1
|
Wang L, Savani RH, Lu Y, Bernabucci M, Luis-Islas J, Park E, Singh I, Xu W, El Ouaamari A, Wheeler MB, Grill HJ, Rossi MA, Pang ZP. State-dependent central synaptic regulation by GLP-1 is essential for energy homeostasis. Nat Metab 2025:10.1038/s42255-025-01305-x. [PMID: 40467923 DOI: 10.1038/s42255-025-01305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/25/2025] [Indexed: 06/11/2025]
Abstract
Central glucagon-like peptide-1 (GLP-1), secreted by a distinct population of nucleus tractus solitarius neurons, suppresses feeding but the exact mechanisms of action in the brain remain unclear. Here, we investigate a descending circuit formed by GLP-1 receptor (GLP-1R) neurons in the paraventricular hypothalamic nucleus (PVNGLP-1R) projecting to the dorsal vagal complex (DVC) of the brain stem in mice. PVNGLP-1R→DVC synapses release glutamate and are augmented by GLP-1. Chemogenetic activation of PVNGLP-1R→DVC suppresses feeding. Under an energy deficit (that is, hunger) state, synaptic strength is weaker but is more profoundly augmented by GLP-1R activation than under energy-replete state. In an obese condition, the dynamic synaptic changes in this circuit are disrupted. Optogenetic activation of PVNGLP-1R→DVC projections suppresses food intake energy state dependently, and blocking its synaptic release or ablating GLP-1Rs in the presynaptic neurons impairs metabolic health. These findings indicate that the state-dependent synaptic regulation by GLP-1 in PVNGLP-1R→DVC descending circuit is important for energy homeostasis.
Collapse
Affiliation(s)
- Le Wang
- Center for NeuroMetabolism, The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Rohan H Savani
- Center for NeuroMetabolism, The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yi Lu
- Center for NeuroMetabolism, The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Matteo Bernabucci
- Center for NeuroMetabolism, The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jorge Luis-Islas
- Center for NeuroMetabolism, The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Erin Park
- Center for NeuroMetabolism, The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Ishnoor Singh
- Center for NeuroMetabolism, The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Wei Xu
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Harvey J Grill
- Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A Rossi
- Center for NeuroMetabolism, The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Brain Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Zhiping P Pang
- Center for NeuroMetabolism, The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Brain Health Institute, Rutgers University, New Brunswick, NJ, USA.
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
2
|
Shekhar S, Tessa Tonleu J, Okigbo CC, Leka H, Kim AE, Purse BP, Hirsch KR, Stolze BR, McGrath JA, Smith-Ryan AE, Soldin SJ, Hall JE. Thyroid axis adaptations to moderate short-term energy restriction in healthy, young women. Eur J Endocrinol 2025; 192:568-576. [PMID: 40265345 PMCID: PMC12062748 DOI: 10.1093/ejendo/lvaf083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/21/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
OBJECTIVE Short-term dieting has gained popularity in women. We studied thyroid hormone change after short-term, moderate energy restriction. METHODS Nineteen, healthy women aged 23.36 ± 2.08 yr (mean ± SD) without obesity and thyroidal disease underwent a neutral (NEA, ±0%) and a deficient (DEA, -55%) diet for 5 days each in the early follicular phases of successive menstrual cycles. Blood was sampled every 10 min between 8 AM and 4 PM and analyzed for TSH, GH, and cortisol every 30 min, total T3 (TT3), reverse T3 (rT3), and total T4 (TT4) hourly and free T3 (fT3), free T4 (fT4), and TBG at the beginning and end of the studies. Liquid chromatography-tandem mass spectrometry (LCMS) assessed all thyroid hormones except TSH and TBG. Data shown as mean difference or least squared (ls) mean (±SEM). RESULTS There was a small decrease in body mass index and body weight after DEA (0.4 ± 0.08 kg/m2; P < .001 and 1.1 ± 0.21 kg; P < .001, respectively), with unchanged fat mass. Compared to NEA, TT3 (ls mean ± SEM; 95.55 ± 2.89 ng/dL vs. 89.15 ± 2.89; P < .0001), and TSH (1.03 ± 0.07 vs. 0.92 ± 0.07 μIU/mL; P < .0001) declined while TT4 (6.06 ± 0.25 vs. 6.26 ± 0.25 μg/dL; P = .005), fT4 (1.71 ± 0.07 vs. 1.83 ± 0.07 ng/dL; P = .0052) and rT3 (9.02 ± 0.56 vs. 12.04 ± 0.56 ng/dL; P < .0001) increased after DEA with no change in TBG, GH and cortisol. CONCLUSION Adaptive central and peripheral changes in thyroid hormones occur after short-term, moderate dieting in young women without obesity. CLINICALTRIALS.GOV NCT02858336.
Collapse
Affiliation(s)
- Skand Shekhar
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Joselyne Tessa Tonleu
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Chinelo C Okigbo
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
- Division of Endocrine and Metabolic Disorders, Department of Medicine, Eastern Virginia Medical School, Norfolk, VA 23510, United States
| | - Helen Leka
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
- Office of Medical Education, University of California Irvine School of Medicine, Irvine, CA 92617, United States
| | - Anne E Kim
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
- Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Bona P Purse
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Katie R Hirsch
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Brian R Stolze
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - John A McGrath
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Steven J Soldin
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Janet E Hall
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| |
Collapse
|
3
|
Xie S, Zhao T, Hu C, Meng Y, Cui J, Wu X. Disruption of Ephb1 causes reduced hypothalamic CRH and TRH expression and obesity in mice. Obesity (Silver Spring) 2025. [PMID: 40207393 DOI: 10.1002/oby.24275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Ephrin type-B receptor 1 (EphB1) is a receptor tyrosine kinase involved in axon guidance, synaptic plasticity, and tumorigenesis. However, the role of EphB1 in metabolic regulation and obesity remains poorly understood. This study aims to uncover the role of EphB1 in energy metabolism and provide insights into the underlying mechanisms by which EphB1 regulates obesity. METHODS Two Ephb1 mutations identified from a forward genetic screen for obesity-related loci in mice were examined for their effects in gene expression, energy metabolism, and endocrine changes. The impacts of EphB1 on neuropeptide expression and signal transduction were evaluated in both hypothalamic tissues and primary cells. Potential downstream signals were modified in Ephb1 mutants to verify the interaction. RESULTS Ephb1 mutants develop obesity in adolescence and develop impaired glucose tolerance during adulthood. EphB1 deficiency caused lower body temperature, blunted cold-induced thermogenesis, and decreased locomotor activity, but it did not alter food intake. EphB1 promotes cyclic AMP-responsive element-binding protein (CREB) phosphorylation via phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling in a cell-autonomous manner. EphB1 deficiency leads to reduced expression of corticotropin-releasing hormone (CRH) and thyrotropin-releasing hormone (TRH) in the brain. Intraventricular administration of either TRH or a CRH fragment suppressed obesity in Ephb1 mutants. CONCLUSIONS EphB1 regulates hypothalamic CRH and TRH expression and promotes energy expenditure in mice.
