochondrial dysfunction as a common pathophysiological mechanism? J Intern Med 2022; 291:713-731. [PMID: 35137472 PMCID: PMC9303299 DOI: 10.1111/joim.13456] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heart failure is a devastating clinical syndrome, but current therapies are unable to abolish the disease burden. New strategies to treat or prevent heart failure are urgently needed. Over the past decades, a clear relationship has been established between poor cardiac performance and metabolic perturbations, including deficits in substrate uptake and utilization, reduction in mitochondrial oxidative phosphorylation and excessive reactive oxygen species production. Together, these perturbations result in progressive depletion of cardiac adenosine triphosphate (ATP) and cardiac energy deprivation. Increasing the delivery of energy substrates (e.g., fatty acids, glucose, ketones) to the mitochondria will be worthless if the mitochondria are unable to turn these energy substrates into fuel. Micronutrients (including coenzyme Q10, zinc, copper, selenium and iron) are required to efficiently convert macronutrients to ATP. However, up to 50% of patients with heart failure are deficient in one or more micronutrients in cross-sectional studies. Micronutrient deficiency has a high impact on mitochondrial energy production and should be considered an additional factor in the heart failure equation, moving our view of the failing myocardium away from an "an engine out of fuel" to "a defective engine on a path to self-destruction." This summary of evidence suggests that supplementation with micronutrients-preferably as a package rather than singly-might be a potential therapeutic strategy in the treatment of heart failure patients.
Collapse
Affiliation(s)
- Nils Bomer
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario G Pavez-Giani
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Niels Grote Beverborg
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - John G F Cleland
- Robertson Centre for Biostatistics and Clinical Trials, University of Glasgow, Glasgow, UK.,National Heart & Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College, London, UK
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Fernandez S, Wofford JD, Shepherd RE, Vali SW, Dancis A, Lindahl PA. Yeast cells depleted of the frataxin homolog Yfh1 redistribute cellular iron: Studies using Mössbauer spectroscopy and mathematical modeling. J Biol Chem 2022; 298:101921. [PMID: 35413285 PMCID: PMC9130540 DOI: 10.1016/j.jbc.2022.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/27/2022] Open
Abstract
The neurodegenerative disease Friedreich's ataxia arises from a deficiency of frataxin, a protein that promotes iron-sulfur cluster (ISC) assembly in mitochondria. Here, primarily using Mössbauer spectroscopy, we investigated the iron content of a yeast strain in which expression of yeast frataxin homolog 1 (Yfh1), oxygenation conditions, iron concentrations, and metabolic modes were varied. We found that aerobic fermenting Yfh1-depleted cells grew slowly and accumulated FeIII nanoparticles, unlike WT cells. Under hypoxic conditions, the same mutant cells grew at rates similar to WT cells, had similar iron content, and were dominated by FeII rather than FeIII nanoparticles. Furthermore, mitochondria from mutant hypoxic cells contained approximately the same levels of ISCs as WT cells, confirming that Yfh1 is not required for ISC assembly. These cells also did not accumulate excessive iron, indicating that iron accumulation into yfh1-deficient mitochondria is stimulated by O2. In addition, in aerobic WT cells, we found that vacuoles stored FeIII, whereas under hypoxic fermenting conditions, vacuolar iron was reduced to FeII. Under respiring conditions, vacuoles of Yfh1-deficient cells contained FeIII, and nanoparticles accumulated only under aerobic conditions. Taken together, these results informed a mathematical model of iron trafficking and regulation in cells that could semiquantitatively simulate the Yfh1-deficiency phenotype. Simulations suggested partially independent regulation in which cellular iron import is regulated by ISC activity in mitochondria, mitochondrial iron import is regulated by a mitochondrial FeII pool, and vacuolar iron import is regulated by cytosolic FeII and mitochondrial ISC activity.
Collapse
Affiliation(s)
- Salvador Fernandez
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Joshua D Wofford
- Department of Chemistry, College of Science and Mathematics, Charleston Southern University, Charleston South Carolina, USA
| | - Rachel E Shepherd
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Shaik Waseem Vali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, Texas, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
16
|
Perea-García A, Puig S, Peñarrubia L. The role of post-transcriptional modulators of metalloproteins in response to metal deficiencies. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1735-1750. [PMID: 34849747 DOI: 10.1093/jxb/erab521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Copper and iron proteins have a wide range of functions in living organisms. Metal assembly into metalloproteins is a complex process, where mismetalation is detrimental and energy consuming to cells. Under metal deficiency, metal distribution is expected to reach a metalation ranking, prioritizing essential versus dispensable metalloproteins, while avoiding interference with other metals and protecting metal-sensitive processes. In this review, we propose that post-transcriptional modulators of metalloprotein mRNA (ModMeR) are good candidates in metal prioritization under metal-limited conditions. ModMeR target high quota or redundant metalloproteins and, by adjusting their synthesis, ModMeR act as internal metal distribution valves. Inappropriate metalation of ModMeR targets could compete with metal delivery to essential metalloproteins and interfere with metal-sensitive processes, such as chloroplastic photosynthesis and mitochondrial respiration. Regulation of ModMeR targets could increase or decrease the metal flow through interconnected pathways in cellular metal distribution, helping to achieve adequate differential metal requirements. Here, we describe and compare ModMeR that function in response to copper and iron deficiencies. Specifically, we describe copper-miRNAs from Arabidopsis thaliana and diverse iron ModMeR from yeast, mammals, and bacteria under copper and iron deficiencies, as well as the influence of oxidative stress. Putative functions derived from their role as ModMeR are also discussed.
Collapse
Affiliation(s)
- Ana Perea-García
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| |
Collapse
|
17
|
Romero AM, García-Martínez J, Pérez-Ortín JE, Martínez-Pastor MT, Puig S. Changes in mRNA stability play an important role in the adaptation of yeast cells to iron deprivation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194800. [PMID: 35218933 DOI: 10.1016/j.bbagrm.2022.194800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Eukaryotic cells rely on iron as an indispensable cofactor for multiple biological functions including mitochondrial respiration and protein synthesis. The budding yeast Saccharomyces cerevisiae utilizes both transcriptional and posttranscriptional mechanisms to couple mRNA levels to the requirements of iron deprivation. Thus, in response to iron deficiency, transcription factors Aft1 and Aft2 activate the expression of genes implicated in iron acquisition and mobilization, whereas two mRNA-binding proteins, Cth1 and Cth2, posttranscriptionally control iron metabolism. By using a genome-wide approach, we describe here a global stabilization of mRNAs, including transcripts encoding ribosomal proteins (RPs), when iron bioavailability diminishes. mRNA decay assays indicate that the mRNA-binding protein Pub1 contributes to RP transcript stabilization during adaptation to iron limitation. In fact, Pub1 becomes critical for growth and translational repression in low-iron conditions. Remarkably, we observe that pub1Δ cells also exhibit an increase in the transcription of RP genes that evidences the crosstalk between transcription and degradation mechanisms to maintain the appropriate mRNA balance under iron deficiency conditions.
Collapse
Affiliation(s)
- Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| | - José García-Martínez
- Departamento de Genética, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain; Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - José Enrique Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain; Departamento de Bioquímica y Biología Molecular, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| |
Collapse
|
18
|
Zhang X, Kebaara BW. Nonsense-mediated mRNA decay and metal ion homeostasis and detoxification in Saccharomyces cerevisiae. Biometals 2022; 35:1145-1156. [PMID: 36255607 PMCID: PMC9674712 DOI: 10.1007/s10534-022-00450-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
The highly conserved Nonsense-mediated mRNA decay (NMD) pathway is a translation dependent mRNA degradation pathway. Although NMD is best known for its role in degrading mRNAs with premature termination codons (PTCs) generated during transcription, splicing, or damage to the mRNAs, NMD is now also recognized as a pathway with additional important functions. Notably, NMD precisely regulates protein coding natural mRNAs, hence controlling gene expression within several physiologically significant pathways. Such pathways affected by NMD include nutritional bio-metal homeostasis and metal ion detoxification, as well as crosstalk between these pathways. Here, we focus on the relationships between NMD and various metal homeostasis and detoxification pathways. We review the described role that the NMD pathway plays in magnesium, zinc, iron, and copper homeostasis, as well as cadmium detoxification.
