1
|
Zhang H, Muhetarijiang M, Chen RJ, Hu X, Han J, Zheng L, Chen T. Mitochondrial Dysfunction: A Roadmap for Understanding and Tackling Cardiovascular Aging. Aging Dis 2024:AD.2024.0058. [PMID: 38739929 DOI: 10.14336/ad.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Cardiovascular aging is a progressive remodeling process constituting a variety of cellular and molecular alterations that are closely linked to mitochondrial dysfunction. Therefore, gaining a deeper understanding of the changes in mitochondrial function during cardiovascular aging is crucial for preventing cardiovascular diseases. Cardiac aging is accompanied by fibrosis, cardiomyocyte hypertrophy, metabolic changes, and infiltration of immune cells, collectively contributing to the overall remodeling of the heart. Similarly, during vascular aging, there is a profound remodeling of blood vessel structure. These remodeling present damage to endothelial cells, increased vascular stiffness, impaired formation of new blood vessels (angiogenesis), the development of arteriosclerosis, and chronic vascular inflammation. This review underscores the role of mitochondrial dysfunction in cardiac aging, exploring its impact on fibrosis and myocardial alterations, metabolic remodeling, immune response remodeling, as well as in vascular aging in the heart. Additionally, we emphasize the significance of mitochondria-targeted therapies in preventing cardiovascular diseases in the elderly.
Collapse
Affiliation(s)
- Han Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mairedan Muhetarijiang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ryan J Chen
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaosheng Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Han
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangrong Zheng
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Xing C, Zhu H, Dou X, Gao L, Baddi S, Zou Y, Zhao C, Peng Y, Fang Y, Feng CL. Infected Diabetic Wound Regeneration Using Peptide-Modified Chiral Dressing to Target Revascularization. ACS NANO 2023; 17:6275-6291. [PMID: 36946387 DOI: 10.1021/acsnano.2c10039] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Revascularization plays a critical role in the healing of diabetic wounds. Accumulation of advanced glycation end products (AGEs) and refractory multidrug resistant bacterial infection are the two major barriers to revascularization, directly leading to impaired healing of diabetic wounds. Here, an artfully designed chiral gel dressing is fabricated (named as HA-LM2-RMR), which consists of l-phenylalanine and cationic hexapeptide coassembled helical nanofibers cross-linked with hyaluronic acid via hydrogen bonding. This chiral gel possesses abundant chiral and cationic sites, not only effectively reducing AGEs via stereoselective interaction but also specifically killing multidrug resistant bacteria rather than host cells since cationic hexapeptides selectively interact with negatively charged microbial membrane. Surprisingly, the HA-LM2-RMR fibers present an attractive ability to activate sprouted angiogenesis of Human Umbilical Vein Endothelial Cells by upregulating VEGF and OPA1 expression. In comparison with clinical Prontosan Wound Gel, the HA-LM2-RMR gel presents superior healing efficiency in the infected diabetic wound with respect to angiogenesis and re-epithelialization, shortening the healing period from 21 days to 14 days. These findings for chiral wound dressing provide insights for the design and construction of diabetic wound dressings that target revascularization, which holds great potential to be utilized in tissue regenerative medicine.
Collapse
Affiliation(s)
- Chao Xing
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanting Zhu
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Laiben Gao
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sravan Baddi
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunqing Zou
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinbo Peng
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Yong Fang
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Chuan-Liang Feng
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Furuta K, Tang X, Islam S, Tapia A, Chen ZB, Ibrahim SH. Endotheliopathy in the metabolic syndrome: Mechanisms and clinical implications. Pharmacol Ther 2023; 244:108372. [PMID: 36894027 PMCID: PMC10084912 DOI: 10.1016/j.pharmthera.2023.108372] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
The increasing prevalence of the metabolic syndrome (MetS) is a threat to global public health due to its lethal complications. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the MetS characterized by hepatic steatosis, which is potentially progressive to the inflammatory and fibrotic nonalcoholic steatohepatitis (NASH). The adipose tissue (AT) is also a major metabolic organ responsible for the regulation of whole-body energy homeostasis, and thereby highly involved in the pathogenesis of the MetS. Recent studies suggest that endothelial cells (ECs) in the liver and AT are not just inert conduits but also crucial mediators in various biological processes via the interaction with other cell types in the microenvironment both under physiological and pathological conditions. Herein, we highlight the current knowledge of the role of the specialized liver sinusoidal endothelial cells (LSECs) in NAFLD pathophysiology. Next, we discuss the processes through which AT EC dysfunction leads to MetS progression, with a focus on inflammation and angiogenesis in the AT as well as on endothelial-to-mesenchymal transition of AT-ECs. In addition, we touch upon the function of ECs residing in other metabolic organs including the pancreatic islet and the gut, the dysregulation of which may also contribute to the MetS. Finally, we highlight potential EC-based therapeutic targets for human MetS, and NASH based on recent achievements in basic and clinical research and discuss how to approach unsolved problems in the field.