Collapse
Affiliation(s)
- Simin Xie
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Tao Zhao
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chengchen Hu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yongyong Meng
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Cui
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
van Baak MA, Mariman ECM. Physiology of Weight Regain after Weight Loss: Latest Insights. Curr Obes Rep 2025; 14:28. [PMID: 40163180 PMCID: PMC11958498 DOI: 10.1007/s13679-025-00619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
PURPOSE OF REVIEW This review summarizes the most recent research on the physiology of weight regain. It describes developments in areas that are currently being addressed and that may indicate promising directions for future research. RECENT FINDINGS Weight regain occurs independent of the way prior weight loss is achieved, i.e. by lifestyle, surgery or pharmacotherapy. Recent novel findings regarding weight regain belong to four areas. First, the immune obesity memory of which besides persistent immune cells promoting weight regain cells have been found that reduce weight regain. Second, the gut microbiome where autologous transplantation can limit weight regain. Third, the composition of the weight loss with the percentage of lost fat-free mass being inverse to the amount of regained weight independent of the weight loss procedure. Fourth, appetite control where after weight loss altered hypothalamic activity promoting hunger and weight regain persists, possibly mediated by altered neurotensin responses. In all four areas more conclusive evidence for their role in weight regain still needs to be obtained. Most studies on physiological mechanisms of weight regain are associative in nature and the number of intervention studies is very limited. To bring the field further, carefully designed intervention studies taking into account the dynamic character of weight loss and weight regain are needed.
Collapse
Affiliation(s)
- Marleen A van Baak
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and life Sciences+, Maastricht University, Maastricht, The Netherlands.
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, Maastricht, 6200MD, The Netherlands.
| | - Edwin C M Mariman
- Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and life Sciences+, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Chen B, Gao C, Liu C, Guo T, Hu J, Xue J, Tang K, Chen Y, Yu T, Shen Q, Sun H, Yang WZ, Shen WL. Heat acclimation in mice requires preoptic BDNF neurons and postsynaptic potentiation. Cell Res 2025; 35:224-227. [PMID: 39725738 PMCID: PMC11909230 DOI: 10.1038/s41422-024-01064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Baoting Chen
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China
| | - Cuicui Gao
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China
| | - Changhao Liu
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China
| | - Tongtong Guo
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China
| | - Junwei Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialiang Xue
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China
| | - Kangmin Tang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongbin Sun
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China.
| | - Wen Z Yang
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China.
| | - Wei L Shen
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
6
|
Wang H, Lou R, Wang Y, Hao L, Wang Q, Li R, Su J, Liu S, Zhou X, Gao X, Hao Q, Chen Z, Xu Y, Wu C, Zheng Y, Guo Q, Bai L. Parallel gut-to-brain pathways orchestrate feeding behaviors. Nat Neurosci 2025; 28:320-335. [PMID: 39627537 DOI: 10.1038/s41593-024-01828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/29/2024] [Indexed: 02/08/2025]
Abstract
The caudal nucleus of the solitary tract (cNTS) in the brainstem serves as a hub for integrating interoceptive cues from diverse sensory pathways. However, the mechanisms by which cNTS neurons transform these signals into behaviors remain debated. We analyzed 18 cNTS-Cre mouse lines and cataloged the dynamics of nine cNTS cell types during feeding. We show that Th+ cNTS neurons encode esophageal mechanical distension and transient gulp size via vagal afferent inputs, providing quick feedback regulation of ingestion speed. By contrast, Gcg+ cNTS neurons monitor intestinal nutrients and cumulative ingested calories and have long-term effects on food satiation and preference. These nutritive signals are conveyed through a portal vein-spinal ascending pathway rather than vagal sensory neurons. Our findings underscore distinctions among cNTS subtypes marked by differences in temporal dynamics, sensory modalities, associated visceral organs and ascending sensory pathways, all of which contribute to specific functions in coordinated feeding regulation.
Collapse
Affiliation(s)
- Hongyun Wang
- Chinese Institute for Brain Research, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Runxiang Lou
- Chinese Institute for Brain Research, Beijing, China
| | - Yunfeng Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Liufang Hao
- Chinese Institute for Brain Research, Beijing, China
| | - Qiushi Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Rui Li
- Chinese Institute for Brain Research, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Leaning, Beijing Normal University, Beijing, China
| | - Jiayi Su
- Chinese Institute for Brain Research, Beijing, China
| | - Shuhan Liu
- Chinese Institute for Brain Research, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Leaning, Beijing Normal University, Beijing, China
| | - Xiangyu Zhou
- Chinese Institute for Brain Research, Beijing, China
| | - Xinwei Gao
- Chinese Institute for Brain Research, Beijing, China
| | - Qianxi Hao
- Chinese Institute for Brain Research, Beijing, China
| | - Zihe Chen
- Chinese Institute for Brain Research, Beijing, China
| | - Yibo Xu
- Chinese Institute for Brain Research, Beijing, China
| | - Chongwei Wu
- Chinese Institute for Brain Research, Beijing, China
| | - Yang Zheng
- Chinese Institute for Brain Research, Beijing, China
| | - Qingchun Guo
- Chinese Institute for Brain Research, Beijing, China
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Ling Bai
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
7
|
Minère M, Wilhelms H, Kuzmanovic B, Lundh S, Fusca D, Claßen A, Shtiglitz S, Prilutski Y, Talpir I, Tian L, Kieffer B, Davis J, Kloppenburg P, Tittgemeyer M, Livneh Y, Fenselau H. Thalamic opioids from POMC satiety neurons switch on sugar appetite. Science 2025; 387:750-758. [PMID: 39946455 DOI: 10.1126/science.adp1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 12/11/2024] [Indexed: 04/23/2025]
Abstract
High sugar-containing foods are readily consumed, even after meals and beyond fullness sensation (e.g., as desserts). Although reward-driven processing of palatable foods can promote overeating, the neurobiological mechanisms that underlie the selective appetite for sugar in states of satiety remain unclear. Hypothalamic pro-opiomelanocortin (POMC) neurons are principal regulators of satiety because they decrease food intake through excitatory melanocortin neuropeptides. We discovered that POMC neurons not only promote satiety in fed conditions but concomitantly switch on sugar appetite, which drives overconsumption. POMC neuron projections to the paraventricular thalamus selectively inhibited postsynaptic neurons through mu-opioid receptor signaling. This opioid circuit was strongly activated during sugar consumption, which was most notable in satiety states. Correspondingly, inhibiting its activity diminished high-sugar diet intake in sated mice.
