1
|
Dapas M, Dunaif A. Deconstructing a Syndrome: Genomic Insights Into PCOS Causal Mechanisms and Classification. Endocr Rev 2022; 43:927-965. [PMID: 35026001 PMCID: PMC9695127 DOI: 10.1210/endrev/bnac001] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/16/2023]
Abstract
Polycystic ovary syndrome (PCOS) is among the most common disorders in women of reproductive age, affecting up to 15% worldwide, depending on the diagnostic criteria. PCOS is characterized by a constellation of interrelated reproductive abnormalities, including disordered gonadotropin secretion, increased androgen production, chronic anovulation, and polycystic ovarian morphology. It is frequently associated with insulin resistance and obesity. These reproductive and metabolic derangements cause major morbidities across the lifespan, including anovulatory infertility and type 2 diabetes (T2D). Despite decades of investigative effort, the etiology of PCOS remains unknown. Familial clustering of PCOS cases has indicated a genetic contribution to PCOS. There are rare Mendelian forms of PCOS associated with extreme phenotypes, but PCOS typically follows a non-Mendelian pattern of inheritance consistent with a complex genetic architecture, analogous to T2D and obesity, that reflects the interaction of susceptibility genes and environmental factors. Genomic studies of PCOS have provided important insights into disease pathways and have indicated that current diagnostic criteria do not capture underlying differences in biology associated with different forms of PCOS. We provide a state-of-the-science review of genetic analyses of PCOS, including an overview of genomic methodologies aimed at a general audience of non-geneticists and clinicians. Applications in PCOS will be discussed, including strengths and limitations of each study. The contributions of environmental factors, including developmental origins, will be reviewed. Insights into the pathogenesis and genetic architecture of PCOS will be summarized. Future directions for PCOS genetic studies will be outlined.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Andrea Dunaif
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Gao S, Long F, Jiang Z, Shi J, Ma D, Yang Y, Bai J, Han TL. The complex metabolic interactions of liver tissue and hepatic exosome in PCOS mice at young and middle age. Front Physiol 2022; 13:990987. [PMID: 36203935 PMCID: PMC9531160 DOI: 10.3389/fphys.2022.990987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common age-related endocrinopathy that promotes the metabolic disorder of the liver. Growing evidence suggests that the pathophysiology of this disorder is closely associated with the interaction between the liver and its exosome. However, the underlying mechanism of the interactions remains unclear. In this study, we aimed to investigate the metabolite profiles of liver tissues and hepatic exosomes between normal (n = 11) and PCOS (n = 13) mice of young- and middle-age using gas chromatograph-mass spectrometry (GC-MS) based metabolomics analysis. Within the 145 identified metabolites, 7 and 48 metabolites were statistically different (p < 0.05, q < 0.05) in the liver tissue and exosomes, respectively, between PCOS and normal groups. The greater disparity in exosome indicated its potential to reflect the metabolic status of the liver. Based on hepatic exosome metabolome, the downregulations of glycolysis and TCA cycle were related to hepatic pathophysiology of PCOS independent of age. Fatty acids were the preferred substrates in young-age-PCOS liver while amino acids were the main substrates in middle-age-PCOS liver for the processes of gluconeogenesis. Overall, this study enables us to better understand the metabolic status of the PCOS liver at different ages, and exosome metabolomics shows its potential to gain the metabolic insights of parental cell or source organ.