Collapse
Affiliation(s)
- Xinyi Zhang
- grid.252890.40000 0001 2111 2894Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798 USA
| | - Bessie W. Kebaara
- grid.252890.40000 0001 2111 2894Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798 USA
| |
Collapse
|
19
|
Campos OA, Attar N, Cheng C, Vogelauer M, Mallipeddi NV, Schmollinger S, Matulionis N, Christofk HR, Merchant SS, Kurdistani SK. A pathogenic role for histone H3 copper reductase activity in a yeast model of Friedreich's ataxia. SCIENCE ADVANCES 2021; 7:eabj9889. [PMID: 34919435 PMCID: PMC8682991 DOI: 10.1126/sciadv.abj9889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Disruptions to iron-sulfur (Fe-S) clusters, essential cofactors for a broad range of proteins, cause widespread cellular defects resulting in human disease. A source of damage to Fe-S clusters is cuprous (Cu1+) ions. Since histone H3 enzymatically produces Cu1+ for copper-dependent functions, we asked whether this activity could become detrimental to Fe-S clusters. Here, we report that histone H3–mediated Cu1+ toxicity is a major determinant of cellular functional pool of Fe-S clusters. Inadequate Fe-S cluster supply, due to diminished assembly as occurs in Friedreich’s ataxia or defective distribution, causes severe metabolic and growth defects in Saccharomyces cerevisiae. Decreasing Cu1+ abundance, through attenuation of histone cupric reductase activity or depletion of total cellular copper, restored Fe-S cluster–dependent metabolism and growth. Our findings reveal an interplay between chromatin and mitochondria in Fe-S cluster homeostasis and a potential pathogenic role for histone enzyme activity and Cu1+ in diseases with Fe-S cluster dysfunction.
Collapse
Affiliation(s)
- Oscar A. Campos
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Narsis Attar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chen Cheng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Vogelauer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathan V. Mallipeddi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Nedas Matulionis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Heather R. Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sabeeha S. Merchant
- QB3-Berkeley, University of California, Berkeley, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Siavash K. Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Beaudoin J, Normant V, Brault A, Henry DJ, Bachand F, Massé É, Chua G, Labbé S. Fission yeast RNA-binding proteins Puf2 and Puf4 are involved in repression of ferrireductase Frp1 expression in response to iron. Mol Microbiol 2021; 116:1361-1377. [PMID: 34614242 DOI: 10.1111/mmi.14829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/30/2022]
Abstract
This study identifies a post-transcriptional mechanism of iron uptake regulation by Puf2 and Puf4 of the Pumilio and FBF (Puf) family of RNA-binding proteins in Schizosaccharomyces pombe. Cells expressing Puf2 and Puf4 stimulate decay of the frp1+ mRNA encoding a key enzyme of the reductive iron uptake pathway. Results consistently showed that frp1+ mRNA is stabilized in puf2Δ puf4Δ mutant cells under iron-replete conditions. As a result, puf2Δ puf4Δ cells exhibit an increased sensitivity to iron accompanied by enhanced ferrireductase activity. A pool of GFP-frp1+ 3'UTR RNAs was generated using a reporter gene containing the 3' untranslated region (UTR) of frp1+ that was under the control of a regulatable promoter. Results showed that Puf2 and Puf4 accelerate the destabilization of mRNAs containing the frp1+ 3'UTR which harbors two Pumilio response elements (PREs). Binding studies revealed that the PUM-homology RNA-binding domain of Puf2 and Puf4 expressed in Escherichia coli specifically interacts with PREs in the frp1+ 3'UTR. Using RNA immunoprecipitation in combination with reverse transcription qPCR assays, results showed that Puf2 and Puf4 interact preferentially with frp1+ mRNA under basal and iron-replete conditions, thereby contributing to inhibit Frp1 production and protecting cells against toxic levels of iron.
Collapse
Affiliation(s)
- Jude Beaudoin
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vincent Normant
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Darren J Henry
- Biological Sciences, Integrative Cell Biology, University of Calgary, Calgary, Alberta, Canada
| | - François Bachand
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Éric Massé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gordon Chua
- Biological Sciences, Integrative Cell Biology, University of Calgary, Calgary, Alberta, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
21
|
An Internal Promoter Drives the Expression of a Truncated Form of CCC1 Capable of Protecting Yeast from Iron Toxicity. Microorganisms 2021; 9:microorganisms9061337. [PMID: 34203091 PMCID: PMC8235630 DOI: 10.3390/microorganisms9061337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
In yeast, iron storage and detoxification depend on the Ccc1 transporter that mediates iron accumulation in vacuoles. While deletion of the CCC1 gene renders cells unable to survive under iron overload conditions, the deletion of its previously identified regulators only partially affects survival, indicating that the mechanisms controlling iron storage and detoxification in yeast are still far from well understood. This work reveals that CCC1 is equipped with a complex transcriptional structure comprising several regulatory regions. One of these is located inside the coding sequence of the gene and drives the expression of a short transcript encoding an N-terminally truncated protein, designated as s-Ccc1. s-Ccc1, though less efficiently than Ccc1, is able to promote metal accumulation in the vacuole, protecting cells against iron toxicity. While the expression of the s-Ccc1 appears to be repressed in the normal genomic context, our current data clearly demonstrates that it is functional and has the capacity to play a role under iron overload conditions.
Collapse
|
22
|
Casting iron into the cell fate mold. Biochem J 2021; 478:1879-1883. [PMID: 34029365 DOI: 10.1042/bcj20210108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022]
Abstract
This commentary discusses general concepts introduced in the article 'Bulk autophagy induction and life extension is achieved when iron is the only limited nutrient in Saccharomyces cerevisiae' by Montella-Manuel et al. (Biochem J (2021) 478: 811-837). Montella-Manuel et al. show that like central carbon metabolism, iron metabolism is also closely implicated in autophagy-mediated life extension via the TORC2 activator Ypk1p and the iron regulator Aft1p. While not being an iron-sulfur cluster protein, Aft1p interacts with such proteins and thus senses the redox status of the cell, which, similar to amino acids and AMP, reports its energetic status. Furthermore, glucose and iron deficiencies are interrelated as the diauxic shift in glucose depleted cells requires iron uptake for activating respiration in the absence of fermentation.
Collapse
|
23
|
Iron in Translation: From the Beginning to the End. Microorganisms 2021; 9:microorganisms9051058. [PMID: 34068342 PMCID: PMC8153317 DOI: 10.3390/microorganisms9051058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is an essential element for all eukaryotes, since it acts as a cofactor for many enzymes involved in basic cellular functions, including translation. While the mammalian iron-regulatory protein/iron-responsive element (IRP/IRE) system arose as one of the first examples of translational regulation in higher eukaryotes, little is known about the contribution of iron itself to the different stages of eukaryotic translation. In the yeast Saccharomyces cerevisiae, iron deficiency provokes a global impairment of translation at the initiation step, which is mediated by the Gcn2-eIF2α pathway, while the post-transcriptional regulator Cth2 specifically represses the translation of a subgroup of iron-related transcripts. In addition, several steps of the translation process depend on iron-containing enzymes, including particular modifications of translation elongation factors and transfer RNAs (tRNAs), and translation termination by the ATP-binding cassette family member Rli1 (ABCE1 in humans) and the prolyl hydroxylase Tpa1. The influence of these modifications and their correlation with codon bias in the dynamic control of protein biosynthesis, mainly in response to stress, is emerging as an interesting focus of research. Taking S. cerevisiae as a model, we hereby discuss the relevance of iron in the control of global and specific translation steps.