Collapse
Affiliation(s)
- Marielle Minère
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine, University Hospital Cologne, Cologne, Germany
| | - Hannah Wilhelms
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Bojana Kuzmanovic
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Sofia Lundh
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Debora Fusca
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Zoology, Department of Biology, University of Cologne, Cologne, Germany
| | - Alina Claßen
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Stav Shtiglitz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Prilutski
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Itay Talpir
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lin Tian
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Brigitte Kieffer
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Jon Davis
- Global Drug Discovery, Novo Nordisk A/S, Lexington, MA, USA
| | - Peter Kloppenburg
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Zoology, Department of Biology, University of Cologne, Cologne, Germany
| | - Marc Tittgemeyer
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Yoav Livneh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Henning Fenselau
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine, University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Münzberg H, Heymsfield SB, Berthoud HR, Morrison CD. History and future of leptin: Discovery, regulation and signaling. Metabolism 2024; 161:156026. [PMID: 39245434 PMCID: PMC11570342 DOI: 10.1016/j.metabol.2024.156026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The cloning of leptin 30 years ago in 1994 was an important milestone in obesity research. Prior to the discovery of leptin, obesity was stigmatized as a condition caused by lack of character and self-control. Mutations in either leptin or its receptor were the first single gene mutations found to cause severe obesity, and it is now recognized that obesity is caused mostly by a dysregulation of central neuronal circuits. Since the discovery of the leptin-deficient obese mouse (ob/ob) the cloning of leptin (ob aka lep) and leptin receptor (db aka lepr) genes, we have learned much about leptin and its action in the central nervous system. The first hope that leptin would cure obesity was quickly dampened because humans with obesity have increased leptin levels and develop leptin resistance. Nevertheless, leptin target sites in the brain represent an excellent blueprint to understand how neuronal circuits control energy homeostasis. Our expanding understanding of leptin function, interconnection of leptin signaling with other systems and impact on distinct physiological functions continues to guide and improve the development of safe and effective interventions to treat metabolic illnesses. This review highlights past concepts and current emerging concepts of the hormone leptin, leptin receptor signaling pathways and central targets to mediate distinct physiological functions.
Collapse
Affiliation(s)
- Heike Münzberg
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America.
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Christopher D Morrison
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| |
Collapse
|
9
|
Xing M, Li Y, Zhang Y, Zhou J, Ma D, Zhang M, Tang M, Ouyang T, Zhang F, Shi X, Sun J, Chen Z, Zhang WJ, Zhang S, Xie X. Paraventricular hypothalamic RUVBL2 neurons suppress appetite by enhancing excitatory synaptic transmission in distinct neurocircuits. Nat Commun 2024; 15:8939. [PMID: 39414808 PMCID: PMC11484884 DOI: 10.1038/s41467-024-53258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
The paraventricular hypothalamus (PVH) is crucial for food intake control, yet the presynaptic mechanisms underlying PVH neurons remain unclear. Here, we show that RUVBL2 in the PVH is significantly reduced during energy deficit, and knockout (KO) of PVH RUVBL2 results in hyperphagic obesity in mice. RUVBL2-expressing neurons in the PVH (PVHRUVBL2) exert the anorexigenic effect by projecting to the arcuate hypothalamus, the dorsomedial hypothalamus, and the parabrachial complex. We further demonstrate that PVHRUVBL2 neurons form the synaptic connections with POMC and AgRP neurons in the ARC. PVH RUVBL2 KO impairs the excitatory synaptic transmission by reducing presynaptic boutons and synaptic vesicles near active zone. Finally, RUVBL2 overexpression in the PVH suppresses food intake and protects against diet induced obesity. Together, this study demonstrates an essential role for PVH RUVBL2 in food intake control, and suggests that modulation of synaptic plasticity could be an effective way to curb appetite and obesity.
Collapse
Affiliation(s)
- Mingming Xing
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yang Li
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Juemou Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Danting Ma
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Mengqi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Minglei Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Ting Ouyang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Fumiao Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaofeng Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Jianyuan Sun
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Weiping J Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Shuli Zhang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiangyang Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
10
|
Capoccia D, Leonetti F, Natali A, Tricò D, Perrini S, Sbraccia P, Guglielmi V. Remission of type 2 diabetes: position statement of the Italian society of diabetes (SID). Acta Diabetol 2024; 61:1309-1326. [PMID: 38942960 PMCID: PMC11486812 DOI: 10.1007/s00592-024-02317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
The primary cause of the pandemic scale of type 2 diabetes (T2D) is the excessive and/or abnormal accumulation of adiposity resulting from a chronic positive energy balance. Any form of weight loss dramatically affects the natural history of T2D, favoring prevention, treatment, and even remission in the case of significant weight loss. However, weight regain, which is often accompanied by the recurrence or worsening of obesity complications such as T2D, is an inevitable biological phenomenon that is an integral part of the pathophysiology of obesity. This can occur not only after weight loss, but also during obesity treatment if it is not effective enough to counteract the physiological responses aimed at restoring adiposity to its pre-weight-loss equilibrium state. Over the past few years, many controlled and randomized studies have suggested a superior efficacy of bariatric surgery compared to conventional therapy in terms of weight loss, glycemic control, and rates of T2D remission. Recently, the therapeutic armamentarium in the field of diabetology has been enriched with new antihyperglycemic drugs with considerable efficacy in reducing body weight, which could play a pathogenetic role in the remission of T2D, not through the classical incretin effect, but by improving adipose tissue functions. All these concepts are discussed in this position statement, which aims to deepen the pathogenetic links between obesity and T2D, shift the paradigm from a "simple" interaction between insulin resistance and insulin deficiency, and evaluate the efficacy of different therapeutic interventions to improve T2D management and induce diabetes remission whenever still possible.
Collapse
Affiliation(s)
- Danila Capoccia
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Frida Leonetti
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sebastio Perrini
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Paolo Sbraccia
- Department of Systems Medicine, Unit of Internal Medicine - Obesity Center, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| | - Valeria Guglielmi
- Department of Systems Medicine, Unit of Internal Medicine - Obesity Center, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
11
|
Chesters RA, Zhu J, Coull BM, Baidoe-Ansah D, Baumer L, Palm L, Klinghammer N, Chen S, Hahm A, Yagoub S, Cantacorps L, Bernardi D, Ritter K, Lippert RN. Fasting-induced activity changes in MC3R neurons of the paraventricular nucleus of the thalamus. Life Sci Alliance 2024; 7:e202402754. [PMID: 39107065 PMCID: PMC11303869 DOI: 10.26508/lsa.202402754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024] Open
Abstract
The brain controls energy homeostasis by regulating food intake through signaling within the melanocortin system. Whilst we understand the role of the hypothalamus within this system, how extra-hypothalamic brain regions are involved in controlling energy balance remains unclear. Here we show that the melanocortin 3 receptor (MC3R) is expressed in the paraventricular nucleus of the thalamus (PVT). We tested whether fasting would change the activity of MC3R neurons in this region by assessing the levels of c-Fos and pCREB as neuronal activity markers. We determined that overnight fasting causes a significant reduction in pCREB levels within PVT-MC3R neurons. We then questioned whether perturbation of MC3R signaling, during fasting, would result in altered refeeding. Using chemogenetic approaches, we show that modulation of MC3R activity, during the fasting period, does not impact body weight regain or total food intake in the refeeding period. However, we did observe significant differences in the pattern of feeding-related behavior. These findings suggest that the PVT is a region where MC3R neurons respond to energy deprivation and modulate refeeding behavior.
