1
|
Shang DF, Xu WQ, Zhao Q, Zhao CL, Wang SY, Han YL, Li HG, Liu MH, Zhao WX. Molecular mechanisms of pyroptosis in non-alcoholic steatohepatitis and feasible diagnosis and treatment strategies. Pharmacol Res 2025; 216:107754. [PMID: 40306603 DOI: 10.1016/j.phrs.2025.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Pyroptosis is a distinct form of cell death that plays a critical role in intensifying inflammatory responses. It primarily occurs via the classical pathway, non-classical pathway, caspase-3/6/7/8/9-mediated pathways, and granzyme-mediated pathways. Key effector proteins involved in the pyroptosis process include gasdermin family proteins and pannexin-1 protein. Pyroptosis is intricately linked to the onset and progression of non-alcoholic steatohepatitis (NASH). During the development of NASH, factors such as pyroptosis, innate immunity, lipotoxicity, endoplasmic reticulum stress, and gut microbiota imbalance interact and interweave, collectively driving disease progression. This review analyzes the molecular mechanisms of pyroptosis and its role in the pathogenesis of NASH. Furthermore, it explores potential diagnostic and therapeutic strategies targeting pyroptosis, offering new avenues for improving the diagnosis and treatment of NASH.
Collapse
Affiliation(s)
- Dong-Fang Shang
- Henan University of CM, Zhengzhou 450000, China; The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Wen-Qian Xu
- Henan University of CM, Zhengzhou 450000, China
| | - Qing Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Chen-Lu Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Si-Ying Wang
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Yong-Li Han
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - He-Guo Li
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Ming-Hao Liu
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Wen-Xia Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| |
Collapse
|
2
|
Morgenstern Y, Lee J, Na Y, Lieng BY, Ly NS, Gwynne WD, Hurren R, Ma L, Ling D, Gronda M, Arruda A, Frisch A, Zuckerman T, Ofran Y, Minden MD, Zhang L, O'Brien C, Quaile AT, Montenegro-Burke JR, Schimmer AD. Acute myeloid leukemia drug-tolerant persister cells survive chemotherapy by transiently increasing plasma membrane rigidity, that also increases their sensitivity to immune cell killing. Haematologica 2025; 110:893-903. [PMID: 39568440 PMCID: PMC11962361 DOI: 10.3324/haematol.2024.286018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
Resistance to chemotherapy remains a major hurdle to the cure of patients with acute myeloid leukemia (AML). Recent studies indicate that a minority of malignant cells, termed drug-tolerant persisters (DTP), stochastically upregulate stress pathways to evade cell death upon acute exposure to chemotherapy without acquiring new genetic mutations. This chemoresistant state is transient and the cells return to the baseline state after removal of chemotherapy. Nevertheless, the mechanisms employed by DTP to resist chemotherapy are not well understood and it is largely unknown whether these mechanisms are also seen in patients receiving chemotherapy. Here, we used leukemia cell lines, primary AML patients' samples and samples from patients with AML receiving systemic chemotherapy to study the DTP state. We demonstrated that a subset of AML cells transiently increases membrane rigidity to resist killing due to acute exposure to daunorubicin and Ara-C. Upon removal of the chemotherapy, membrane rigidity returned to baseline and the cells regained chemosensitivity. Although resistant to chemotherapy, the increased membrane rigidity rendered AML cells more susceptible to T-cell-mediated killing. Thus, we identified a novel mechanism by which DTP leukemic cells evade chemotherapy and a strategy to eradicate these persistent cells.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Drug Resistance, Neoplasm
- Cell Membrane/metabolism
- Cell Membrane/drug effects
- Cell Line, Tumor
- Daunorubicin/pharmacology
- Cytarabine/pharmacology
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Yael Morgenstern
- Princess Margaret Cancer Centre, University Health Network, Toronto
| | - JongBok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto
| | - Yoosu Na
- Toronto General Hospital Research Institute, University Health Network, Toronto
| | - Brandon Y Lieng
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto
| | - Nicholas S Ly
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto
| | - William D Gwynne
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto
| | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, Toronto
| | - Li Ma
- Princess Margaret Cancer Centre, University Health Network, Toronto
| | - Dakai Ling
- Princess Margaret Cancer Centre, University Health Network, Toronto
| | - Marcela Gronda
- Princess Margaret Cancer Centre, University Health Network, Toronto
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto
| | - Avraham Frisch
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Tsila Zuckerman
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Yishai Ofran
- Hematology and Stem cell transplantation department and the Eisenberg R-D Authority, Shaare Zedek medical center, Hebrew University Jerusalem, Israel
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto
| | | | - Andrew T Quaile
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto
| | | | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto.