Collapse
|
24
|
Navarrete-Perea J, Guerra-Moreno A, Van Vranken J, Isasa M, Paulo JA, Gygi SP. Iron Deficiency and Recovery in Yeast: A Quantitative Proteomics Approach. J Proteome Res 2021; 20:2751-2761. [PMID: 33797912 DOI: 10.1021/acs.jproteome.1c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Iron is an essential element for life, as it is critical for oxygen transport, cellular respiration, DNA synthesis, and metabolism. Disruptions in iron metabolism have been associated with several complex diseases like diabetes, cancer, infection susceptibility, neurodegeneration, and others; however, the molecular mechanisms linking iron metabolism with these diseases are not fully understood. A commonly used model to study iron deficiency (ID) is yeast, Saccharomyces cerevisiae. Here, we used quantitative (phospho)proteomics to explore the early (4 and 6 h) and late (12 h) response to ID. We showed that metabolic pathways like the Krebs cycle, amino acid, and ergosterol biosynthesis were affected by ID. In addition, during the late response, several proteins related to the ubiquitin-proteasome system and autophagy were upregulated. We also explored the proteomic changes during a recovery period after 12 h of ID. Several proteins recovered their steady-state levels, but some others, such as cytochromes, did not recover during the time tested. Additionally, we showed that autophagy is active during ID, and some of the degraded proteins during ID can be rescued using KO strains for several key autophagy genes. Our results highlight the complex proteome changes occurring during ID and recovery. This study constitutes a valuable data set for researchers interested in iron biology, offering a temporal proteomic data set for ID, as well as a compendium the proteomic changes associated with episodes of iron recovery.
Collapse
Affiliation(s)
- Jose Navarrete-Perea
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02155, United States
| | | | - Jonathan Van Vranken
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02155, United States
| | - Marta Isasa
- C4 Therapeutics, Cambridge, Massachusetts 02142, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02155, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02155, United States
| |
Collapse
|
25
|
Pujol-Carrion N, Pavón-Vergés M, Arroyo J, de la Torre-Ruiz MA. The MAPK Slt2/Mpk1 plays a role in iron homeostasis through direct regulation of the transcription factor Aft1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118974. [PMID: 33549702 DOI: 10.1016/j.bbamcr.2021.118974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 01/18/2023]
Abstract
Iron is an essential element for life. Cells develop mechanisms to tightly regulate its homeostasis, in order to avoid abnormal accumulation and the consequent cell toxicity. In budding yeast, the high affinity iron regulon is under the control of the transcription factor Aft1. We present evidence demonstrating that the MAPK Slt2 of the cell wall integrity pathway (CWI), phosphorylates and negatively regulates Aft1 activity upon the iron depletion signal, both in fermentative or respiratory conditions. The lack of Slt2 provokes Aft1 dysfunction leading to a shorter chronological life span. The signal of iron scarcity is not transmitted to Slt2 through other signalling pathways such as TOR1, PKA, SNF1 or TOR2/YPK1. The observation that Slt2 physically binds Aft1 rather suggests a direct regulation.
Collapse
Affiliation(s)
- Nuria Pujol-Carrion
- Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain
| | - Mónica Pavón-Vergés
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| | - Javier Arroyo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University Complutense de Madrid, IRYCIS, 28040 Madrid, Spain
| | - Maria Angeles de la Torre-Ruiz
- Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain.
| |
Collapse
|
26
|
Barba-Aliaga M, Villarroel-Vicente C, Stanciu A, Corman A, Martínez-Pastor MT, Alepuz P. Yeast Translation Elongation Factor eIF5A Expression Is Regulated by Nutrient Availability through Different Signalling Pathways. Int J Mol Sci 2020; 22:E219. [PMID: 33379337 PMCID: PMC7794953 DOI: 10.3390/ijms22010219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Translation elongation factor eIF5A binds to ribosomes to promote peptide bonds between problematic amino acids for the reaction like prolines. eIF5A is highly conserved and essential in eukaryotes, which usually contain two similar but differentially expressed paralogue genes. The human eIF5A-1 isoform is abundant and implicated in some cancer types; the eIF5A-2 isoform is absent in most cells but becomes overexpressed in many metastatic cancers. Several reports have connected eIF5A and mitochondria because it co-purifies with the organelle or its inhibition reduces respiration and mitochondrial enzyme levels. However, the mechanisms of eIF5A mitochondrial function, and whether eIF5A expression is regulated by the mitochondrial metabolism, are unknown. We analysed the expression of yeast eIF5A isoforms Tif51A and Tif51B under several metabolic conditions and in mutants. The depletion of Tif51A, but not Tif51B, compromised yeast growth under respiration and reduced oxygen consumption. Tif51A expression followed dual positive regulation: by high glucose through TORC1 signalling, like other translation factors, to promote growth and by low glucose or non-fermentative carbon sources through Snf1 and heme-dependent transcription factor Hap1 to promote respiration. Upon iron depletion, Tif51A was down-regulated and Tif51B up-regulated. Both were Hap1-dependent. Our results demonstrate eIF5A expression regulation by cellular metabolic status.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Carlos Villarroel-Vicente
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Alice Stanciu
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Alba Corman
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Paula Alepuz
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| |
Collapse
|
27
|
Sorribes-Dauden R, Peris D, Martínez-Pastor MT, Puig S. Structure and function of the vacuolar Ccc1/VIT1 family of iron transporters and its regulation in fungi. Comput Struct Biotechnol J 2020; 18:3712-3722. [PMID: 33304466 PMCID: PMC7714665 DOI: 10.1016/j.csbj.2020.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential micronutrient for most living beings since it participates as a redox active cofactor in many biological processes including cellular respiration, lipid biosynthesis, DNA replication and repair, and ribosome biogenesis and recycling. However, when present in excess, iron can participate in Fenton reactions and generate reactive oxygen species that damage cells at the level of proteins, lipids and nucleic acids. Organisms have developed different molecular strategies to protect themselves against the harmful effects of high concentrations of iron. In the case of fungi and plants, detoxification mainly occurs by importing cytosolic iron into the vacuole through the Ccc1/VIT1 iron transporter. New sequenced genomes and bioinformatic tools are facilitating the functional characterization, evolution and ecological relevance of metabolic pathways and homeostatic networks across the Tree of Life. Sequence analysis shows that Ccc1/VIT1 homologs are widely distributed among organisms with the exception of animals. The recent elucidation of the crystal structure of a Ccc1/VIT1 plant ortholog has enabled the identification of both conserved and species-specific motifs required for its metal transport mechanism. Moreover, recent studies in the yeast Saccharomyces cerevisiae have also revealed that multiple transcription factors including Yap5 and Msn2/Msn4 contribute to the expression of CCC1 in high-iron conditions. Interestingly, Malaysian S. cerevisiae strains express a partially functional Ccc1 protein that renders them sensitive to iron. Different regulatory mechanisms have been described for non-Saccharomycetaceae Ccc1 homologs. The characterization of Ccc1/VIT1 proteins is of high interest in the development of biofortified crops and the protection against microbial-derived diseases.