Collapse
Affiliation(s)
- Robert A Chesters
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Jiajie Zhu
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Bethany M Coull
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - David Baidoe-Ansah
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Lea Baumer
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Lydia Palm
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Niklas Klinghammer
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Seve Chen
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Anneke Hahm
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Selma Yagoub
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Lídia Cantacorps
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Daniel Bernardi
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Nuthetal, Germany
| | - Katrin Ritter
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Nuthetal, Germany
| | - Rachel N Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
12
|
Liu H, Bean JC, Li Y, Yu M, Ginnard OZ, Conde KM, Wang M, Fang X, Liu H, Tu L, Yin N, Han J, Yang Y, Tong Q, Arenkiel BR, Wang C, He Y, Xu Y. Distinct basal forebrain-originated neural circuits promote homoeostatic feeding and suppress hedonic feeding in male mice. Nat Metab 2024; 6:1775-1790. [PMID: 39112722 PMCID: PMC11881791 DOI: 10.1038/s42255-024-01099-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/08/2024] [Indexed: 09/26/2024]
Abstract
Feeding behaviour is influenced by two primary factors: homoeostatic needs driven by hunger and hedonic desires for pleasure even in the absence of hunger. While efficient homoeostatic feeding is vital for survival, excessive hedonic feeding can lead to adverse consequences such as obesity and metabolic dysregulations. However, the neurobiological mechanisms that orchestrate homoeostatic versus hedonic food consumption remain largely unknown. Here we show that GABAergic proenkephalin (Penk) neurons in the diagonal band of Broca (DBB) of male mice respond to food presentation. We further demonstrate that a subset of DBBPenk neurons that project to the paraventricular nucleus of the hypothalamus are preferentially activated upon food presentation during fasting periods and transmit a positive valence to facilitate feeding. On the other hand, a separate subset of DBBPenk neurons that project to the lateral hypothalamus are preferentially activated when detecting a high-fat high-sugar (HFHS) diet and transmit a negative valence to inhibit food consumption. Notably, when given free choice of chow and HFHS diets, mice with the whole DBBPenk population ablated exhibit reduced consumption of chow but increased intake of the HFHS diet, resulting in accelerated development of obesity and metabolic disturbances. Together, we identify a molecularly defined neural population in male mice that is crucial for the maintenance of energy balance by facilitating homoeostatic feeding while suppressing hedonic overeating.
Collapse
Affiliation(s)
- Hailan Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan C Bean
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongxiang Li
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Meng Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Olivia Z Ginnard
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kristine M Conde
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xing Fang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hesong Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Na Yin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Junying Han
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chunmei Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
13
|
Sayers S, Le N, Wagner EJ. The role of pituitary adenylate cyclase-activating polypeptide neurons in the hypothalamic ventromedial nucleus and the cognate PAC1 receptor in the regulation of hedonic feeding. Front Nutr 2024; 11:1437526. [PMID: 39234295 PMCID: PMC11371718 DOI: 10.3389/fnut.2024.1437526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Obesity is a health malady that affects mental, physical, and social health. Pathology includes chronic imbalance between energy intake and expenditure, likely facilitated by dysregulation of the mesolimbic dopamine (DA) pathway. We explored the role of pituitary adenylate cyclase-activating polypeptide (PACAP) neurons in the hypothalamic ventromedial nucleus (VMN) and the PACAP-selective (PAC1) receptor in regulating hedonic feeding. We hypothesized that VMN PACAP neurons would inhibit reward-encoding mesolimbic (A10) dopamine neurons via PAC1 receptor activation and thereby suppress impulsive consumption brought on by intermittent exposure to highly palatable food. Visualized whole-cell patch clamp recordings coupled with in vivo behavioral experiments were utilized in wildtype, PACAP-cre, TH-cre, and TH-cre/PAC1 receptor-floxed mice. We found that bath application of PACAP directly inhibited preidentified A10 dopamine neurons in the ventral tegmental area (VTA) from TH-cre mice. This inhibitory action was abrogated by the selective knockdown of the PAC1 receptor in A10 dopamine neurons. PACAP delivered directly into the VTA decreases binge feeding accompanied by reduced meal size and duration in TH-cre mice. These effects are negated by PAC1 receptor knockdown in A10 dopamine neurons. Additionally, apoptotic ablation of VMN PACAP neurons increased binge consumption in both lean and obese, male and female PACAP-cre mice relative to wildtype controls. These findings demonstrate that VMN PACAP neurons blunt impulsive, binge feeding behavior by activating PAC1 receptors to inhibit A10 dopamine neurons. As such, they impart impactful insight into potential treatment strategies for conditions such as obesity and food addiction.
Collapse
Affiliation(s)
- Sarah Sayers
- College of Osteopathic Medicine of the Pacific, Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Nikki Le
- College of Osteopathic Medicine of the Pacific, Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Edward J Wagner
- College of Osteopathic Medicine of the Pacific, Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
14
|
Costa-E-Sousa RH, Brooks VL. The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin. VITAMINS AND HORMONES 2024; 127:305-362. [PMID: 39864945 DOI: 10.1016/bs.vh.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure. However, large gaps persist in the specific hypothalamic sites and detailed mechanisms by which leptin increases energy expenditure, via the parallel activation of the hypothalamic pituitary thyroid (HPT) axis and brown adipose tissue (BAT). The purpose of this review is to develop a framework for the complex mechanisms and neurocircuitry. The core circuitry begins with leptin binding to receptors in the arcuate nucleus, which then sends projections to the paraventricular nucleus (to regulate the HPT axis) and the dorsomedial hypothalamus (to regulate BAT). We build on this core by layering complexities, including the intricate and unsettled regulation of arcuate proopiomelanocortin neurons by leptin and the changes that occur as the regulation of the HPT axis and BAT is engaged or modified by challenges such as starvation, hypothermia, obesity, and pregnancy.
Collapse
Affiliation(s)
- Ricardo H Costa-E-Sousa
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
15
|
Ferrario CR, Münzberg-Gruening H, Rinaman L, Betley JN, Borgland SL, Dus M, Fadool DA, Medler KF, Morton GJ, Sandoval DA, de La Serre CB, Stanley SA, Townsend KL, Watts AG, Maruvada P, Cummings D, Cooke BM. Obesity- and diet-induced plasticity in systems that control eating and energy balance. Obesity (Silver Spring) 2024; 32:1425-1440. [PMID: 39010249 PMCID: PMC11269035 DOI: 10.1002/oby.24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 07/17/2024]
Abstract
In April 2023, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), in partnership with the National Institute of Child Health and Human Development, the National Institute on Aging, and the Office of Behavioral and Social Sciences Research, hosted a 2-day online workshop to discuss neural plasticity in energy homeostasis and obesity. The goal was to provide a broad view of current knowledge while identifying research questions and challenges regarding neural systems that control food intake and energy balance. This review includes highlights from the meeting and is intended both to introduce unfamiliar audiences with concepts central to energy homeostasis, feeding, and obesity and to highlight up-and-coming research in these areas that may be of special interest to those with a background in these fields. The overarching theme of this review addresses plasticity within the central and peripheral nervous systems that regulates and influences eating, emphasizing distinctions between healthy and disease states. This is by no means a comprehensive review because this is a broad and rapidly developing area. However, we have pointed out relevant reviews and primary articles throughout, as well as gaps in current understanding and opportunities for developments in the field.
