1
|
Botticelli L, Micioni Di Bonaventura E, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Bonifazi A, Cifani C, Micioni Di Bonaventura MV. The neuromedin U system: Pharmacological implications for the treatment of obesity and binge eating behavior. Pharmacol Res 2023; 195:106875. [PMID: 37517560 DOI: 10.1016/j.phrs.2023.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
Neuromedin U (NMU) is a bioactive peptide produced in the gut and in the brain, with a role in multiple physiological processes. NMU acts by binding and activating two G protein coupled receptors (GPCR), the NMU receptor 1 (NMU-R1), which is predominantly expressed in the periphery, and the NMU receptor 2 (NMU-R2), mainly expressed in the central nervous system (CNS). In the brain, NMU and NMU-R2 are consistently present in the hypothalamus, commonly recognized as the main "feeding center". Considering its distribution pattern, NMU revealed to be an important neuropeptide involved in the regulation of food intake, with a powerful anorexigenic ability. This has been observed through direct administration of NMU and by studies using genetically modified animals, which revealed an obesity phenotype when the NMU gene is deleted. Thus, the development of NMU analogs or NMU-R2 agonists might represent a promising pharmacological strategy to treat obese individuals. Furthermore, NMU has been demonstrated to influence the non-homeostatic aspect of food intake, playing a potential role in binge eating behavior. This review aims to discuss and summarize the current literature linking the NMU system with obesity and binge eating behavior, focusing on the influence of NMU on food intake and the neuronal mechanisms underlying its anti-obesity properties. Pharmacological strategies to improve the pharmacokinetic profile of NMU will also be reported.
Collapse
Affiliation(s)
- Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, Camerino 62032, Italy
| | | | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, Camerino 62032, Italy.
| | | |
Collapse
|
2
|
Regulation of feeding and therapeutic application of bioactive peptides. Pharmacol Ther 2022; 239:108187. [DOI: 10.1016/j.pharmthera.2022.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
3
|
Holst JJ, Gasbjerg LS, Rosenkilde MM. The Role of Incretins on Insulin Function and Glucose Homeostasis. Endocrinology 2021; 162:6199910. [PMID: 33782700 PMCID: PMC8168943 DOI: 10.1210/endocr/bqab065] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 12/14/2022]
Abstract
The incretin effect-the amplification of insulin secretion after oral vs intravenous administration of glucose as a mean to improve glucose tolerance-was suspected even before insulin was discovered, and today we know that the effect is due to the secretion of 2 insulinotropic peptides, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). But how important is it? Physiological experiments have shown that, because of the incretin effect, we can ingest increasing amounts of amounts of glucose (carbohydrates) without increasing postprandial glucose excursions, which otherwise might have severe consequences. The mechanism behind this is incretin-stimulated insulin secretion. The availability of antagonists for GLP-1 and most recently also for GIP has made it possible to directly estimate the individual contributions to postprandial insulin secretion of a) glucose itself: 26%; b) GIP: 45%; and c) GLP-1: 29%. Thus, in healthy individuals, GIP is the champion. When the action of both incretins is prevented, glucose tolerance is pathologically impaired. Thus, after 100 years of research, we now know that insulinotropic hormones from the gut are indispensable for normal glucose tolerance. The loss of the incretin effect in type 2 diabetes, therefore, contributes greatly to the impaired postprandial glucose control.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences and the NovoNordisk Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, Copenhagen N, DK-2200 Denmark
- Correspondence: Jens Juul Holst, MD, University of Copenhagen, Department of Biomedical Sciences, The Panum Institute, 3 Blegdamsvej, Copenhagen, DK-2200 Denmark.