Collapse
Key Words
- BLOSUM, BLOcks SUbstitution Matrix
- CBC, CCAAT-binding core complex
- CRD, Cysteine-rich domain
- CS, Consistency score
- Ccc1
- Cg, Candida glabrata
- Eg, Eucalyptus grandis
- Fe, Iron
- Fungi
- H, Helix
- Hap, Heme activator protein
- ISC, Iron-sulfur luster
- Iron detoxification
- Iron regulation
- Iron transport
- MAFFT, Multiple Alignment using Fast Fourier Transform
- MBD, Metal-binding domain
- ML, Maximum-likelihood
- NRAMP, Natural Resistance-Associated Macrophage Protein
- Plants
- ROS, Reactive oxygen species
- TMD, Transmembrane domain
- VIT, Vacuolar iron transporter
- VIT1
- VTL, Vacuolar iron transporter-like
- Vacuole
- YRE, Yap response elements
- Yeast
- bZIP, basic leucine-zipper
Collapse
Affiliation(s)
- Raquel Sorribes-Dauden
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - David Peris
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| |
Collapse
|
28
|
Ramos-Alonso L, Romero AM, Martínez-Pastor MT, Puig S. Iron Regulatory Mechanisms in Saccharomyces cerevisiae. Front Microbiol 2020; 11:582830. [PMID: 33013818 PMCID: PMC7509046 DOI: 10.3389/fmicb.2020.582830] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in many cellular processes. However, excess iron can damage cells since it promotes the generation of reactive oxygen species. The budding yeast Saccharomyces cerevisiae has been used as a model organism to study the adaptation of eukaryotic cells to changes in iron availability. Upon iron deficiency, yeast utilizes two transcription factors, Aft1 and Aft2, to activate the expression of a set of genes known as the iron regulon, which are implicated in iron uptake, recycling and mobilization. Moreover, Aft1 and Aft2 activate the expression of Cth2, an mRNA-binding protein that limits the expression of genes encoding for iron-containing proteins or that participate in iron-using processes. Cth2 contributes to prioritize iron utilization in particular pathways over other highly iron-consuming and non-essential processes including mitochondrial respiration. Recent studies have revealed that iron deficiency also alters many other metabolic routes including amino acid and lipid synthesis, the mitochondrial retrograde response, transcription, translation and deoxyribonucleotide synthesis; and activates the DNA damage and general stress responses. At high iron levels, the yeast Yap5, Msn2, and Msn4 transcription factors activate the expression of a vacuolar iron importer called Ccc1, which is the most important high-iron protecting factor devoted to detoxify excess cytosolic iron that is stored into the vacuole for its mobilization upon scarcity. The complete sequencing and annotation of many yeast genomes is starting to unveil the diversity and evolution of the iron homeostasis network in this species.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
29
|
Regulation of Ergosterol Biosynthesis in Saccharomyces cerevisiae. Genes (Basel) 2020; 11:genes11070795. [PMID: 32679672 PMCID: PMC7397035 DOI: 10.3390/genes11070795] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Ergosterol is an essential component of fungal cell membranes that determines the fluidity, permeability and activity of membrane-associated proteins. Ergosterol biosynthesis is a complex and highly energy-consuming pathway that involves the participation of many enzymes. Deficiencies in sterol biosynthesis cause pleiotropic defects that limit cellular proliferation and adaptation to stress. Thereby, fungal ergosterol levels are tightly controlled by the bioavailability of particular metabolites (e.g., sterols, oxygen and iron) and environmental conditions. The regulation of ergosterol synthesis is achieved by overlapping mechanisms that include transcriptional expression, feedback inhibition of enzymes and changes in their subcellular localization. In the budding yeast Saccharomyces cerevisiae, the sterol regulatory element (SRE)-binding proteins Upc2 and Ecm22, the heme-binding protein Hap1 and the repressor factors Rox1 and Mot3 coordinate ergosterol biosynthesis (ERG) gene expression. Here, we summarize the sterol biosynthesis, transport and detoxification systems of S. cerevisiae, as well as its adaptive response to sterol depletion, low oxygen, hyperosmotic stress and iron deficiency. Because of the large number of ERG genes and the crosstalk between different environmental signals and pathways, many aspects of ergosterol regulation are still unknown. The study of sterol metabolism and its regulation is highly relevant due to its wide applications in antifungal treatments, as well as in food and pharmaceutical industries.
Collapse
|
30
|
Martínez-Pastor MT, Puig S. Adaptation to iron deficiency in human pathogenic fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118797. [PMID: 32663505 DOI: 10.1016/j.bbamcr.2020.118797] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/13/2020] [Accepted: 07/05/2020] [Indexed: 02/08/2023]
Abstract
Iron is an essential micronutrient for virtually all eukaryotic organisms and plays a central role during microbial infections. Invasive fungal diseases are associated with strikingly high rates of mortality, but their impact on human health is usually underestimated. Upon a fungal infection, hosts restrict iron availability in order to limit the growth and virulence of the pathogen. Here, we use two model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, to delve into the response to iron deficiency of human fungal pathogens, such as Candida glabrata, Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. Fungi possess common and species-specific mechanisms to acquire iron and to control the response to iron limitation. Upon iron scarcity, fungi activate a wide range of elegant strategies to capture and import exogenous iron, mobilize iron from intracellular stores, and modulate their metabolism to economize and prioritize iron utilization. Hence, iron homeostasis genes represent remarkable virulence factors that can be used as targets for the development of novel antifungal treatments.
Collapse
Affiliation(s)
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
31
|
Perea-García A, Miró P, Jiménez-Lorenzo R, Martínez-Pastor MT, Puig S. Sequential recruitment of the mRNA decay machinery to the iron-regulated protein Cth2 in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194595. [PMID: 32565401 DOI: 10.1016/j.bbagrm.2020.194595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 01/24/2023]
Abstract
Post-transcriptional factors importantly contribute to the rapid and coordinated expression of the multiple genes required for the adaptation of living organisms to environmental stresses. In the model eukaryote Saccharomyces cerevisiae, a conserved mRNA-binding protein, known as Cth2, modulates the metabolic response to iron deficiency. Cth2 is a tandem zinc-finger (TZF)-containing protein that co-transcriptionally binds to adenine/uracil-rich elements (ARE) present in the 3'-untranslated region of iron-related mRNAs to promote their turnover. The nuclear binding of Cth2 to mRNAs via its TZFs is indispensable for its export to the cytoplasm. Although Cth2 nucleocytoplasmic transport is essential for its regulatory function, little is known about the recruitment of the mRNA degradation machinery. Here, we investigate the sequential assembly of mRNA decay factors during Cth2 shuttling. By using an enzymatic in vivo proximity assay called M-track, we show that Cth2 associates to the RNA helicase Dhh1 and the deadenylase Pop2/Caf1 before binding to its target mRNAs. The recruitment of Dhh1 to Cth2 requires the integrity of the Ccr4-Pop2 deadenylase complex, whereas the interaction between Cth2 and Pop2 needs Ccr4 but not Dhh1. M-track assays also show that Cth2-binding to ARE-containing mRNAs is necessary for the interaction between Cth2 and the exonuclease Xrn1. The importance of these interactions is highlighted by the specific growth defect in iron-deficient conditions displayed by cells lacking Dhh1, Pop2, Ccr4 or Xrn1. These results exemplify the stepwise process of assembly of different mRNA decay factors onto an mRNA-binding protein during the mechanism of post-transcriptional regulation.