Collapse
Grants
- P30 DK048520 NIDDK NIH HHS
- NSF1949989 National Science Foundation
- T32 DC000044 NIDCD NIH HHS
- R01 DK089056 NIDDK NIH HHS
- R01 DK124801 NIDDK NIH HHS
- R01 DK100685 NIDDK NIH HHS
- R01 DK130875 NIDDK NIH HHS
- R01 DK133464 NIDDK NIH HHS
- R01 DK125890 NIDDK NIH HHS
- Z99 DK999999 Intramural NIH HHS
- R01 DK124461 NIDDK NIH HHS
- K26 DK138368 NIDDK NIH HHS
- R01 DK121995 NIDDK NIH HHS
- R01 DK121531 NIDDK NIH HHS
- P30 DK089503 NIDDK NIH HHS
- P01 DK119130 NIDDK NIH HHS
- R01 DK118910 NIDDK NIH HHS
- R01 AT011683 NCCIH NIH HHS
- Reported research was supported by DK130246, DK092587, AT011683, MH059911, DK100685, DK119130, DK124801, DK133399, AG079877, DK133464, T32DC000044, F31DC016817, NSF1949989, DK089056, DK124238, DK138368, DK121995, DK125890, DK118910, DK121531, DK124461, DK130875; Canada Research Chair: 950-232211, CIHRFDN148473, CIHRPJT185886; USDA Predoctoral Fellowship; Endowment from the Robinson Family and Tallahassee Memorial Hospital; Department of Defense W81XWH-20-1-0345 and HT9425-23-1-0244; American Diabetes Association #1-17-ACE-31; W.M. Keck Foundation Award; National Science Foundation CAREER 1941822
- R01 DK133399 NIDDK NIH HHS
- HT9425-23-1-0244 Department of Defense
- R01 DK092587 NIDDK NIH HHS
- W81XWH-20-1-0345 Department of Defense
- 1941822 National Science Foundation
- R01 MH059911 NIMH NIH HHS
- F31 DC016817 NIDCD NIH HHS
- R01 AG079877 NIA NIH HHS
- R01 DK130246 NIDDK NIH HHS
- P30 DK017047 NIDDK NIH HHS
- R01 DK124238 NIDDK NIH HHS
Collapse
Affiliation(s)
- Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Heike Münzberg-Gruening
- Laboratory of Central Leptin Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Debra A Fadool
- Department of Biological Science, Program in Neuroscience, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Kathryn F Medler
- School of Animal Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Gregory J Morton
- Department of Medicine, University of Washington Medicine Diabetes Institute at South Lake Union, Seattle, Washington, USA
| | - Darleen A Sandoval
- Department of Pediatrics, Section of Nutrition, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claire B de La Serre
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Padma Maruvada
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Diana Cummings
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Bradley M Cooke
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Sotelo-Hitschfeld T, Minère M, Klemm P, Borgmann D, Wnuk-Lipinski D, Jais A, Jia X, Corneliussen S, Kloppenburg P, Fenselau H, Brüning JC. GABAergic disinhibition from the BNST to PNOC ARC neurons promotes HFD-induced hyperphagia. Cell Rep 2024; 43:114343. [PMID: 38865247 DOI: 10.1016/j.celrep.2024.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/01/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Activation of prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus (ARC) promotes high-fat-diet (HFD)-induced hyperphagia. In turn, PNOCARC neurons can inhibit the anorexic response of proopiomelanocortin (POMC) neurons. Here, we validate the necessity of PNOCARC activity for HFD-induced inhibition of POMC neurons in mice and find that PNOCARC-neuron-dependent inhibition of POMC neurons is mediated by gamma-aminobutyric acid (GABA) release. When monitoring individual PNOCARC neuron activity via Ca2+ imaging, we find a subpopulation of PNOCARC neurons that is inhibited upon gastrointestinal calorie sensing and disinhibited upon HFD feeding. Combining retrograde rabies tracing and circuit mapping, we find that PNOC neurons from the bed nucleus of the stria terminalis (PNOCBNST) provide inhibitory input to PNOCARC neurons, and this inhibitory input is blunted upon HFD feeding. This work sheds light on how an increase in caloric content of the diet can rewire a neuronal circuit, paving the way to overconsumption and obesity development.
Collapse
Affiliation(s)
- Tamara Sotelo-Hitschfeld
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Marielle Minère
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Synaptic Transmission in Energy Homeostasis Research Group, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Paul Klemm
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Diba Borgmann
- Synaptic Transmission in Energy Homeostasis Research Group, Max Planck Institute for Metabolism Research, Cologne, Germany; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daria Wnuk-Lipinski
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Alexander Jais
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Xianglian Jia
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Svenja Corneliussen
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute of Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Peter Kloppenburg
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute of Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Henning Fenselau
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Synaptic Transmission in Energy Homeostasis Research Group, Max Planck Institute for Metabolism Research, Cologne, Germany.
| | - Jens Claus Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
17
|
Vargas Y, Castro Tron AE, Rodríguez Rodríguez A, Uribe RM, Joseph-Bravo P, Charli JL. Thyrotropin-Releasing Hormone and Food Intake in Mammals: An Update. Metabolites 2024; 14:302. [PMID: 38921437 PMCID: PMC11205479 DOI: 10.3390/metabo14060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH2) is an intercellular signal produced mainly by neurons. Among the multiple pharmacological effects of TRH, that on food intake is not well understood. We review studies demonstrating that peripheral injection of TRH generally produces a transient anorexic effect, discuss the pathways that might initiate this effect, and explain its short half-life. In addition, central administration of TRH can produce anorexic or orexigenic effects, depending on the site of injection, that are likely due to interaction with TRH receptor 1. Anorexic effects are most notable when TRH is injected into the hypothalamus and the nucleus accumbens, while the orexigenic effect has only been detected by injection into the brain stem. Functional evidence points to TRH neurons that are prime candidate vectors for TRH action on food intake. These include the caudal raphe nuclei projecting to the dorsal motor nucleus of the vagus, and possibly TRH neurons from the tuberal lateral hypothalamus projecting to the tuberomammillary nuclei. For other TRH neurons, the anatomical or physiological context and impact of TRH in each synaptic domain are still poorly understood. The manipulation of TRH expression in well-defined neuron types will facilitate the discovery of its role in food intake control in each anatomical scene.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Cuernavaca 62210, Mexico; (Y.V.); (A.E.C.T.); (A.R.R.); (R.M.U.); (P.J.-B.)
| |
Collapse
|
18
|
Petersen J, Ludwig MQ, Juozaityte V, Ranea-Robles P, Svendsen C, Hwang E, Kristensen AW, Fadahunsi N, Lund J, Breum AW, Mathiesen CV, Sachs L, Moreno-Justicia R, Rohlfs R, Ford JC, Douros JD, Finan B, Portillo B, Grose K, Petersen JE, Trauelsen M, Feuchtinger A, DiMarchi RD, Schwartz TW, Deshmukh AS, Thomsen MB, Kohlmeier KA, Williams KW, Pers TH, Frølund B, Strømgaard K, Klein AB, Clemmensen C. GLP-1-directed NMDA receptor antagonism for obesity treatment. Nature 2024; 629:1133-1141. [PMID: 38750368 PMCID: PMC11136670 DOI: 10.1038/s41586-024-07419-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.