| | - Lærke Smidt Gasbjerg
- Department of Biomedical Sciences and the NovoNordisk Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, Copenhagen N, DK-2200 Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences and the NovoNordisk Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, Copenhagen N, DK-2200 Denmark
| |
Collapse
|
4
|
Guimarães M, Pereira SS, Monteiro MP. From Entero-Endocrine Cell Biology to Surgical Interventional Therapies for Type 2 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1307:273-297. [PMID: 32016913 DOI: 10.1007/5584_2020_480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The physiological roles of the enteroendocrine system in relation to energy and glucose homeostasis regulation have been extensively studied in the past few decades. Considerable advances were made that enabled to disclose the potential use of gastro-intestinal (GI) hormones to target obesity and type 2 diabetes (T2D). The recognition of the clinical relevance of these discoveries has led the pharmaceutical industry to design several hormone analogues to either to mitigate physiological defects or target pharmacologically T2D.Amongst several advances, a major breakthrough in the field was the unexpected observation that enteroendocrine system modulation to T2D target could be achieved by surgically induced anatomical rearrangement of the GI tract. These findings resulted from the widespread use of bariatric surgery procedures for obesity treatment, which despite initially devised to induce weight loss by limiting the systemic availably of nutrients, are now well recognized to influence GI hormone dynamics in a manner that is highly dependent on the type of anatomical rearrangement produced.This chapter will focus on enteroendocrine system related mechanisms leading to improved glycemic control in T2D after bariatric surgery interventions.
Collapse
Affiliation(s)
- Marta Guimarães
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Department of General Surgery, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Sofia S Pereira
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal. .,Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
5
|
Malendowicz LK, Rucinski M. Neuromedins NMU and NMS: An Updated Overview of Their Functions. Front Endocrinol (Lausanne) 2021; 12:713961. [PMID: 34276571 PMCID: PMC8283259 DOI: 10.3389/fendo.2021.713961] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
More than 35 years have passed since the identification of neuromedin U (NMU). Dozens of publications have been devoted to its physiological role in the organism, which have provided insight into its occurrence in the body, its synthesis and mechanism of action at the cellular level. Two G protein-coupled receptors (GPCRs) have been identified, with NMUR1 distributed mainly peripherally and NMUR2 predominantly centrally. Recognition of the role of NMU in the control of energy homeostasis of the body has greatly increased interest in this neuromedin. In 2005 a second, structurally related peptide, neuromedin S (NMS) was identified. The expression of NMS is more restricted, it is predominantly found in the central nervous system. In recent years, further peptides related to NMU and NMS have been identified. These are neuromedin U precursor related peptide (NURP) and neuromedin S precursor related peptide (NSRP), which also exert biological effects without acting via NMUR1, or NMUR2. This observation suggests the presence of another, as yet unrecognized receptor. Another unresolved issue within the NMU/NMS system is the differences in the effects of various NMU isoforms on diverse cell lines. It seems that development of highly specific NMUR1 and NMUR2 receptor antagonists would allow for a more detailed understanding of the mechanisms of action of NMU/NMS and related peptides in the body. They could form the basis for attempts to use such compounds in the treatment of disorders, for example, metabolic disorders, circadian rhythm, stress, etc.
Collapse
|
6
|
Zhang W, Sakoda H, Nakazato M. Neuromedin U suppresses insulin secretion by triggering mitochondrial dysfunction and endoplasmic reticulum stress in pancreatic β-cells. FASEB J 2019; 34:133-147. [PMID: 31914613 DOI: 10.1096/fj.201901743r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
Neuromedin U (NMU), a highly conserved peptide in mammals, is involved in a wide variety of physiological processes. NMU, which is synthesized in β-cells and co-localizes with insulin, directly acts on β-cells via NMU receptor 1 (NMUR1) to suppress glucose-stimulated insulin secretion (GSIS). The mechanism underlying this insulinostatic effect has yet to be elucidated. We observed that NMU caused mitochondrial dysfunction by impairing mitochondrial biogenesis, respiration, and mitochondrial Ca2+ uptake in β-cell-derived MIN6-K8 cells. NMU administration induced the endoplasmic reticulum (ER) stress, as reflected by the activation of ER stress signaling pathways involving ATF6, XBP-1s, and PERK-ATF4-CHOP. Nmu knockdown in MIN6-K8 cells increased the number of insulin granules and improved mitochondrial biogenesis and function. NMU was upregulated in both the islets of db/db mice and palmitate-treated MIN6-K8 cells. Our results highlight the crucial role of NMU in the maintenance of β-cell function and glucose metabolism through regulation of mitochondria dysfunction and ER stress. In pathological stages that develop into diabetes, upregulation of NMU could suppress the insulin secretion by inducing mitochondrial dysfunction and ER stress, which may contribute to subsequent β-cell dysfunction.