| |
Collapse
|
3
|
Roy A, Hoff A, Her TK, Ariyaratne G, Gutiérrez RL, Tahawi MHDN, Rajagopalan KS, Brown MR, Omori K, Lewis-Brinkman S, Nguyen T, Soto-González A, Peterson QP, Matveyenko AV, Javeed N. Lipotoxicity Induces β-cell Small Extracellular Vesicle-Mediated β-cell Dysfunction in Male Mice. Endocrinology 2025; 166:bqaf067. [PMID: 40179251 PMCID: PMC12006739 DOI: 10.1210/endocr/bqaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/19/2024] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Chronically elevated circulating excess free fatty acids (ie, lipotoxicity) is a pathological process implicated in several metabolic disorders, including obesity-driven type 2 diabetes (T2D). Lipotoxicity exerts detrimental effects on pancreatic islet β-cells by reducing glucose-stimulated insulin secretion (GSIS), altering β-cell transcriptional identity, and promoting apoptosis. While β-cell-derived small extracellular vesicles (sEV) have been shown to contribute to β-cell failure in T2D, their specific role in lipotoxicity-mediated β-cell failure remains to be elucidated. In this work, we demonstrate that lipotoxicity enhances the release of sEVs from β-cells, which exhibit altered proteomic and lipidomic profiles. These palmitate (PAL)-exposed extracellular vesicles (EVs) induce β-cell dysfunction in healthy mouse and human islets and trigger significant islet transcriptional changes, including the upregulation of genes associated with the TGFβ/Smad3 pathway, as noted by RNA sequencing. Importantly, pharmacological inhibition of the TGFβI/II receptor improved PAL EV-induced β-cell dysfunction, underscoring their involvement in activating the TGFβ/Smad3 pathway during this process. We have comprehensively characterized lipotoxic β-cell sEVs and implicated their role in inducing β-cell functional failure in T2D. These findings highlight potential avenues for therapeutic interventions targeting sEV-mediated pathways to preserve β-cell health in metabolic disorders.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexandra Hoff
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tracy K Her
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Gallage Ariyaratne
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Roberto-León Gutiérrez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - M H D Noor Tahawi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Matthew R Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kazuno Omori
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Sean Lewis-Brinkman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Thanh Nguyen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Quinn P Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| | - Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Renzi G, Vlassakev I, Hansen M, Higos R, Lecoutre S, Elmastas M, Hodek O, Moritz T, Alaeddine LM, Frendo-Cumbo S, Dahlman I, Kerr A, Maqdasy S, Mejhert N, Rydén M. Epigenetic suppression of creatine kinase B in adipocytes links endoplasmic reticulum stress to obesity-associated inflammation. Mol Metab 2025; 92:102082. [PMID: 39675471 PMCID: PMC11731883 DOI: 10.1016/j.molmet.2024.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
In white adipose tissue, disturbed creatine metabolism through reduced creatine kinase B (CKB) transcription contributes to obesity-related inflammation. However, the mechanisms regulating CKB expression in human white adipocytes remain unclear. By screening conditions perturbed in obesity, we identified endoplasmic reticulum (ER) stress as a key suppressor of CKB transcription across multiple cell types. Through follow-up studies, we found that ER stress through the IRE1-XBP1s pathway, promotes CKB promoter methylation via the methyltransferase DNMT3A. This epigenetic change represses CKB transcription, shifting metabolism towards glycolysis and increasing the production of the pro-inflammatory chemokine CCL2. We validated our findings in vivo, demonstrating that individuals living with obesity show an inverse relationship between CKB expression and promoter methylation in white adipocytes, along with elevated CCL2 secretion. Overall, our study uncovers a regulatory axis where ER stress drives inflammation in obesity by reducing CKB abundance, and consequently altering the bioenergetic state of the cell.