Collapse
Affiliation(s)
- Kunimaro Furuta
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA; Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiaofang Tang
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Shahidul Islam
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alonso Tapia
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Samar H Ibrahim
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA; Division of Pediatric Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Targeting OPA1-Mediated Mitochondrial Fusion Contributed to Celastrol's Anti-Tumor Angiogenesis Effect. Pharmaceutics 2022; 15:pharmaceutics15010048. [PMID: 36678677 PMCID: PMC9866574 DOI: 10.3390/pharmaceutics15010048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Celastrol, an active triterpenoid extracted from one of the most famous traditional Chinese medicines (TCMs), Tripterygium wilfordii Hook.f., is a novel anti-cancer drug with significant anti-angiogenesis activity. However, the exact molecular mechanisms underlying its anti-tumor angiogenesis effect remain unclear. The process of angiogenesis needs lots of energy supply, which mostly derives from mitochondria, the "energy factory" in our body. This study shows that celastrol exerts visible suppression on tumor growth and angiogenesis in a cell-derived xenograft (CDX). Likewise, it reduced the tube formation and migration of human umbilical vein endothelial cells (HUVECs), suppressed the energy metabolism of mitochondria in the Seahorse XF Mito Stress Test, and triggered mitochondrial fragmentation and NF-κB activation. Mechanically, celastrol downregulated the expression of mitochondrial-sharping protein optic atrophy protein 1 (OPA1), which was further estimated by the OPA1 knockdown model of HUVECs. Specifically, celastrol directly suppressed OPA1 at the mRNA level by inhibiting the phosphorylation of STAT3, and stattic (STAT3 inhibitor) showed the same effects on OPA1 suppression and anti-angiogenesis activity. Overall, this study indicates that celastrol inhibits tumor angiogenesis by suppressing mitochondrial function and morphology via the STAT3/OPA1/P65 pathway and provides new insight for mitochondrion-targeted cancer therapy.
Collapse
|
5
|
Gao Y, Fang Y, Huang Y, Ma R, Chen X, Wang F, Pei X, Gao Y, Chen X, Liu X, Shan J, Li P. MIIP functions as a novel ligand for ITGB3 to inhibit angiogenesis and tumorigenesis of triple-negative breast cancer. Cell Death Dis 2022; 13:810. [PMID: 36130933 PMCID: PMC9492696 DOI: 10.1038/s41419-022-05255-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 01/23/2023]
Abstract
Migration and invasion inhibitory protein (MIIP) has been identified as a tumor suppressor in various cancer types. Although MIIP is reported to exert tumor suppressive functions by repressing proliferation and metastasis of cancer cells, the detailed mechanism is poorly understood. In the present study, we found MIIP is a favorable indicator of prognosis in triple-negative breast cancer. MIIP could inhibit tumor angiogenesis, proliferation, and metastasis of triple-negative breast cancer cells in vivo and in vitro. Mechanistically, MIIP directly interacted with ITGB3 and suppressed its downstream signaling. As a result, β-catenin was reduced due to elevated ubiquitin-mediated degradation, leading to downregulated VEGFA production and epithelial mesenchymal transition. More importantly, we found RGD motif is essential for MIIP binding with ITGB3 and executing efficient tumor-suppressing effect. Our findings unravel a novel mechanism by which MIIP suppresses tumorigenesis in triple-negative breast cancer, and MIIP is thus a promising molecular biomarker or therapeutic target for the disease.
Collapse
Affiliation(s)
- Yujing Gao
- grid.412194.b0000 0004 1761 9803National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China ,grid.412194.b0000 0004 1761 9803Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China ,grid.412194.b0000 0004 1761 9803Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| | - Yujie Fang
- grid.412194.b0000 0004 1761 9803National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China ,grid.412194.b0000 0004 1761 9803Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yongli Huang
- grid.412194.b0000 0004 1761 9803National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China ,grid.412194.b0000 0004 1761 9803Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Rui Ma
- grid.412194.b0000 0004 1761 9803Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xixi Chen
- grid.412277.50000 0004 1760 6738Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Wang
- grid.413385.80000 0004 1799 1445Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiuying Pei
- grid.412194.b0000 0004 1761 9803Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yuanqi Gao
- grid.412277.50000 0004 1760 6738Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuehua Chen
- grid.412277.50000 0004 1760 6738Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinrui Liu
- grid.412194.b0000 0004 1761 9803Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jingxuan Shan
- grid.5386.8000000041936877XDepartment of Genetic Medicine, Weill Cornell Medicine, New York, NY USA
| | - Pu Li
- grid.412277.50000 0004 1760 6738Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Abstract
Sirtuin 3 (SIRT3), the main family member of mitochondrial deacetylase, targets the majority of substrates controlling mitochondrial biogenesis via lysine deacetylation and modulates important cellular functions such as energy metabolism, reactive oxygen species production and clearance, oxidative stress, and aging. Deletion of SIRT3 has a deleterious effect on mitochondrial biogenesis, thus leading to the defect in mitochondrial function and insufficient ATP production. Imbalance of mitochondrial dynamics leads to excessive mitochondrial biogenesis, dampening mitochondrial function. Mitochondrial dysfunction plays an important role in several diseases related to aging, such as cardiovascular disease, cancer and neurodegenerative diseases. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) launches mitochondrial biogenesis through activating nuclear respiratory factors. These factors act on genes, transcribing and translating mitochondrial DNA to generate new mitochondria. PGC1α builds a bridge between SIRT3 and mitochondrial biogenesis. This review described the involvement of SIRT3 and mitochondrial dynamics, particularly mitochondrial biogenesis in aging-related diseases, and further illustrated the role of the signaling events between SIRT3 and mitochondrial biogenesis in the pathological process of aging-related diseases.