Collapse
Affiliation(s)
- Ana Perea-García
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna (Valencia), Spain
| | - Pilar Miró
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna (Valencia), Spain
| | - Rafael Jiménez-Lorenzo
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna (Valencia), Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna (Valencia), Spain.
| |
Collapse
|
32
|
Lindahl PA. A comprehensive mechanistic model of iron metabolism in Saccharomyces cerevisiae. Metallomics 2019; 11:1779-1799. [PMID: 31531508 DOI: 10.1039/c9mt00199a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ironome of budding yeast (circa 2019) consists of approximately 139 proteins and 5 nonproteinaceous species. These proteins were grouped according to location in the cell, type of iron center(s), and cellular function. The resulting 27 groups were used, along with an additional 13 nonprotein components, to develop a mesoscale mechanistic model that describes the import, trafficking, metallation, and regulation of iron within growing yeast cells. The model was designed to be simultaneously mutually autocatalytic and mutually autoinhibitory - a property called autocatinhibitory that should be most realistic for simulating cellular biochemical processes. The model was assessed at the systems' level. General conclusions are presented, including a new perspective on understanding regulatory mechanisms in cellular systems. Some unsettled issues are described. This model, once fully developed, has the potential to mimic the phenotype (at a coarse-grain level) of all iron-related genetic mutations in this simple and well-studied eukaryote.
Collapse
Affiliation(s)
- Paul A Lindahl
- Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3255, USA.
| |
Collapse
|
33
|
Romero AM, Ramos-Alonso L, Montellá-Manuel S, García-Martínez J, de la Torre-Ruiz MÁ, Pérez-Ortín JE, Martínez-Pastor MT, Puig S. A genome-wide transcriptional study reveals that iron deficiency inhibits the yeast TORC1 pathway. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194414. [PMID: 31394264 DOI: 10.1016/j.bbagrm.2019.194414] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Iron is an essential micronutrient that participates as a cofactor in a broad range of metabolic processes including mitochondrial respiration, DNA replication, protein translation and lipid biosynthesis. Adaptation to iron deficiency requires the global reorganization of cellular metabolism directed to optimize iron utilization. The budding yeast Saccharomyces cerevisiae has been widely used to characterize the responses of eukaryotic microorganisms to iron depletion. In this report, we used a genomic approach to investigate the contribution of transcription rates to the modulation of mRNA levels during adaptation of yeast cells to iron starvation. We reveal that a decrease in the activity of all RNA polymerases contributes to the down-regulation of many mRNAs, tRNAs and rRNAs. Opposite to the general expression pattern, many genes including components of the iron deficiency response, the mitochondrial retrograde pathway and the general stress response display a remarkable increase in both transcription rates and mRNA levels upon iron limitation, whereas genes encoding ribosomal proteins or implicated in ribosome biogenesis exhibit a pronounced fall. This expression profile is consistent with an activation of the environmental stress response. The phosphorylation stage of multiple regulatory factors strongly suggests that the conserved nutrient signaling pathway TORC1 is inhibited during the progress of iron deficiency. These results suggest an intricate crosstalk between iron metabolism and the TORC1 pathway that should be considered in many disorders.
Collapse
Affiliation(s)
- Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), E-46980 Paterna, Valencia, Spain
| | - Lucía Ramos-Alonso
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), E-46980 Paterna, Valencia, Spain
| | - Sandra Montellá-Manuel
- Department of Basic Medical Sciences, IRB-Lleida, University of Lleida, E-25198 Lleida, Spain
| | - José García-Martínez
- Departamento de Genética, Universitat de València, E-46100 Burjassot, Valencia, Spain; ERI Biotecmed, Universitat de València, E-46100 Burjassot, Valencia, Spain
| | | | - José Enrique Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular, Universitat de València, E-46100 Burjassot, Valencia, Spain; ERI Biotecmed, Universitat de València, E-46100 Burjassot, Valencia, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), E-46980 Paterna, Valencia, Spain.
| |
Collapse
|
34
|
Ramos-Alonso L, Wittmaack N, Mulet I, Martínez-Garay CA, Fita-Torró J, Lozano MJ, Romero AM, García-Ferris C, Martínez-Pastor MT, Puig S. Molecular strategies to increase yeast iron accumulation and resistance. Metallomics 2019; 10:1245-1256. [PMID: 30137082 DOI: 10.1039/c8mt00124c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
All eukaryotic organisms rely on iron as an essential micronutrient for life because it participates as a redox-active cofactor in multiple biological processes. However, excess iron can generate reactive oxygen species that damage cellular macromolecules. The low solubility of ferric iron under physiological conditions increases the prevalence of iron deficiency anemia. A common strategy to treat iron deficiency consists of dietary iron supplementation. The baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, but also as a feed supplement. In response to iron deficiency, the yeast Aft1 transcription factor activates cellular iron acquisition. However, when constitutively active, Aft1 inhibits growth probably due to iron toxicity. In this report, we have studied the consequences of using hyperactive AFT1 alleles, including AFT1-1UP, to increase yeast iron accumulation. We first characterized the iron sensitivity of cells expressing different constitutively active AFT1 alleles. We rescued the high iron sensitivity conferred by the AFT1 alleles by deleting the sphingolipid signaling kinase YPK1. We observed that the deletion of YPK1 exerts different effects on iron accumulation depending on the AFT1 allele and the environmental iron. Moreover, we determined that the impairment of the high-affinity iron transport system partially rescues the high iron toxicity of AFT1-1UP-expressing cells. Finally, we observed that AFT1-1UP inhibits oxygen consumption through activation of the RNA-binding protein Cth2. Deletion of CTH2 partially rescues the AFT1-1UP negative respiratory effect. Collectively, these results contribute to understand how the Aft1 transcription factor functions and the multiple consequences derived from its constitutive activation.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Devaux F, Thiébaut A. The regulation of iron homeostasis in the fungal human pathogen Candida glabrata. MICROBIOLOGY-SGM 2019; 165:1041-1060. [PMID: 31050635 DOI: 10.1099/mic.0.000807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is an essential element to most microorganisms, yet an excess of iron is toxic. Hence, living cells have to maintain a tight balance between iron uptake and iron consumption and storage. The control of intracellular iron concentrations is particularly challenging for pathogens because mammalian organisms have evolved sophisticated high-affinity systems to sequester iron from microbes and because iron availability fluctuates among the different host niches. In this review, we present the current understanding of iron homeostasis and its regulation in the fungal pathogen Candida glabrata. This yeast is an emerging pathogen which has become the second leading cause of candidemia, a life-threatening invasive mycosis. C. glabrata is relatively poorly studied compared to the closely related model yeast Saccharomyces cerevisiae or to the pathogenic yeast Candida albicans. Still, several research groups have started to identify the actors of C. glabrata iron homeostasis and its transcriptional and post-transcriptional regulation. These studies have revealed interesting particularities of C. glabrata and have shed new light on the evolution of fungal iron homeostasis.