Collapse
Affiliation(s)
- Jonas Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Q Ludwig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vaida Juozaityte
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eunsang Hwang
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Amalie W Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole Fadahunsi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alberte W Breum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie V Mathiesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luisa Sachs
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roger Moreno-Justicia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca Rohlfs
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - James C Ford
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Bryan Portillo
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Kyle Grose
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Jacob E Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Trauelsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annette Feuchtinger
- Core Facility Pathology & Tissue Analytics, Helmholtz Munich, Neuherberg, Germany
| | | | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten B Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kevin W Williams
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Klein
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Yuan P, Ma R, Hu L, Li R, Wang P, Lin S, Huang J, Wen H, Huang L, Li H, Feng B, Chen H, Liu Y, Zhang X, Lin Y, Xu S, Li J, Zhuo Y, Hua L, Che L, Wu D, Fang Z. Zearalenone Decreases Food Intake by Disrupting the Gut-Liver-Hypothalamus Axis Signaling via Bile Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8200-8213. [PMID: 38560889 DOI: 10.1021/acs.jafc.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Zearalenone (ZEN) is a mycotoxin that is harmful to humans and animals. In this study, female and male rats were exposed to ZEN, and the results showed that ZEN reduced the farnesoid X receptor (FXR) expression levels in the liver and disrupted the enterohepatic circulation of bile acids (BAs). A decrease in food intake induced by ZEN was negatively correlated with an increase in the level of total BAs. BA-targeted metabolomics revealed that ZEN increased glycochenodeoxycholic acid levels and decreased the ratio of conjugated BAs to unconjugated BAs, which further increased the hypothalamic FXR expression levels. Preventing the increase in total BA levels induced by ZEN via Lactobacillus rhamnosus GG intervention restored the appetite. In conclusion, ZEN disrupted the enterohepatic circulation of BAs to decrease the level of food intake. This study reveals a possible mechanism by which ZEN affects food intake and provides a new approach to decrease the toxic effects of ZEN.
Collapse
Affiliation(s)
- Peiqiang Yuan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Rongman Ma
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Liang Hu
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Ran Li
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Peng Wang
- College of Biology Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Sen Lin
- Key Laboratory of Urban Agriculture in South China, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Jiancai Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Hongmei Wen
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Lingjie Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Hua Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Hong Chen
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Yuntao Liu
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Xiaoling Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Lun Hua
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| |
Collapse
|
20
|
Fadahunsi N, Petersen J, Metz S, Jakobsen A, Vad Mathiesen C, Silke Buch-Rasmussen A, Kurgan N, Kjærgaard Larsen J, Andersen RC, Topilko T, Svendsen C, Apuschkin M, Skovbjerg G, Hendrik Schmidt J, Houser G, Elgaard Jager S, Bach A, Deshmukh AS, Kilpeläinen TO, Strømgaard K, Madsen KL, Clemmensen C. Targeting postsynaptic glutamate receptor scaffolding proteins PSD-95 and PICK1 for obesity treatment. SCIENCE ADVANCES 2024; 10:eadg2636. [PMID: 38427737 PMCID: PMC10906926 DOI: 10.1126/sciadv.adg2636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
Human genome-wide association studies (GWAS) suggest a functional role for central glutamate receptor signaling and plasticity in body weight regulation. Here, we use UK Biobank GWAS summary statistics of body mass index (BMI) and body fat percentage (BF%) to identify genes encoding proteins known to interact with postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors. Loci in/near discs large homolog 4 (DLG4) and protein interacting with C kinase 1 (PICK1) reached genome-wide significance (P < 5 × 10-8) for BF% and/or BMI. To further evaluate the functional role of postsynaptic density protein-95 (PSD-95; gene name: DLG4) and PICK1 in energy homeostasis, we used dimeric PSD-95/disc large/ZO-1 (PDZ) domain-targeting peptides of PSD-95 and PICK1 to demonstrate that pharmacological inhibition of PSD-95 and PICK1 induces prolonged weight-lowering effects in obese mice. Collectively, these data demonstrate that the glutamate receptor scaffolding proteins, PICK1 and PSD-95, are genetically linked to obesity and that pharmacological targeting of their PDZ domains represents a promising therapeutic avenue for sustained weight loss.
Collapse
Affiliation(s)
- Nicole Fadahunsi
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Sophia Metz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Jakobsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Vad Mathiesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Alberte Silke Buch-Rasmussen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Nigel Kurgan
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Kjærgaard Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Rita C. Andersen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Charlotte Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mia Apuschkin
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Grethe Skovbjerg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Gubra, Hørsholm, Denmark
| | - Jan Hendrik Schmidt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Grace Houser
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Elgaard Jager
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Atul S. Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L. Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Lorch CM, Hayes NW, Xia JL, Fleps SW, McMorrow HE, Province HS, Frydman JA, Parker JG, Beutler LR. Sucrose overconsumption impairs AgRP neuron dynamics and promotes palatable food intake. Cell Rep 2024; 43:113675. [PMID: 38224492 PMCID: PMC10922425 DOI: 10.1016/j.celrep.2024.113675] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/17/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
Rapid gut-brain communication is critical to maintain energy balance and is disrupted in diet-induced obesity. In particular, the role of carbohydrate overconsumption in the regulation of interoceptive circuits in vivo requires further investigation. Here, we report that an obesogenic high-sucrose diet (HSD) selectively blunts silencing of hunger-promoting agouti-related protein (AgRP) neurons following intragastric delivery of glucose, whereas we previously showed that overconsumption of a high-fat diet (HFD) selectively attenuates lipid-induced neural silencing. By contrast, both HSD and HFD reversibly dampen rapid AgRP neuron inhibition following chow presentation and promote intake of more palatable foods. Our findings reveal that excess sugar and fat pathologically modulate feeding circuit activity in both macronutrient-dependent and -independent ways and thus may additively exacerbate obesity.