Collapse
Affiliation(s)
- Hong-Yan Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.,Department of Neurology, Chongqing General Hospital, Chongqing 401147, China
| | - Zhi-You Cai
- Department of Neurology, Chongqing General Hospital, Chongqing 401147, China
| |
Collapse
|
7
|
Johnson TS, Xiang S, Dong T, Huang Z, Cheng M, Wang T, Yang K, Ni D, Huang K, Zhang J. Combinatorial analyses reveal cellular composition changes have different impacts on transcriptomic changes of cell type specific genes in Alzheimer's Disease. Sci Rep 2021; 11:353. [PMID: 33432017 PMCID: PMC7801680 DOI: 10.1038/s41598-020-79740-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/09/2020] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) brains are characterized by progressive neuron loss and gliosis. Previous studies of gene expression using bulk tissue samples often fail to consider changes in cell-type composition when comparing AD versus control, which can lead to differences in expression levels that are not due to transcriptional regulation. We mined five large transcriptomic AD datasets for conserved gene co-expression module, then analyzed differential expression and differential co-expression within the modules between AD samples and controls. We performed cell-type deconvolution analysis to determine whether the observed differential expression was due to changes in cell-type proportions in the samples or to transcriptional regulation. Our findings were validated using four additional datasets. We discovered that the increased expression of microglia modules in the AD samples can be explained by increased microglia proportions in the AD samples. In contrast, decreased expression and perturbed co-expression within neuron modules in the AD samples was likely due in part to altered regulation of neuronal pathways. Several transcription factors that are differentially expressed in AD might account for such altered gene regulation. Similarly, changes in gene expression and co-expression within astrocyte modules could be attributed to combined effects of astrogliosis and astrocyte gene activation. Gene expression in the astrocyte modules was also strongly correlated with clinicopathological biomarkers. Through this work, we demonstrated that combinatorial analysis can delineate the origins of transcriptomic changes in bulk tissue data and shed light on key genes and pathways involved in AD.
Collapse
Affiliation(s)
- Travis S Johnson
- Department of Biostatistics, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Shunian Xiang
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tianhan Dong
- Department of Pharmacology, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Zhi Huang
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Cheng
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Tianfu Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kai Yang
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Dong Ni
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Kun Huang
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA.
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
8
|
Xin T, Lv W, Liu D, Jing Y, Hu F. Opa1 Reduces Hypoxia-Induced Cardiomyocyte Death by Improving Mitochondrial Quality Control. Front Cell Dev Biol 2020; 8:853. [PMID: 32984338 PMCID: PMC7483501 DOI: 10.3389/fcell.2020.00853] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction contributes to cardiovascular disorders, especially post-infarction cardiac injury, through incompletely characterized mechanisms. Among the latter, increasing evidence points to alterations in mitochondrial quality control, a range of adaptive responses regulating mitochondrial morphology and function. Optic atrophy 1 (Opa1) is a mitochondrial inner membrane GTPase known to promote mitochondrial fusion. In this study, hypoxia-mediated cardiomyocyte damage was induced to mimic post-infarction cardiac injury in vitro. Loss- and gain-of-function assays were then performed to evaluate the impact of Opa1 expression on mitochondrial quality control and cardiomyocyte survival and function. Hypoxic stress reduced cardiomyocyte viability, impaired contractile/relaxation functions, and augmented the synthesis of pro-inflammatory mediators. These effects were exacerbated by Opa1 knockdown, and significantly attenuated by Opa1 overexpression. Mitochondrial quality control was disturbed by hypoxia, as reflected by multiple mitochondrial deficits; i.e., increased fission, defective fusion, impaired mitophagy, decreased biogenesis, increased oxidative stress, and blunted respiration. By contrast, overexpression of Opa1 normalized mitochondrial quality control and sustained cardiomyocyte function. We also found that ERK, AMPK, and YAP signaling can regulate Opa1 expression. These results identify Opa1 as a novel regulator of mitochondrial quality control and highlight a key role for Opa1 in protecting cardiomyocytes against post-infarction cardiac injury.
Collapse
Affiliation(s)
- Ting Xin
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Wei Lv
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Dongmei Liu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Yongle Jing
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Fang Hu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|