Collapse
Affiliation(s)
- ShanHu Gao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Fei Long
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Zheng Jiang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, China
| | - Jun Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - DongXue Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yang Yang, ; Jin Bai, ; Ting-Li Han,
| | - Jin Bai
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- *Correspondence: Yang Yang, ; Jin Bai, ; Ting-Li Han,
| | - Ting-Li Han
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yang Yang, ; Jin Bai, ; Ting-Li Han,
| |
Collapse
|
3
|
Wang Y, Xiao H, Liu Y, Tong Q, Yu Y, Qi B, Bu X, Pan T, Xing Y. Effects of Bu Shen Hua Zhuo formula on the LPS/TLR4 pathway and gut microbiota in rats with letrozole-induced polycystic ovary syndrome. Front Endocrinol (Lausanne) 2022; 13:891297. [PMID: 36017323 PMCID: PMC9396283 DOI: 10.3389/fendo.2022.891297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in gynecology. Traditional Chinese medicine (TCM) is widely used for the treatment of PCOS in China. The Bu Shen Hua Zhuo formula (BSHZF), a TCM decoction, has shown great therapeutic efficacy in clinical practice. However, the mechanism underlying the BSHZF function in PCOS remains unclear. This study aimed to identify the potential mechanisms of action of BSHZF in the treatment of PCOS. PCOS-model rats treated with letrozole were administered different doses of BSHZF, metformin, and 1% carboxymethylcellulose. Serum sex hormones, fasting blood glucose, and fasting insulin levels were measured, and the morphology of the ovaries was observed in each group, including the normal group. The structure and abundance of the gut microbiota in rats were measured using 16S ribosomal RNA gene sequencing. Toll-like receptor 4 (TLR4) and phospho-NF-κB p65 levels in the ovarian tissue of the rats were detected using Western blotting. Furthermore, the levels of lipopolysaccharide (LPS) and inflammatory cytokines TNF-α, IL-6, and IL-8 in the serum of rats were detected by ELISA. The results showed that BSHZF administration was associated with a decrease in body weight, fasting blood glucose, fasting insulin, and testosterone and changes in ovarian morphology in PCOS-model rats. Moreover, BSHZF was associated with an increase in the α-diversity of gut microbiota, decrease in the relative abundance of Firmicutes, and increase in Lactobacillus and short chain fatty acid-producing bacteria (Allobaculum, Bacteroides, Ruminococcaceae_UCG-014). Furthermore, BSHZF may promote carbohydrate and protein metabolism. In addition, BSHZF was associated with a decrease in the serum level of LPS and TLR4 expression, thereby inhibiting the activation of the NF-κB signaling-mediated inflammatory response in ovarian tissue. Therefore, the beneficial effects of BSHZF on PCOS pathogenesis are associated with its ability to normalize gut microbiota function and inhibit PCOS-related inflammation.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Xiao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yanxia Liu
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Tong
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanyan Yu
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Qi
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoling Bu
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianyuan Pan
- Department of General Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Yu Xing
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Divoux A, Erdos E, Whytock K, Osborne TF, Smith SR. Transcriptional and DNA Methylation Signatures of Subcutaneous Adipose Tissue and Adipose-Derived Stem Cells in PCOS Women. Cells 2022; 11:cells11050848. [PMID: 35269469 PMCID: PMC8909136 DOI: 10.3390/cells11050848] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is often associated with metabolic syndrome features, including central obesity, suggesting that adipose tissue (AT) is a key organ in PCOS pathobiology. In this study, we compared both abdominal (ABD) and gluteofemoral (GF) subcutaneous AT in women with and without PCOS. ABD and GF subcutaneous ATs from PCOS and BMI/WHR-matched control women were analyzed by RT-qPCR, FACS and histology. ABD and GF adipose-derived stem cell (ASC) transcriptome and methylome were analyzed by RNA-seq and DNA methylation array. Similar to the control group with abdominal obesity, the GF AT of PCOS women showed lower expression of genes involved in lipid accumulation and angiogenesis compared to ABD depot. FACS analysis revealed an increase in preadipocytes number in both AT depots from PCOS. Further pathway analysis of RNA-seq comparisons demonstrated that the ASCs derived from PCOS are pro-inflammatory and exhibit a hypoxic signature in the ABD depot and have lower expression of adipogenic genes in GF depot. We also found a higher CpG methylation level in PCOS compared to control exclusively in GF-ASCs. Our data suggest that ASCs play an important role in the etiology of PCOS, potentially by limiting expansion of the healthy lower-body AT.
Collapse
Affiliation(s)
- Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA; (K.W.); (S.R.S.)
- Correspondence: ; Tel.: +1-(407)-303-7100 (ext. 1101628)
| | - Edina Erdos
- Departments of Medicine and Biological Chemistry, Division of Diabetes Endocrinology and Metabolism, Institute for Fundamental Biomedical Research, Pediatrics Johns Hopkins University School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA; (E.E.); (T.F.O.)
| | - Katie Whytock
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA; (K.W.); (S.R.S.)
| | - Timothy F. Osborne
- Departments of Medicine and Biological Chemistry, Division of Diabetes Endocrinology and Metabolism, Institute for Fundamental Biomedical Research, Pediatrics Johns Hopkins University School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA; (E.E.); (T.F.O.)
| | - Steven R. Smith
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA; (K.W.); (S.R.S.)