Collapse
Affiliation(s)
- Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Antonin Thiébaut
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| |
Collapse
|
36
|
Dziegala M, Josiak K, Kasztura M, Kobak K, von Haehling S, Banasiak W, Anker SD, Ponikowski P, Jankowska E. Iron deficiency as energetic insult to skeletal muscle in chronic diseases. J Cachexia Sarcopenia Muscle 2018; 9:802-815. [PMID: 30178922 PMCID: PMC6204587 DOI: 10.1002/jcsm.12314] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/05/2018] [Accepted: 04/22/2018] [Indexed: 12/19/2022] Open
Abstract
Specific skeletal myopathy constitutes a common feature of heart failure, chronic obstructive pulmonary disease, and type 2 diabetes mellitus, where it can be characterized by the loss of skeletal muscle oxidative capacity. There is evidence from in vitro and animal studies that iron deficiency affects skeletal muscle functioning mainly in the context of its energetics by limiting oxidative metabolism in favour of glycolysis and by alterations in both carbohydrate and fat catabolic processing. In this review, we depict the possible molecular pathomechanisms of skeletal muscle energetic impairment and postulate iron deficiency as an important factor causally linked to loss of muscle oxidative capacity that contributes to skeletal myopathy seen in patients with heart failure, chronic obstructive pulmonary disease, and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Magdalena Dziegala
- Laboratory for Applied Research on Cardiovascular System, Department of Heart DiseasesWroclaw Medical University50‐981WroclawPoland
| | - Krystian Josiak
- Centre for Heart DiseasesMilitary Hospital50‐981WroclawPoland
- Department of Heart DiseasesWroclaw Medical University50‐367WroclawPoland
| | - Monika Kasztura
- Laboratory for Applied Research on Cardiovascular System, Department of Heart DiseasesWroclaw Medical University50‐981WroclawPoland
| | - Kamil Kobak
- Laboratory for Applied Research on Cardiovascular System, Department of Heart DiseasesWroclaw Medical University50‐981WroclawPoland
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity Medicine Göttingen (UMG)37075GöttingenGermany
| | | | - Stefan D. Anker
- Department of Cardiology and PneumologyUniversity Medicine Göttingen (UMG)37075GöttingenGermany
- Division of Cardiology and MetabolismCharité Universitätsmedizin10117BerlinGermany
- Department of Cardiology (CVK)Charité Universitätsmedizin10117BerlinGermany
- Berlin‐Brandenburg Center for Regenerative Therapies (BCRT)Charité Universitätsmedizin10117BerlinGermany
- German Centre for Cardiovascular Research (DZHK) partner site BerlinCharité Universitätsmedizin10117BerlinGermany
| | - Piotr Ponikowski
- Centre for Heart DiseasesMilitary Hospital50‐981WroclawPoland
- Department of Heart DiseasesWroclaw Medical University50‐367WroclawPoland
| | - Ewa Jankowska
- Laboratory for Applied Research on Cardiovascular System, Department of Heart DiseasesWroclaw Medical University50‐981WroclawPoland
- Centre for Heart DiseasesMilitary Hospital50‐981WroclawPoland
| |
Collapse
|
37
|
Phosphorylation and Proteasome Recognition of the mRNA-Binding Protein Cth2 Facilitates Yeast Adaptation to Iron Deficiency. mBio 2018; 9:mBio.01694-18. [PMID: 30228242 PMCID: PMC6143738 DOI: 10.1128/mbio.01694-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Iron is a vital element for many metabolic pathways, including the synthesis of DNA and proteins, and the generation of energy via oxidative phosphorylation. Therefore, living organisms have developed tightly controlled mechanisms to properly distribute iron, since imbalances lead to nutritional deficiencies, multiple diseases, and vulnerability against pathogens. Saccharomyces cerevisiae Cth2 is a conserved mRNA-binding protein that coordinates a global reprogramming of iron metabolism in response to iron deficiency in order to optimize its utilization. Here we report that the phosphorylation of Cth2 at specific serine residues is essential to regulate the stability of the protein and adaptation to iron depletion. We identify the kinase and ubiquitination machinery implicated in this process to establish a posttranscriptional regulatory model. These results and recent findings for both mammals and plants reinforce the privileged position of E3 ubiquitin ligases and phosphorylation events in the regulation of eukaryotic iron homeostasis. Iron is an indispensable micronutrient for all eukaryotic organisms due to its participation as a redox cofactor in many metabolic pathways. Iron imbalance leads to the most frequent human nutritional deficiency in the world. Adaptation to iron limitation requires a global reorganization of the cellular metabolism directed to prioritize iron utilization for essential processes. In response to iron scarcity, the conserved Saccharomyces cerevisiae mRNA-binding protein Cth2, which belongs to the tristetraprolin family of tandem zinc finger proteins, coordinates a global remodeling of the cellular metabolism by promoting the degradation of multiple mRNAs encoding highly iron-consuming proteins. In this work, we identify a critical mechanism for the degradation of Cth2 protein during the adaptation to iron deficiency. Phosphorylation of a patch of Cth2 serine residues within its amino-terminal region facilitates recognition by the SCFGrr1 ubiquitin ligase complex, accelerating Cth2 turnover by the proteasome. When Cth2 degradation is impaired by either mutagenesis of the Cth2 serine residues or deletion of GRR1, the levels of Cth2 rise and abrogate growth in iron-depleted conditions. Finally, we uncover that the casein kinase Hrr25 phosphorylates and promotes Cth2 destabilization. These results reveal a sophisticated posttranslational regulatory pathway necessary for the adaptation to iron depletion.
Collapse
|
38
|
Martins TS, Costa V, Pereira C. Signaling pathways governing iron homeostasis in budding yeast. Mol Microbiol 2018; 109:422-432. [DOI: 10.1111/mmi.14009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Telma S. Martins
- I3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - Vítor Costa
- I3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto; Porto Portugal
| | - Clara Pereira
- I3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto; Porto Portugal
| |
Collapse
|
39
|
Ramos-Alonso L, Romero AM, Polaina J, Puig S, Martínez-Pastor MT. Dissecting mRNA decay and translation inhibition during iron deficiency. Curr Genet 2018; 65:139-145. [PMID: 30128746 DOI: 10.1007/s00294-018-0880-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
Abstract
Iron participates as a vital cofactor in multiple metabolic pathways. Despite its abundance, iron bioavailability is highly restricted in aerobic and alkaline environments. Therefore, living organisms have evolved multiple adaptive mechanisms to respond to iron scarcity. These strategies include a global remodeling of iron metabolism directed to optimize iron utilization. In the baker's yeast Saccharomyces cerevisiae, this metabolic reorganization is accomplished to a large extent by an mRNA-binding protein called Cth2. Yeast Cth2 belongs to a conserved family of tandem zinc finger containing proteins that specifically bind to transcripts with AU-rich elements and promote their turnover. A recent study has revealed that Cth2 also inhibits the translation of its target mRNAs (Ramos-Alonso et al., PLoS Genet 14:e1007476, https://doi.org/10.1371/journal.pgen.1007476 , 2018). Interestingly, the mammalian Cth2 ortholog known as tristetraprolin (aka TTP/TIS11/ZFP36), which is also implicated in controlling iron metabolism, promotes the decay and prevents the translation of its regulated transcripts. These observations open the possibility to study the relative contribution of altering mRNA stability and translation to the physiological adaptation to iron deficiency, the function played by the different domains within the mRNA-binding protein, and the potential factors implicated in coordinating both post-transcriptional events.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), C/ Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), C/ Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Julio Polaina
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), C/ Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), C/ Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Ave. Doctor Moliner 50, Burjassot, 46100, Valencia, Spain.
| |
Collapse
|
40
|
Sawicki KT, Chang HC, Shapiro JS, Bayeva M, De Jesus A, Finck BN, Wertheim JA, Blackshear PJ, Ardehali H. Hepatic tristetraprolin promotes insulin resistance through RNA destabilization of FGF21. JCI Insight 2018; 3:95948. [PMID: 29997282 DOI: 10.1172/jci.insight.95948] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
The role of posttranscriptional metabolic gene regulatory programs in diabetes is not well understood. Here, we show that the RNA-binding protein tristetraprolin (TTP) is reduced in the livers of diabetic mice and humans and is transcriptionally induced in response to insulin treatment in murine livers in vitro and in vivo. Liver-specific Ttp-KO (lsTtp-KO) mice challenged with high-fat diet (HFD) have improved glucose tolerance and peripheral insulin sensitivity compared with littermate controls. Analysis of secreted hepatic factors demonstrated that fibroblast growth factor 21 (FGF21) is posttranscriptionally repressed by TTP. Consistent with increased FGF21, lsTtp-KO mice fed HFD have increased brown fat activation, peripheral tissue glucose uptake, and adiponectin production compared with littermate controls. Downregulation of hepatic Fgf21 via an adeno-associated virus-driven shRNA in mice fed HFD reverses the insulin-sensitizing effects of hepatic Ttp deletion. Thus, hepatic TTP posttranscriptionally regulates systemic insulin sensitivity in diabetes through liver-derived FGF21.