Collapse
Affiliation(s)
- Weidong Zhang
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideyuki Sakoda
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,AMED-CREST, Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
7
|
Ensho T, Maruyama K, Qattali AW, Yasuda M, Uemura R, Murakami N, Nakahara K. Comparison of glucose tolerance between wild-type mice and mice with double knockout of neuromedin U and neuromedin S. J Vet Med Sci 2019; 81:1305-1312. [PMID: 31341114 PMCID: PMC6785621 DOI: 10.1292/jvms.19-0320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recently, it has been proposed that neuromedin U (NMU) is "decretin", which suppresses insulin secretion from the pancreas in vitro. Here we examined the possible involvement of NMU in insulin secretion in vivo by comparing the plasma glucose and insulin levels of wild-type mice with those of double knockout (D-KO) of the NMU and neuromedin S (NMS) genes, as NMS binds to the neuromedin U receptor. If NMU is, in fact, "decretin", which inhibits insulin secretion from the pancreas, then NMU-deficient mice might result in higher plasma insulin levels than is the case in wild-type mice, or injection of NMU lead to suppression of plasma insulin level. In this study, we found that the fasting plasma level of insulin was not increased in D-KO mice. Glucose tolerance tests revealed no significant difference in plasma insulin levels between wild-type mice and D-KO mice under non-fasting conditions. After peripheral injection of NMU, plasma glucose and insulin levels did not show any significant changes in either wild-type or D-KO mice. Glucose tolerance testing after 3 weeks of high fat feeding revealed no significant difference in plasma insulin levels during 60 min after glucose injection between wild-type and D-KO mice. These results suggest that even if NMU is a decretin candidate, its physiological involvement in suppression of insulin secretion may be very minor in vivo.
Collapse
Affiliation(s)
- Takuya Ensho
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Keisuke Maruyama
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Abdul Wahid Qattali
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Masahiro Yasuda
- Department of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Ryoko Uemura
- Department of Veterinary Domestic animal Hygienics, Faculty of Agriculture, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Noboru Murakami
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Keiko Nakahara
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| |
Collapse
|
8
|
Han M, Xu Y, Yuan J, Zhu Y, Zhou J, Liu L, Li X, Zhang H. Circulating neuromedin U levels are similar in subjects with NGT and newly diagnosed T2DM and do not correlate with insulin secretion. Diabetes Res Clin Pract 2019; 151:163-168. [PMID: 31004673 DOI: 10.1016/j.diabres.2019.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/05/2019] [Accepted: 04/12/2019] [Indexed: 11/29/2022]
Abstract
AIMS Neuromedin U (NMU), a highly conserved peptide, is implicated in energy homeostasis and is involved in regulating insulin secretion as a decretin hormone in animals. However, there have been no reports on the relationship between NMU and type 2 diabetes mellitus (T2DM). The aim of this study was to investigate circulating NMU concentrations in healthy subjects and T2DM patients and to evaluate the association between serum NMU levels and glucose-stimulated insulin secretion. METHODS We used ELISA to analyze NMU concentrations in blood samples from newly diagnosed T2DM patients (n = 57) and age-, sex- and BMI-matched healthy control subjects (n = 50). Anthropometric parameters, oral glucose tolerance, glycosylated hemoglobin, blood lipids, insulin sensitivity, and insulin secretion were measured. RESULTS No difference was observed in serum NMU levels between control subjects and newly diagnosed T2DM patients (p = 0.788). The oral glucose tolerance test (OGTT) results indicated that serum NMU concentrations did not change and did not correlate with insulin levels at fasting and 1 h, 2 h and 3 h after glucose load in both healthy controls and newly diagnosed T2DM patients. CONCLUSION Circulating NMU concentrations were similar in control subjects and newly diagnosed T2DM patients and were not associated with glucose-stimulated insulin secretion. Serum NMU is not a human decretin hormone and may not play a role in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Mingzhu Han
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yanhong Xu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Jing Yuan
- Department of Statistics, Shandong Institute of Business and Technology, Yantai 264005, China
| | - Yi Zhu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Jianhua Zhou
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Lu Liu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Hongli Zhang