Collapse
Affiliation(s)
- Carolyn M Lorch
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Nikolas W Hayes
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, IL 60611, USA; Interdepartmental Neuroscience Graduate Program, Northwestern University, Chicago, IL 60611, USA
| | - Jessica L Xia
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stefan W Fleps
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA
| | - Hayley E McMorrow
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, IL 60611, USA; Interdepartmental Neuroscience Graduate Program, Northwestern University, Chicago, IL 60611, USA
| | - Haley S Province
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, IL 60611, USA; Interdepartmental Neuroscience Graduate Program, Northwestern University, Chicago, IL 60611, USA
| | - Joshua A Frydman
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jones G Parker
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA
| | - Lisa R Beutler
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
22
|
Ameroso D, Rios M. Synaptic plasticity and the role of astrocytes in central metabolic circuits. WIREs Mech Dis 2024; 16:e1632. [PMID: 37833830 PMCID: PMC10842964 DOI: 10.1002/wsbm.1632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Neural circuits in the brain, primarily in the hypothalamus, are paramount to the homeostatic control of feeding and energy utilization. They integrate hunger, satiety, and body adiposity cues from the periphery and mediate the appropriate behavioral and physiological responses to satisfy the energy demands of the animal. Notably, perturbations in central homeostatic circuits have been linked to the etiology of excessive feeding and obesity. Considering the ever-changing energy requirements of the animal and required adaptations, it is not surprising that brain-feeding circuits remain plastic in adulthood and are subject to changes in synaptic strength as a consequence of nutritional status. Indeed, synapse density, probability of presynaptic transmitter release, and postsynaptic responses in hypothalamic energy balance centers are tailored to behavioral and physiological responses required to sustain survival. Mounting evidence supports key roles of astrocytes facilitating some of this plasticity. Here we discuss these synaptic plasticity mechanisms and the emerging roles of astrocytes influencing energy and glucose balance control in health and disease. This article is categorized under: Cancer > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Dominique Ameroso
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Maribel Rios
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
23
|
Mata-Pacheco V, Hernandez J, Varma N, Xu J, Sayers S, Le N, Wagner EJ. Dynamic, sex- and diet-specific pleiotropism in the PAC1 receptor-mediated regulation of arcuate proopiomelanocortin and Neuropeptide Y/Agouti related peptide neuronal excitability by anorexigenic ventromedial nucleus PACAP neurons. J Neuroendocrinol 2024; 36:e13357. [PMID: 38056947 DOI: 10.1111/jne.13357] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
This study furthers the investigation of how pituitary adenylate cyclase activating polypeptide (PACAP) and the PAC1 receptor (PAC1R) regulate the homeostatic energy balance circuitry. We hypothesized that apoptotic ablation of PACAP neurones in the hypothalamic ventromedial nucleus (VMN) would affect both energy intake and energy expenditure. We also hypothesized that selective PAC1R knockdown would impair the PACAP-induced excitation in anorexigenic proopiomelanocortin (POMC) neurones and inhibition of orexigenic neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurones in the hypothalamic arcuate nucleus (ARC). The results show CASPASE-3-induced ablation of VMN PACAP neurones leads to increased energy intake and meal frequency as well as decreased energy expenditure in lean animals. The effects were more robust in obese males, whereas we saw the opposite effects in obese females. We then utilized visualized whole-cell patch clamp recordings in hypothalamic slices. PAC1R knockdown in POMC neurones diminishes the PACAP-induced depolarization, increase in firing, decreases in energy intake and meal size, as well as increases in CO2 production and O2 consumption. Similarly, the lack of expression of the PAC1R in NPY/AgRP neurones greatly attenuates the PACAP-induced hyperpolarization, suppression of firing, decreases in energy intake and meal frequency, as well as increases in energy expenditure. The PACAP response in NPY/AgRP neurones switched from predominantly inhibitory to excitatory in fasted animals. Finally, the anorexigenic effect of PACAP was potentiated when oestradiol was injected into the ARC in ovariectomized females. This study demonstrates the critical role of anorexigenic VMN PACAP neurones and the PAC1R in exciting POMC and inhibiting NPY/AgRP neurons to control homeostatic feeding.
Collapse
Affiliation(s)
- Veronica Mata-Pacheco
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Jennifer Hernandez
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Nandini Varma
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Jenny Xu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Sarah Sayers
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Nikki Le
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Edward J Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
24
|
Zhou HY, Feng X, Wang LW, Zhou R, Sun H, Chen X, Lu RB, Huang Y, Guo Q, Luo XH. Bone marrow immune cells respond to fluctuating nutritional stress to constrain weight regain. Cell Metab 2023; 35:1915-1930.e8. [PMID: 37703873 DOI: 10.1016/j.cmet.2023.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
Weight regain after weight loss is a major challenge in the treatment of obesity. Immune cells adapt to fluctuating nutritional stress, but their roles in regulating weight regain remain unclear. Here, we identify a stem cell-like CD7+ monocyte subpopulation accumulating in the bone marrow (BM) of mice and humans that experienced dieting-induced weight loss. Adoptive transfer of CD7+ monocytes suppresses weight regain, whereas inducible depletion of CD7+ monocytes accelerates it. These cells, accumulating metabolic memories via epigenetic adaptations, preferentially migrate to the subcutaneous white adipose tissue (WAT), where they secrete fibrinogen-like protein 2 (FGL2) to activate the protein kinase A (PKA) signaling pathway and facilitate beige fat thermogenesis. Nevertheless, CD7+ monocytes gradually enter a quiescent state after weight loss, accompanied by increased susceptibility to weight regain. Notably, administration of FMS-like tyrosine kinase 3 ligand (FLT3L) remarkably rejuvenates CD7+ monocytes, thus ameliorating rapid weight regain. Together, our findings identify a unique bone marrow-derived metabolic-memory immune cell population that could be targeted to combat obesity.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Xu Feng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Li-Wen Wang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Heng Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Xin Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Ren-Bin Lu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, China.
| |
Collapse
|
25
|
Mirabella PN, Fenselau H. Advanced neurobiological tools to interrogate metabolism. Nat Rev Endocrinol 2023; 19:639-654. [PMID: 37674015 DOI: 10.1038/s41574-023-00885-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/08/2023]
Abstract
Engineered neurobiological tools for the manipulation of cellular activity, such as chemogenetics and optogenetics, have become a cornerstone of modern neuroscience research. These tools are invaluable for the interrogation of the central control of metabolism as they provide a direct means to establish a causal relationship between brain activity and biological processes at the cellular, tissue and organismal levels. The utility of these methods has grown substantially due to advances in cellular-targeting strategies, alongside improvements in the resolution and potency of such tools. Furthermore, the potential to recapitulate endogenous cellular signalling has been enriched by insights into the molecular signatures and activity dynamics of discrete brain cell types. However, each modulatory tool has a specific set of advantages and limitations; therefore, tool selection and suitability are of paramount importance to optimally interrogate the cellular and circuit-based underpinnings of metabolic outcomes within the organism. Here, we describe the key principles and uses of engineered neurobiological tools. We also highlight inspiring applications and outline critical considerations to be made when using these tools within the field of metabolism research. We contend that the appropriate application of these biotechnological advances will enable the delineation of the central circuitry regulating systemic metabolism with unprecedented potential.
Collapse
Affiliation(s)
- Paul Nicholas Mirabella
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
26
|
Gui Y, Dahir NS, Wu Y, Downing G, Sweeney P, Cone RD. Melanocortin-3 receptor expression in AgRP neurons is required for normal activation of the neurons in response to energy deficiency. Cell Rep 2023; 42:113188. [PMID: 37792535 PMCID: PMC10728878 DOI: 10.1016/j.celrep.2023.113188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
The melanocortin-3 receptor (MC3R) is a negative regulator of the central melanocortin circuitry via presynaptic expression on agouti-related protein (AgRP) nerve terminals, from where it regulates GABA release onto secondary MC4R-expressing neurons. However, MC3R knockout (KO) mice also exhibit defective behavioral and neuroendocrine responses to fasting. Here, we demonstrate that MC3R KO mice exhibit defective activation of AgRP neurons in response to fasting, cold exposure, or ghrelin while exhibiting normal inhibition of AgRP neurons by sensory detection of food in the ad libitum-fed state. Using a conditional MC3R KO model, we show that the control of AgRP neuron activation by fasting and ghrelin requires the specific presence of MC3R within AgRP neurons. Thus, MC3R is a crucial player in the responsiveness of the AgRP soma to both hormonal and neuronal signals of energy need.