Collapse
Affiliation(s)
- Konrad T Sawicki
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, Illinois, USA
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, Illinois, USA
| | - Jason S Shapiro
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, Illinois, USA
| | - Marina Bayeva
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, Illinois, USA
| | - Adam De Jesus
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, Illinois, USA
| | - Brian N Finck
- Geriatrics and Nutritional Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jason A Wertheim
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Perry J Blackshear
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
41
|
Puig S, Ramos-Alonso L, Romero AM, Martínez-Pastor MT. The elemental role of iron in DNA synthesis and repair. Metallomics 2018; 9:1483-1500. [PMID: 28879348 DOI: 10.1039/c7mt00116a] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Iron is an essential redox element that functions as a cofactor in many metabolic pathways. Critical enzymes in DNA metabolism, including multiple DNA repair enzymes (helicases, nucleases, glycosylases, demethylases) and ribonucleotide reductase, use iron as an indispensable cofactor to function. Recent striking results have revealed that the catalytic subunit of DNA polymerases also contains conserved cysteine-rich motifs that bind iron-sulfur (Fe/S) clusters that are essential for the formation of stable and active complexes. In line with this, mitochondrial and cytoplasmic defects in Fe/S cluster biogenesis and insertion into the nuclear iron-requiring enzymes involved in DNA synthesis and repair lead to DNA damage and genome instability. Recent studies have shown that yeast cells possess multi-layered mechanisms that regulate the ribonucleotide reductase function in response to fluctuations in iron bioavailability to maintain optimal deoxyribonucleotide concentrations. Finally, a fascinating DNA charge transport model indicates how the redox active Fe/S centers present in DNA repair machinery components are critical for detecting and repairing DNA mismatches along the genome by long-range charge transfers through double-stranded DNA. These unexpected connections between iron and DNA replication and repair have to be considered to properly understand cancer, aging and other DNA-related diseases.
Collapse
Affiliation(s)
- Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Ave. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | | | | | | |
Collapse
|
42
|
mRNA-binding protein tristetraprolin is essential for cardiac response to iron deficiency by regulating mitochondrial function. Proc Natl Acad Sci U S A 2018; 115:E6291-E6300. [PMID: 29915044 DOI: 10.1073/pnas.1804701115] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells respond to iron deficiency by activating iron-regulatory proteins to increase cellular iron uptake and availability. However, it is not clear how cells adapt to conditions when cellular iron uptake does not fully match iron demand. Here, we show that the mRNA-binding protein tristetraprolin (TTP) is induced by iron deficiency and degrades mRNAs of mitochondrial Fe/S-cluster-containing proteins, specifically Ndufs1 in complex I and Uqcrfs1 in complex III, to match the decrease in Fe/S-cluster availability. In the absence of TTP, Uqcrfs1 levels are not decreased in iron deficiency, resulting in nonfunctional complex III, electron leakage, and oxidative damage. Mice with deletion of Ttp display cardiac dysfunction with iron deficiency, demonstrating that TTP is necessary for maintaining cardiac function in the setting of low cellular iron. Altogether, our results describe a pathway that is activated in iron deficiency to regulate mitochondrial function to match the availability of Fe/S clusters.
Collapse
|
43
|
Ramos-Alonso L, Romero AM, Soler MÀ, Perea-García A, Alepuz P, Puig S, Martínez-Pastor MT. Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency. PLoS Genet 2018; 14:e1007476. [PMID: 29912874 PMCID: PMC6023232 DOI: 10.1371/journal.pgen.1007476] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/28/2018] [Accepted: 06/07/2018] [Indexed: 11/29/2022] Open
Abstract
In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs that contain AU-rich elements (AREs). Here, we demonstrate that Cth2 also functions as a translational repressor of its target mRNAs. By complementary approaches, we demonstrate that Cth2 protein inhibits the translation of SDH4, which encodes a subunit of succinate dehydrogenase, and CTH2 mRNAs in response to iron depletion. Both the AREs within SDH4 and CTH2 transcripts, and the Cth2 TZF are essential for translational repression. We show that the role played by Cth2 as a negative translational regulator extends to other mRNA targets such as WTM1, CCP1 and HEM15. A structure-function analysis of Cth2 protein suggests that the Cth2 amino-terminal domain (NTD) is important for both mRNA turnover and translation inhibition, while its carboxy-terminal domain (CTD) only participates in the regulation of translation, but is dispensable for mRNA degradation. Finally, we demonstrate that the Cth2 CTD is physiologically relevant for adaptation to iron deficiency. Iron is essential for eukaryotes because it is required for many fundamental processes such as DNA replication, protein translation or respiration, but it is very insoluble and can, therefore, easily go scarce. For this reason, eukaryotic cells have developed adaptive responses to iron deficiency. Under iron limitation conditions, the yeast Saccharomyces cerevisiae induces the expression of Cth2, a protein with tandem zinc fingers that binds to adenine and uracil-rich sequences in the 3’-UTR of specific mRNAs related to iron metabolism, promoting their degradation. Here we show that Cth2 inhibits the translation of ARE-containing mRNAs, including SDH4, WTM1, HEM15 and CCP1, which encode proteins that contain iron or participate in iron-dependent pathways, and CTH2 itself, which is subjected to an autoregulatory loop that controls its expression. We also dissected different domains of Cth2 that are differentially involved in mRNA decay and translational inhibition. The involvement of Cth2 in translational control reinforces the importance of this ARE-binding protein as a post-transcriptional regulator of the iron response in yeast. By acting at different steps in the life of specific mRNA targets, Cth2 action ensures yeast cells a proper distribution of iron by optimizing its utilization in essential processes.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Maria Àngel Soler
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Valencia, Spain
| | - Ana Perea-García
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Valencia, Spain
- ERI Biotecmed, Universitat de València, Burjassot, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
- * E-mail: (MTMP); (SP)
| | | |
Collapse
|
44
|
Gaspar‐Cordeiro A, Marques Caetano S, Amaral C, Rodrigues‐Pousada C, Pimentel C. Ace1 prevents intracellular copper accumulation by regulating Fet3 expression and thereby restricting Aft1 activity. FEBS J 2018; 285:1861-1872. [DOI: 10.1111/febs.14450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/16/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Ana Gaspar‐Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Oeiras Portugal
| | - Soraia Marques Caetano
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Oeiras Portugal
| | - Catarina Amaral
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Oeiras Portugal
| | | | - Catarina Pimentel
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Oeiras Portugal
| |
Collapse
|
45
|
Alsina D, Ros J, Tamarit J. Nitric oxide prevents Aft1 activation and metabolic remodeling in frataxin-deficient yeast. Redox Biol 2018; 14:131-141. [PMID: 28918000 PMCID: PMC5602528 DOI: 10.1016/j.redox.2017.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/25/2017] [Accepted: 09/02/2017] [Indexed: 11/30/2022] Open
Abstract
Yeast frataxin homolog (Yfh1) is the orthologue of human frataxin, a mitochondrial protein whose deficiency causes Friedreich Ataxia. Yfh1 deficiency activates Aft1, a transcription factor governing iron homeostasis in yeast cells. Although the mechanisms causing this activation are not completely understood, it is assumed that it may be caused by iron-sulfur deficiency. However, several evidences indicate that activation of Aft1 occurs in the absence of iron-sulfur deficiency. Besides, Yfh1 deficiency also leads to metabolic remodeling (mainly consisting in a shift from respiratory to fermentative metabolism) and to induction of Yhb1, a nitric oxide (NO) detoxifying enzyme. In this work, we have used conditional Yfh1 mutant yeast strains to investigate the relationship between NO, Aft1 activation and metabolic remodeling. We have observed that NO prevents Aft1 activation caused by Yfh1 deficiency. This phenomenon is not observed when Aft1 is activated by iron scarcity or impaired iron-sulfur biogenesis. In addition, analyzing key metabolic proteins by a targeted proteomics approach, we have observed that NO prevents the metabolic remodeling caused by Yfh1 deficiency. We conclude that Aft1 activation in Yfh1-deficient yeasts is not caused by iron-sulfur deficiency or iron scarcity. Our hypothesis is that Yfh1 deficiency leads to the presence of anomalous iron species that can compromise iron bioavailability and activate a signaling cascade that results in Aft1 activation and metabolic remodeling.