| |
Collapse
|
5
|
Ren J, Tan G, Ren X, Lu W, Peng Q, Tang J, Wang Y, Xie B, Wang M. The PNA mouse may be the best animal model of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2022; 13:950105. [PMID: 36004354 PMCID: PMC9393894 DOI: 10.3389/fendo.2022.950105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) exerts negative effects on females of childbearing age. It is important to identify more suitable models for fundamental research on PCOS. We evaluated animal models from a novel perspective with the aim of helping researchers select the best model for PCOS. RNA sequencing was performed to investigate the mRNA expression profiles in the ovarian tissues of mice with dehydroepiandrosterone (DHEA) plus high-fat diet (HFD)-induced PCOS. Meanwhile, 14 datasets were obtained from the Gene Expression Omnibus (GEO), including eight studies on humans, three on rats and three on mice, and genes associated with PCOS were obtained from the PCOSKB website. We compared the consistency of each animal model and human PCOS in terms of DEGs and pathway enrichment analysis results. There were 239 DEGs shared between prenatally androgenized (PNA) mice and PCOS patients. Moreover, 1113 genes associated with PCOS from the PCOSKB website were identified among the DEGs of PNA mice. A total of 134 GO and KEGG pathways were shared between PNA mice and PCOS patients. These findings suggest that the PNA mouse model is the best animal model to simulate PCOS.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Guangqing Tan
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xinyi Ren
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Weiyu Lu
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Qiling Peng
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, College of Public Health and Management, Chongqing Medical University, Chongqing, China
- Department of Bioinformatics, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, College of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Biao Xie
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- *Correspondence: Biao Xie, ; Meijiao Wang,
| | - Meijiao Wang
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, College of Public Health and Management, Chongqing Medical University, Chongqing, China
- *Correspondence: Biao Xie, ; Meijiao Wang,
| |
Collapse
|
6
|
Chen H, Zhang Y, Li S, Tao Y, Gao R, Xu W, Yang Y, Cheng K, Wang Y, Qin L. The Association Between Genetically Predicted Systemic Inflammatory Regulators and Polycystic Ovary Syndrome: A Mendelian Randomization Study. Front Endocrinol (Lausanne) 2021; 12:731569. [PMID: 34646235 PMCID: PMC8503255 DOI: 10.3389/fendo.2021.731569] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic diseases among women of reproductive age. Inflammation may be involved in the pathogenesis of PCOS, but its exact relationship with PCOS remains unclear. Herein, we investigate the causal association between systemic inflammatory regulators and PCOS risk through a two-sample Mendelian randomization (MR) approach based on the latest and largest genome-wide association study (GWAS) of 41 systemic inflammatory regulators in 8293 Finnish participants and a GWAS meta-analysis consisting of 10,074 PCOS cases and 103,164 controls of European ancestry. Our results suggest that higher levels of IL-17 and SDF1a, as well as lower levels of SCGFb and IL-4, are associated with an increased risk of PCOS (OR = 1.794, 95% CI = 1.150 - 2.801, P = 0.010; OR = 1.563, 95% CI = 1.055 - 2.315, P = 0.026; OR = 0.838, 95% CI = 0.712 - 0.986, P = 0.034; and OR = 0.637, 95% CI = 0.413 - 0.983, P = 0.042, respectively). In addition, genetically predicted PCOS is related to increased levels of IL-2 and VEGF (OR = 1.257, 95% CI = 1.022 - 1.546, P = 0.030 and OR = 1.112, 95% CI = 1.006 - 1.229, P = 0.038, respectively). Our results indicate the essential role of cytokines in the pathogenesis of PCOS. Further studies are warranted to assess the possibility of these biomarkers as targets for PCOS prevention and treatment.
Collapse
Affiliation(s)
- Hanxiao Chen
- Reproductive Centre, Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yaoyao Zhang
- Reproductive Centre, Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shangwei Li
- Reproductive Centre, Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuanzhi Tao
- Reproductive Centre, Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- Reproductive Centre, Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Wenming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan University-The Chinese University of Hong Kong (SCU–CUHK) Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yihong Yang
- Reproductive Centre, Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kemin Cheng
- Outpatient Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Obstetrics and Gynaecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Lang Qin, ; Yan Wang,
| | - Lang Qin
- Reproductive Centre, Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lang Qin, ; Yan Wang,
| |
Collapse
|