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
9
|
Jarry AC, Merah N, Cisse F, Cayetanot F, Fiamma MN, Willemetz A, Gueddouri D, Barka B, Valet P, Guilmeau S, Bado A, Le Beyec J, Bodineau L, Le Gall M. Neuromedin U is a gut peptide that alters oral glucose tolerance by delaying gastric emptying via direct contraction of the pylorus and vagal-dependent mechanisms. FASEB J 2019; 33:5377-5388. [PMID: 30753087 DOI: 10.1096/fj.201801718r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut-brain peptide neuromedin U (NMU) decreases food intake and body weight and improves glucose tolerance. Here, we characterized NMU as an enteropeptide and determined how it impacts glucose excursion. NMU was expressed predominantly in the proximal small intestine, and its secretion was triggered by ingestion of a mixed meal. Although a single peripheral injection of NMU in C57BL/6NRj mice prevented the rise of glycemia upon an oral but not an intraperitoneal load of glucose, it unexpectedly prevented insulin secretion, only slightly improved peripheral insulin sensitivity, and barely reduced intestinal glucose absorption. Interestingly, peripheral administration of NMU abrogated gastric emptying. NMU receptors 1 and 2 were detected in pyloric muscles and NMU was able to directly induce pyloric contraction in a dose-dependent manner ex vivo in isometric chambers. Using a modified glucose tolerance test, we demonstrate that improvement of oral glucose tolerance by NMU was essentially, if not exclusively, because of its impact on gastric emptying. Part of this effect was abolished in vagotomized (VagoX) mice, suggesting implication of the vagus tone. Accordingly, peripheral injection of NMU was associated with increased number of c-FOS-positive neurons in the nucleus of the solitary tract, which was partly prevented in VagoX mice. Finally, NMU kept its ability to improve oral glucose tolerance in obese and diabetic murine models. Together, these data demonstrate that NMU is an enteropeptide that prevents gastric emptying directly by triggering pylorus contraction and indirectly through vagal afferent neurons. This blockade consequently reduces intestinal nutrient absorption and thereby results in an apparent improved tolerance to oral glucose challenge.-Jarry, A.-C., Merah, N., Cisse, F., Cayetanot, F., Fiamma, M.-N., Willemetz, A., Gueddouri, D., Barka, B., Valet, P., Guilmeau, S., Bado, A., Le Beyec, J., Bodineau, L., Le Gall, M. Neuromedin U is a gut peptide that alters oral glucose tolerance by delaying gastric emptying via direct contraction of the pylorus and vagal-dependent mechanisms.
Collapse
Affiliation(s)
- Anne-Charlotte Jarry
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1149, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Diderot, Paris, France
| | - Nadir Merah
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1149, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Diderot, Paris, France
| | - Fanta Cisse
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1149, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Diderot, Paris, France
| | - Florence Cayetanot
- Sorbonne Université, INSERM, Unité Mixte de Recherche (UMR) S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Marie-Noëlle Fiamma
- Sorbonne Université, INSERM, Unité Mixte de Recherche (UMR) S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Alexandra Willemetz
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1149, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Diderot, Paris, France
| | - Dalale Gueddouri
- INSERM, Unité 1016, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Institut Cochin, Université Paris Descartes, Paris, France
| | - Besma Barka
- Sorbonne Université, INSERM, Unité Mixte de Recherche (UMR) S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Philippe Valet
- INSERM, Unité 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Sandra Guilmeau
- INSERM, Unité 1016, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Institut Cochin, Université Paris Descartes, Paris, France
| | - André Bado
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1149, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Diderot, Paris, France
| | - Johanne Le Beyec
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1149, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Diderot, Paris, France.,Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Department of Endocrine and Oncological Biochemistry, Paris, France
| | - Laurence Bodineau
- Sorbonne Université, INSERM, Unité Mixte de Recherche (UMR) S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Maude Le Gall
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1149, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Diderot, Paris, France
| |
Collapse
|