Collapse
Affiliation(s)
- Gianluca Renzi
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Ivan Vlassakev
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Mattias Hansen
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Romane Higos
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Simon Lecoutre
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France
| | - Merve Elmastas
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Ondrej Hodek
- Swedish Metabolomics Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Thomas Moritz
- Swedish Metabolomics Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden; The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lynn M Alaeddine
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Scott Frendo-Cumbo
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Ingrid Dahlman
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Alastair Kerr
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden; Steno Diabetes Center, Copenhagen, Herlev, Denmark.
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, SE-141 83, Huddinge, Sweden; Steno Diabetes Center, Copenhagen, Herlev, Denmark.
| |
Collapse
|
5
|
Zhang X, Chang KM, Yu J, Loomba R. Unraveling Mechanisms of Genetic Risks in Metabolic Dysfunction-Associated Steatotic Liver Diseases: A Pathway to Precision Medicine. ANNUAL REVIEW OF PATHOLOGY 2025; 20:375-403. [PMID: 39854186 DOI: 10.1146/annurev-pathmechdis-111523-023430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly. In this review, we summarize evidence regarding genetic predisposition to MASLD drawn from family and twin studies. Significantly, we delve into detailed genetic variations associated with diverse pathogenic mechanisms driving MASLD. We highlight the interplay between these genetic variants and their connections with metabolic factors, the gut microbiome, and metabolites, which collectively influence MASLD progression. These discoveries are paving the way for precise medicine, including noninvasive diagnostics and therapies. The promising landscape of novel genetically informed drug targets such as RNA interference is explored. Many of these therapies are currently under clinical validation, raising hopes for more effective MASLD treatment.
Collapse
Affiliation(s)
- Xiang Zhang
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Kim C, Gabriel KR, Boone D, Brown MR, Oppenheimer K, Kost-Alimova M, Pablo JLB, Greka A. FAF2 is a bifunctional regulator of peroxisomal homeostasis and saturated lipid responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628015. [PMID: 39763943 PMCID: PMC11702540 DOI: 10.1101/2024.12.12.628015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Exposure to saturated fatty acids (SFAs), such as palmitic acid, can lead to cellular metabolic dysfunction known as lipotoxicity. Although canonical adaptive metabolic processes like lipid storage or desaturation are known cellular responses to saturated fat exposure, the link between SFA metabolism and organellar biology remains an area of active inquiry. We performed a genome-wide CRISPR knockout screen in human epithelial cells to identify modulators of SFA toxicity. The screen revealed peroxisomal proteins, especially those that impact ether lipid synthesis, as important regulators of lipotoxicity. We identified Fas-associated factor family member 2 (FAF2) as a critical bifunctional co-regulator of peroxisomal and fatty acid biology. We further uncovered a new biological function for the ubiquitin-regulatory X (UBX) and UAS thioredoxin-like domains of FAF2, demonstrating their requirement for peroxisomal protein abundance and SFA-induced cellular stress. Our work highlights the role of FAF2 in regulating peroxisomal abundance and function, and the peroxisome as a key organelle in the cellular response to SFAs.
Collapse
Affiliation(s)
- Choah Kim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA
| | - Katlyn R. Gabriel
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA
| | - Dylan Boone
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Katherine Oppenheimer
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA
| | | | | | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA
| |
Collapse
|
7
|
Ogura J, Yamanoi K, Ishida K, Nakamura E, Ito S, Aoyama N, Nakanishi Y, Menju T, Kawaguchi K, Hosoe Y, Taki M, Murakami R, Yamaguchi K, Hamanishi J, Mandai M. A stearate-rich diet and oleate restriction directly inhibit tumor growth via the unfolded protein response. Exp Mol Med 2024; 56:2659-2672. [PMID: 39617788 DOI: 10.1038/s12276-024-01356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 12/28/2024] Open
Abstract
Fatty acids are known to have significant effects on the properties of cancer cells. Therefore, these compounds have been incorporated into therapeutic strategies. However, few studies have examined the effects of individual fatty acids and their interactions in depth. This study analyzed the effects of various fatty acids on cancer cells and revealed that stearic acid, an abundant saturated fatty acid, had a stronger inhibitory effect on cell growth than did palmitic acid, which is also an abundant saturated fatty acid, by inducing DNA damage and apoptosis through the unfolded protein response (UPR) pathway. Intriguingly, the negative effects of stearate were reduced by the presence of oleate, a different type of abundant fatty acid. We combined a stearate-rich diet with the inhibition of stearoyl-CoA desaturase-1 to explore the impact of diet on tumor growth. This intervention significantly reduced tumor growth in both ovarian cancer models and patient-derived xenografts (PDXs), including those with chemotherapy resistance, notably by increasing stearate levels while reducing oleate levels within the tumors. Conversely, the negative effects of a stearate-rich diet were mitigated by an oleate-rich diet. This study revealed that dietary stearate can directly inhibit tumor growth through mechanisms involving DNA damage and apoptosis mediated by the UPR pathway. These results suggest that dietary interventions, which increase stearic acid levels while decreasing oleic acid levels, may be promising therapeutic strategies for cancer treatment. These results could lead to the development of new cancer treatment strategies.