Collapse
Affiliation(s)
- David Alsina
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Lleida, Spain
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Lleida, Spain
| | - Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Lleida, Spain.
| |
Collapse
|
46
|
Benchouaia M, Ripoche H, Sissoko M, Thiébaut A, Merhej J, Delaveau T, Fasseu L, Benaissa S, Lorieux G, Jourdren L, Le Crom S, Lelandais G, Corel E, Devaux F. Comparative Transcriptomics Highlights New Features of the Iron Starvation Response in the Human Pathogen Candida glabrata. Front Microbiol 2018; 9:2689. [PMID: 30505294 PMCID: PMC6250833 DOI: 10.3389/fmicb.2018.02689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
In this work, we used comparative transcriptomics to identify regulatory outliers (ROs) in the human pathogen Candida glabrata. ROs are genes that have very different expression patterns compared to their orthologs in other species. From comparative transcriptome analyses of the response of eight yeast species to toxic doses of selenite, a pleiotropic stress inducer, we identified 38 ROs in C. glabrata. Using transcriptome analyses of C. glabrata response to five different stresses, we pointed out five ROs which were more particularly responsive to iron starvation, a process which is very important for C. glabrata virulence. Global chromatin Immunoprecipitation and gene profiling analyses showed that four of these genes are actually new targets of the iron starvation responsive Aft2 transcription factor in C. glabrata. Two of them (HBS1 and DOM34b) are required for C. glabrata optimal growth in iron limited conditions. In S. cerevisiae, the orthologs of these two genes are involved in ribosome rescue by the NO GO decay (NGD) pathway. Hence, our results suggest a specific contribution of NGD co-factors to the C. glabrata adaptation to iron starvation.
Collapse
Affiliation(s)
- Médine Benchouaia
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Hugues Ripoche
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Mariam Sissoko
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Antonin Thiébaut
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Jawad Merhej
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Thierry Delaveau
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Laure Fasseu
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Sabrina Benaissa
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Geneviève Lorieux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Laurent Jourdren
- École Normale Supérieure, PSL Research University, CNRS, Inserm U1024, Institut de Biologie de l’École Normale Supérieure, Plateforme Génomique, Paris, France
| | - Stéphane Le Crom
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Évolution, Paris, France
| | - Gaëlle Lelandais
- UMR 9198, Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, UPSay, Gif-sur-Yvette, France
| | - Eduardo Corel
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Évolution, Paris, France
| | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
- *Correspondence: Frédéric Devaux,
| |
Collapse
|
47
|
Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS Microbiol Rev 2018; 42:4562650. [PMID: 29069482 PMCID: PMC5812535 DOI: 10.1093/femsre/fux050] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the 'nutritional immunity', in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species-focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species-not the least to exploit this knowledge for new antifungal strategies.
Collapse
Affiliation(s)
- Franziska Gerwien
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Volha Skrahina
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Sascha Brunke
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| |
Collapse
|
48
|
Li L, Ward DM. Iron toxicity in yeast: transcriptional regulation of the vacuolar iron importer Ccc1. Curr Genet 2017; 64:413-416. [PMID: 29043483 DOI: 10.1007/s00294-017-0767-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 11/27/2022]
Abstract
All eukaryotes require the transition metal, iron, a redox active element that is an essential cofactor in many metabolic pathways, as well as an oxygen carrier. Iron can also react to generate oxygen radicals such as hydroxyl radicals and superoxide anions, which are highly toxic to cells. Therefore, organisms have developed intricate mechanisms to acquire iron as well as to protect themselves from the toxic effects of excess iron. In fungi and plants, iron is stored in the vacuole as a protective mechanism against iron toxicity. Iron storage in the vacuole is mediated predominantly by the vacuolar metal importer Ccc1 in yeast and the homologous transporter VIT1 in plants. Transcription of yeast CCC1 expression is tightly controlled primarily by the transcription factor Yap5, which sits on the CCC1 promoter and activates transcription through the binding of Fe-S clusters. A second mechanism that regulates CCC1 transcription is through the Snf1 signaling pathway involved in low-glucose sensing. Snf1 activates stress transcription factors Msn2 and Msn4 to mediate CCC1 transcription. Transcriptional regulation by Yap5 and Snf1 are completely independent and provide for a graded response in Ccc1 expression. The identification of multiple independent transcriptional pathways that regulate the levels of Ccc1 under high iron conditions accentuates the importance of protecting cells from the toxic effects of high iron.
Collapse
Affiliation(s)
- Liangtao Li
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, 84132-2501, USA
| | - Diane M Ward
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, 84132-2501, USA.
| |
Collapse
|
49
|
Xue Y, Schmollinger S, Attar N, Campos OA, Vogelauer M, Carey MF, Merchant SS, Kurdistani SK. Endoplasmic reticulum-mitochondria junction is required for iron homeostasis. J Biol Chem 2017. [PMID: 28637866 DOI: 10.1074/jbc.m117.784249] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) is a protein complex that physically tethers the two organelles to each other and creates the physical basis for communication between them. ERMES functions in lipid exchange between the ER and mitochondria, protein import into mitochondria, and maintenance of mitochondrial morphology and genome. Here, we report that ERMES is also required for iron homeostasis. Loss of ERMES components activates an Aft1-dependent iron deficiency response even in iron-replete conditions, leading to accumulation of excess iron inside the cell. This function is independent of known ERMES roles in calcium regulation, phospholipid biosynthesis, or effects on mitochondrial morphology. A mutation in the vacuolar protein sorting 13 (VPS13) gene that rescues the glycolytic phenotype of ERMES mutants suppresses the iron deficiency response and iron accumulation. Our findings reveal that proper communication between the ER and mitochondria is required for appropriate maintenance of cellular iron levels.
Collapse
Affiliation(s)
- Yong Xue
- From the Department of Biological Chemistry.,Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Stefan Schmollinger
- Institute for Genomics and Proteomics, Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095 and
| | - Narsis Attar
- From the Department of Biological Chemistry.,Molecular Biology Institute, and
| | - Oscar A Campos
- From the Department of Biological Chemistry.,Molecular Biology Institute, and
| | | | - Michael F Carey
- From the Department of Biological Chemistry.,Molecular Biology Institute, and
| | - Sabeeha S Merchant
- Institute for Genomics and Proteomics, Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095 and
| | - Siavash K Kurdistani
- From the Department of Biological Chemistry, .,Molecular Biology Institute, and.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, and
| |
Collapse
|
50
|
Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae. World J Microbiol Biotechnol 2017; 33:75. [DOI: 10.1007/s11274-017-2215-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/18/2017] [Indexed: 01/11/2023]
|