Collapse
Affiliation(s)
- Yijun Gui
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Naima S Dahir
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Yanan Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Griffin Downing
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Patrick Sweeney
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, IL 61801-3633, USA
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-2216, USA.
| |
Collapse
|
27
|
Gou Y, Schwartz MW. How should we think about the unprecedented weight loss efficacy of incretin-mimetic drugs? J Clin Invest 2023; 133:e174597. [PMID: 37781919 PMCID: PMC10541183 DOI: 10.1172/jci174597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
|
28
|
Brüning JC, Fenselau H. Integrative neurocircuits that control metabolism and food intake. Science 2023; 381:eabl7398. [PMID: 37769095 DOI: 10.1126/science.abl7398] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023]
Abstract
Systemic metabolism has to be constantly adjusted to the variance of food intake and even be prepared for anticipated changes in nutrient availability. Therefore, the brain integrates multiple homeostatic signals with numerous cues that predict future deviations in energy supply. Recently, our understanding of the neural pathways underlying these regulatory principles-as well as their convergence in the hypothalamus as the key coordinator of food intake, energy expenditure, and glucose metabolism-have been revealed. These advances have changed our view of brain-dependent control of metabolic physiology. In this Review, we discuss new concepts about how alterations in these pathways contribute to the development of prevalent metabolic diseases such as obesity and type 2 diabetes mellitus and how this emerging knowledge may provide new targets for their treatment.
Collapse
Affiliation(s)
- Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- National Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Henning Fenselau
- Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Research Group Synaptic Transmission in Energy Homeostasis, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| |
Collapse
|
29
|
Zhang SX, Kim A, Madara JC, Zhu PK, Christenson LF, Lutas A, Kalugin PN, Jin Y, Pal A, Tian L, Lowell BB, Andermann ML. Competition between stochastic neuropeptide signals calibrates the rate of satiation. RESEARCH SQUARE 2023:rs.3.rs-3185572. [PMID: 37546985 PMCID: PMC10402269 DOI: 10.21203/rs.3.rs-3185572/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
We investigated how transmission of hunger- and satiety-promoting neuropeptides, NPY and αMSH, is integrated at the level of intracellular signaling to control feeding. Receptors for these peptides use the second messenger cAMP. How cAMP integrates opposing peptide signals to regulate energy balance, and the in vivo spatiotemporal dynamics of endogenous peptidergic signaling, remain largely unknown. We show that AgRP axon stimulation in the paraventricular hypothalamus evokes probabilistic NPY release that triggers stochastic cAMP decrements in downstream MC4R-expressing neurons (PVHMC4R). Meanwhile, POMC axon stimulation triggers stochastic, αMSH-dependent cAMP increments. Release of either peptide impacts a ~100 μm diameter region, and when these peptide signals overlap, they compete to control cAMP. The competition is reflected by hunger-state-dependent differences in the amplitude and persistence of cAMP transients: hunger peptides are more efficacious in the fasted state, satiety peptides in the fed state. Feeding resolves the competition by simultaneously elevating αMSH release and suppressing NPY release, thereby sustaining elevated cAMP in PVHMC4R neurons. In turn, cAMP potentiates feeding-related excitatory inputs and promotes satiation across minutes. Our findings highlight how biochemical integration of opposing, quantal peptide signals during energy intake orchestrates a gradual transition between stable states of hunger and satiety.
Collapse
Affiliation(s)
- Stephen X Zhang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Co-corresponding authors
| | - Angela Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Paula K Zhu
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lauren F Christenson
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew Lutas
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Present address: Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter N Kalugin
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA
| | - Yihan Jin
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Akash Pal
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Co-corresponding authors
| |
Collapse
|
30
|
Zhang SX, Kim A, Madara JC, Zhu PK, Christenson LF, Lutas A, Kalugin PN, Jin Y, Pal A, Tian L, Lowell BB, Andermann ML. Competition between stochastic neuropeptide signals calibrates the rate of satiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548551. [PMID: 37503012 PMCID: PMC10369917 DOI: 10.1101/2023.07.11.548551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We investigated how transmission of hunger- and satiety-promoting neuropeptides, NPY and αMSH, is integrated at the level of intracellular signaling to control feeding. Receptors for these peptides use the second messenger cAMP, but the messenger's spatiotemporal dynamics and role in energy balance are controversial. We show that AgRP axon stimulation in the paraventricular hypothalamus evokes probabilistic and spatially restricted NPY release that triggers stochastic cAMP decrements in downstream MC4R-expressing neurons (PVH MC4R ). Meanwhile, POMC axon stimulation triggers stochastic, αMSH-dependent cAMP increments. NPY and αMSH competitively control cAMP, as reflected by hunger-state-dependent differences in the amplitude and persistence of cAMP transients evoked by each peptide. During feeding bouts, elevated αMSH release and suppressed NPY release cooperatively sustain elevated cAMP in PVH MC4R neurons, thereby potentiating feeding-related excitatory inputs and promoting satiation across minutes. Our findings highlight how state-dependent integration of opposing, quantal peptidergic events by a common biochemical target calibrates energy intake.
Collapse
|
31
|
Costa-e-Sousa RH, Rorato R, Hollenberg AN, Vella KR. Regulation of Thyroid Hormone Levels by Hypothalamic Thyrotropin-Releasing Hormone Neurons. Thyroid 2023; 33:867-876. [PMID: 37166378 PMCID: PMC10354708 DOI: 10.1089/thy.2023.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Background: Thyrotropin-releasing hormone (TRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) have been identified as direct regulators of thyrotropin (TSH) and thyroid hormone (TH) levels. They play a significant role in context of negative feedback by TH at the level of TRH gene expression and during fasting when TH levels fall due, in part, to suppression of TRH gene expression. Methods: To test these functions directly for the first time, we used a chemogenetic approach and activated PVN TRH neurons in both fed and fasted mice. Next, to demonstrate the signals that regulate the fasting response in TRH neurons, we activated or inhibited agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons in the arcuate nucleus of the hypothalamus of fed or fasted mice, respectively. To determine if the same TRH neurons responsive to melanocortin signaling mediate negative feedback by TH, we disrupted the thyroid hormone receptor beta (TRβ) in all melanocortin 4 receptor (MC4R) neurons in the PVN. Results: Activation of TRH neurons led to increased TSH and TH levels within 2 hours demonstrating the specific role of PVN TRH neurons in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis. Moreover, activation of PVN TRH neurons prevented the fall in TH levels in fasting mice. Stimulation of AgRP/NPY neurons led to a fall in TH levels despite increasing feeding. Inhibition of these same neurons prevented the fall in TH levels during a fast presumably via their ability to directly regulate PVN TRH neurons via, in part, the MC4R. Surprisingly, TH-mediated feedback was not impaired in mice lacking TRβ in MC4R neurons. Conclusions: TRH neurons are major regulators of the HPT axis and the fasting-induced suppression of TH levels. The latter relies, at least in part, on the activation of AgRP/NPY neurons in the arcuate nucleus. Interestingly, present data do not support an important role for TRβ signaling in regulating MC4R neurons in the PVN. Thus, it remains possible that different subsets of TRH neurons in the PVN mediate responses to energy balance and to TH feedback.
Collapse
Affiliation(s)
- Ricardo H. Costa-e-Sousa
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Chobanian and Avedisian School of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Weill Cornell Medicine, New York, New York, USA
| | - Rodrigo Rorato
- Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Anthony N. Hollenberg
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Chobanian and Avedisian School of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Weill Cornell Medicine, New York, New York, USA
| | - Kristen R. Vella
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
32
|
Abstract
Dieting often fails in the long run becuase of an ever-growing urge to eat. In this issue of Cell Metabolism, Grzelka et al. unveil a brain circuit that is potentiated during caloric restriction and incites rebound increases in food consumption and body weight.
Collapse
Affiliation(s)
- Connor Laule
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute and Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|