Collapse
Affiliation(s)
- Jumpei Ogura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Kentaro Ishida
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eijiro Nakamura
- Department of Urology and Retroperitoneal Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Shinji Ito
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Aoyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kosuke Kawaguchi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
8
|
Zhang J, Lei J, Liu X, Zhang N, Wu L, Li Y. LC-MS simultaneous profiling of acyl-CoA and acyl-carnitine in dynamic metabolic status. Anal Chim Acta 2024; 1329:343235. [PMID: 39396298 DOI: 10.1016/j.aca.2024.343235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xudong Liu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Nan Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
9
|
Corbo JH, Chung J. Mechanisms of lipid droplet degradation. Curr Opin Cell Biol 2024; 90:102402. [PMID: 39053179 DOI: 10.1016/j.ceb.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Lipid droplets (LDs) are subcellular organelles that play an integral role in lipid metabolism by regulating the storage and release of fatty acids, which are essential for energy production and various cellular processes. Lipolysis and lipophagy are the two major LD degradation pathways that mediate the utilization of lipids stored in these organelles. Recent studies have further uncovered alternative pathways, including direct lysosomal LD degradation and LD exocytosis. Here, we highlight recent findings that dissect the molecular basis of these diverse LD degradation pathways. Then, we discuss speculations on the crosstalk among these pathways and the potential unconventional roles of LD degradation.
Collapse
Affiliation(s)
- J H Corbo
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - J Chung
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Jonker PB, Muir A. Metabolic ripple effects - deciphering how lipid metabolism in cancer interfaces with the tumor microenvironment. Dis Model Mech 2024; 17:dmm050814. [PMID: 39284708 PMCID: PMC11423921 DOI: 10.1242/dmm.050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Cancer cells require a constant supply of lipids. Lipids are a diverse class of hydrophobic molecules that are essential for cellular homeostasis, growth and survival, and energy production. How tumors acquire lipids is under intensive investigation, as these mechanisms could provide attractive therapeutic targets for cancer. Cellular lipid metabolism is tightly regulated and responsive to environmental stimuli. Thus, lipid metabolism in cancer is heavily influenced by the tumor microenvironment. In this Review, we outline the mechanisms by which the tumor microenvironment determines the metabolic pathways used by tumors to acquire lipids. We also discuss emerging literature that reveals that lipid availability in the tumor microenvironment influences many metabolic pathways in cancers, including those not traditionally associated with lipid biology. Thus, metabolic changes instigated by the tumor microenvironment have 'ripple' effects throughout the densely interconnected metabolic network of cancer cells. Given the interconnectedness of tumor metabolism, we also discuss new tools and approaches to identify the lipid metabolic requirements of cancer cells in the tumor microenvironment and characterize how these requirements influence other aspects of tumor metabolism.
Collapse
Affiliation(s)
- Patrick B Jonker
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Lee LE, Doke T, Mukhi D, Susztak K. The key role of altered tubule cell lipid metabolism in kidney disease development. Kidney Int 2024; 106:24-34. [PMID: 38614389 PMCID: PMC11193624 DOI: 10.1016/j.kint.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/15/2024]
Abstract
Kidney epithelial cells have very high energy requirements, which are largely met by fatty acid oxidation. Complex changes in lipid metabolism are observed in patients with kidney disease. Defects in fatty acid oxidation and increased lipid uptake, especially in the context of hyperlipidemia and proteinuria, contribute to this excess lipid build-up and exacerbate kidney disease development. Recent studies have also highlighted the role of increased de novo lipogenesis in kidney fibrosis. The defect in fatty acid oxidation causes energy starvation. Increased lipid uptake, synthesis, and lower fatty acid oxidation can cause toxic lipid build-up, reactive oxygen species generation, and mitochondrial damage. A better understanding of these metabolic processes may open new treatment avenues for kidney diseases by targeting lipid metabolism.
Collapse
Affiliation(s)
- Lauren E Lee
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
12
|
Obaseki E, Adebayo D, Bandyopadhyay S, Hariri H. Lipid droplets and fatty acid-induced lipotoxicity: in a nutshell. FEBS Lett 2024; 598:1207-1214. [PMID: 38281809 PMCID: PMC11126361 DOI: 10.1002/1873-3468.14808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity.
Collapse
Affiliation(s)
- Eseiwi Obaseki
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| | - Daniel Adebayo
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| | - Sumit Bandyopadhyay
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| | - Hanaa Hariri
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| |
Collapse
|
13
|
Nakamura M. Lipotoxicity as a therapeutic target in obesity and diabetic cardiomyopathy. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12568. [PMID: 38706718 PMCID: PMC11066298 DOI: 10.3389/jpps.2024.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Unhealthy sources of fats, ultra-processed foods with added sugars, and a sedentary lifestyle make humans more susceptible to developing overweight and obesity. While lipids constitute an integral component of the organism, excessive and abnormal lipid accumulation that exceeds the storage capacity of lipid droplets disrupts the intracellular composition of fatty acids and results in the release of deleterious lipid species, thereby giving rise to a pathological state termed lipotoxicity. This condition induces endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory responses, and cell death. Recent advances in omics technologies and analytical methodologies and clinical research have provided novel insights into the mechanisms of lipotoxicity, including gut dysbiosis, epigenetic and epitranscriptomic modifications, dysfunction of lipid droplets, post-translational modifications, and altered membrane lipid composition. In this review, we discuss the recent knowledge on the mechanisms underlying the development of lipotoxicity and lipotoxic cardiometabolic disease in obesity, with a particular focus on lipotoxic and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, United States
| |
Collapse
|
14
|
Engin AB. Mechanism of Obesity-Related Lipotoxicity and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:131-166. [PMID: 39287851 DOI: 10.1007/978-3-031-63657-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The link between cellular exposure to fatty acid species and toxicity phenotypes remains poorly understood. However, structural characterization and functional profiling of human plasma free fatty acids (FFAs) analysis has revealed that FFAs are located either in the toxic cluster or in the cluster that is transcriptionally responsive to lipotoxic stress and creates genetic risk factors. Genome-wide short hairpin RNA screen has identified more than 350 genes modulating lipotoxicity. Hypertrophic adipocytes in obese adipose are both unable to expand further to store excess lipids in the diet and are resistant to the antilipolytic action of insulin. In addition to lipolysis, the inability of packaging the excess lipids into lipid droplets causes circulating fatty acids to reach toxic levels in non-adipose tissues. Deleterious effects of accumulated lipid in non-adipose tissues are known as lipotoxicity. Although triglycerides serve a storage function for long-chain non-esterified fatty acid and their products such as ceramide and diacylglycerols (DAGs), overloading of palmitic acid fraction of saturated fatty acids (SFAs) raises ceramide levels. The excess DAG and ceramide load create harmful effects on multiple organs and systems, inducing chronic inflammation in obesity. Thus, lipotoxic inflammation results in β cells death and pancreatic islets dysfunction. Endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk) 1/2 signaling in adipocytes. However, palmitic acid-induced endoplasmic reticulum stress-c-Jun N-terminal kinase (JNK)-autophagy axis in hypertrophic adipocytes is a pro-survival mechanism against endoplasmic reticulum stress and cell death induced by SFAs. Endoplasmic reticulum-localized acyl-coenzyme A (CoA): glycerol-3-phosphate acyltransferase (GPAT) enzymes are mediators of lipotoxicity, and inhibiting these enzymes has therapeutic potential for lipotoxicity. Lipotoxicity increases the number of autophagosomes, which engulf palmitic acid, and thus suppress the autophagic turnover. Fatty acid desaturation promotes palmitate detoxification and storages into triglycerides. As therapeutic targets of glucolipotoxicity, in addition to caloric restriction and exercise, there are four different pharmacological approaches, which consist of metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, peroxisome proliferator-activated receptor-gamma (PPARγ) ligands thiazolidinediones, and chaperones are still used in clinical practice. Furthermore, induction of the brown fat-like phenotype with the mixture of eicosapentanoic acid and docosahexaenoic acid appears as a potential therapeutic application for treatment of lipotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
15
|
Zhan M, Liu X, Xia X, Yang Y, Xie Y, Zhang L, Lin C, Zhu J, Ding W, Xu S. Promotion of neuroinflammation by the glymphatic system: a new insight into ethanol extracts from Alisma orientale in alleviating obesity-associated cognitive impairment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155147. [PMID: 37864890 DOI: 10.1016/j.phymed.2023.155147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Obesity is one of the critical risk factors for cognitive dysfunction. The glymphatic system (GS) plays a key role in the pathogenesis of cognitive deficits. Alisma orientale has been shown to have anti-inflammatory and antihyperlipidemic effects, whereas its effects and underlying mechanisms on obesity-associated cognitive impairment (OACI) are unclear. PURPOSE This work aims to decipher the mechanism of ethanol extracts from Alisma orientale (EEAO) in restoring cognitive impairment in HFD-induced obese mice through a GS approach. METHODS The restoration of abnormal glucose/lipid metabolism and excess adipose deposition by EEAO were assayed by biochemical analysis and visually displayed by a micro-CT scanner and Oil Red O staining. Biochemical assays and Western blotting (WB) were used to measure cerebral blood flow (CBF), free fatty acid (FFAs) levels and the structural integrity of the blood-brain barrier (BBB). Microglial activation and neuroinflammation were assessed with immunohistochemistry staining, ELISA and WB. Moreover, GS function was determined by immunofluorescence staining, fluorescence tracer imaging and WB. Finally, the neuropathological features and cognitive functions were detested with immunohistochemistry staining, immunofluorescence and Morris Water Maze. RESULTS EEAO not only alleviated body weight, cerebral lipid accumulation and serum FFAs in HFD-induced obese mice, but also increased CBF and BBB integrity. EEAO suppressed microglial activation and lipid deposition in the hippocampus and reduced the level of inflammatory cytokines including IL-6, IL-1β and TNF-α in brain tissue. Interestingly, long-term HFD-induced GS dysfunction was significantly restored after EEAO intervention, and neuropathological lesions and cognitive deficits were also markedly rescued. CONCLUSION EEAO rescued the cognitive deficits of OACI by inhibiting neuroinflammation and restoring GS dysfunction, indicating a potential remedy for OACI.
Collapse
Affiliation(s)
- Meng Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiuwen Xia
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Youjun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunqiao Lin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiushuang Zhu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
16
|
Pilon M, Ruiz M. PAQR proteins and the evolution of a superpower: Eating all kinds of fats: Animals rely on evolutionarily conserved membrane homeostasis proteins to compensate for dietary variation. Bioessays 2023; 45:e2300079. [PMID: 37345585 DOI: 10.1002/bies.202300079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Recently published work showed that members of the PAQR protein family are activated by cell membrane rigidity and contribute to our ability to eat a wide variety of diets. Cell membranes are primarily composed of phospholipids containing dietarily obtained fatty acids, which poses a challenge to membrane properties because diets can vary greatly in their fatty acid composition and could impart opposite properties to the cellular membranes. In particular, saturated fatty acids (SFAs) can pack tightly and form rigid membranes (like butter at room temperature) while unsaturated fatty acids (UFAs) form more fluid membranes (like vegetable oils). Proteins of the PAQR protein family, characterized by the presence of seven transmembrane domains and a cytosolic N-terminus, contribute to membrane homeostasis in bacteria, yeasts, and animals. These proteins respond to membrane rigidity by stimulating fatty acid desaturation and incorporation of UFAs into phospholipids and explain the ability of animals to thrive on diets with widely varied fat composition. Also see the video abstract here: https://youtu.be/6ckcvaDdbQg.
Collapse
Affiliation(s)
- Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|