1
|
Standl E, Schnell O. Increased Risk of Cancer-An Integral Component of the Cardio-Renal-Metabolic Disease Cluster and Its Management. Cells 2025; 14:564. [PMID: 40277890 PMCID: PMC12025391 DOI: 10.3390/cells14080564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025] Open
Abstract
Cancer risk increases by 25 to 250% not only in dysmetabolic obese or overweight people with overt type 2 diabetes but also in individuals with intermediate hyperglycemia (pre-diabetes), with especially pronounced risk of pancreatic or hepatocellular cancer and obesity-related cancers, e.g., colorectal and kidney cancers, bladder cancer in men, and endometrial and breast cancers in women. Cancer may often be present before or upon the diagnosis of diabetes, as there is a common pathogenetic dysmetabolic-inflammatory background with insulin resistance for developing diabetes, cardiorenal disease, and cancer in parallel. The mechanisms involved relate to hyperinsulinemia as a potential carcinogenic priming event with ectopic visceral, hepatic, pancreatic, or renal fat accumulation that subsequently fuel inflammation and lipo-oncogenic signals, causing mitochondrial oxidative stress and deregulation. Moreover, hyperinsulinemia may foster mitogenic MAP kinase-related signaling, which can also occur via IGF1 receptors due to increased free IGF1 levels in obesity. Weight reduction of 10% or more in obese people with diabetes or pre-diabetes, e.g., through intensive lifestyle intervention or bariatric (=metabolic) surgery or through treatment with GLP-1 receptor agonists or metformin, is associated with significantly lower incidence of "diabesity"-associated cancers. In conclusion, there seems to be huge utility in adopting the new "Cardio-Renal-Metabolic-Cancer Syndrome" approach, also looking for cancer at the time of diabetes diagnosis in addition to proactively screening for undiagnosed dysglycemia.
Collapse
Affiliation(s)
- Eberhard Standl
- Forschergruppe Diabetes e.V. at Helmholtz Center Munich, Ingolstaedter Landstraße 1, Neuherberg, 85764 Munich, Germany
| | | |
Collapse
|
2
|
Wang Y, Xie L, Gu Y, Jin H, Yang J, Liu Q, Zhang X. Complex interplay between type 2 diabetes mellitus and pancreatic cancer: insights from observational and mendelian randomization analyses. BMC Cancer 2025; 25:556. [PMID: 40148833 PMCID: PMC11951798 DOI: 10.1186/s12885-025-13976-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND To investigate the causal relationship between type 2 diabetes mellitus (T2DM), pancreatic cancer (PC) risk and identify the mediating effects of various risk factors on that relationship. METHODS 581 PC patients and 582 healthy controls who visited our center from January 2013 to December 2023 were included in this retrospective study. Multivariable logistic regression was performed to evaluate the association between T2DM and PC through odds ratios (ORs) and 95% confidence intervals (CIs). Mendelian randomization (MR) studies were then conducted to explore the causal relationship between T2DM and PC, and causal mediation analysis (CMA) to examine the mediating role of common risk factors. RESULTS After adjusting for confounding factors, retrospective analysis revealed significant association between new-onset diabetes mellitus (NODM) and PC risk, with insulin treatment also linked to increased PC development. The standard inverse-variance weighted (IVW) method indicated that genetic susceptibility to T2DM was associated with an increased risk of developing PC (OR = 1.11; 95% CI = 1.034-1.193). Furthermore, MR showed T2DM, insulin treatment, FGF-4, and sulfhydryl oxidase 2 may be independently associated with the prevalence of PC. Specially, CMA demonstrated that insulin treatment, FGF4, and sulfhydryl oxidase 2 mediate the pathway from T2DM to PC, contributing 56.8%, 55.8%, and 5.9% of the total effect, respectively. CONCLUSION This study supports the association between T2DM, specifically NODM, and increased PC risk, with insulin therapy, FGF4, and sulfhydryl oxidase 2 mediating this pathway. Further research is required to elucidate the mechanisms underlying these mediating effects. CLINICAL TRIAL NUMBER not applicable.
Collapse
Affiliation(s)
- Yuxin Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Xie
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310006, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Hangzhou, 310006, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310006, China.
| | - Xiaofeng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310006, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, 310058, China.
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Hangzhou, 310006, China.
| |
Collapse
|
3
|
Yao Z, Qin D, Cao J, Gao C, Xi P, Li S, Wei R. Genetically proxied therapeutic inhibition of antihypertensive drug targets and risk of pancreatic cancer: a mendelian randomization analysis. BMC Cancer 2025; 25:476. [PMID: 40087664 PMCID: PMC11909985 DOI: 10.1186/s12885-025-13824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Conventional epidemiological studies have reported inconsistent results regarding the potential adverse effects of long-term use of antihypertensive drugs on cancer risk. Nevertheless, evidence of their impact on pancreatic cancer risk is limited and deserves further elucidation. METHODS We selected genetic variants from the genes encoding the target proteins (angiotensin-converting enzyme, beta-1 adrenergic receptor, and solute carrier family 12 member 3) of the examined antihypertensive drugs as instruments based on expression quantitative trait loci (eQTL) studies. Genetic summary statistics of blood pressure and pancreatic cancer were obtained from genome-wide association studies (GWASs) in Europeans and East Asians. Inverse-variance weight and MR-Egger methods were employed to estimate the effect of genetic variations in the drug targets on pancreatic cancer risk, and meta-analysis was used to combine the results from 3 independent datasets. Positive control analysis was conducted by using Wald ratio test to justify the genetic instruments of the drug by demonstrating the expected effect on the blood pressure which has an established causal relationship with the drug of interest. RESULTS Genetically proxied ACEIs were associated with lower pancreatic risk (OR = 0.506, 95% CI: 0.284-0.901, P = 0.021; OR = 0.265, 95% CI: 0.094-0.751, P = 0.012; OR = 0.236, 95% CI:0.078-0.712, P = 0.010, respectively) in 3 independent datasets and the combined results were validated in a meta-analysis using a random effects model (OR = 0.37, 95% CI: 0.22-0.64, P < 0.01) or fixed effects model (OR = 0.39, 95% CI: 0.25-0.62, P < 0.01). Other drug targets did not show consistent significant associations with pancreatic cancer risk in all 3 independent datasets. CONCLUSIONS Our study indicated that genetically proxied therapeutic inhibition of ACE was associated with a lower risk of pancreatic cancer, which may have translational potential in clinical practice. However, further long-term randomized controlled trials and observational studies are needed to clarify the effect of ACEIs on the pancreatic cancer risk.
Collapse
Affiliation(s)
- Zehui Yao
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Dailei Qin
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Jianzhong Cao
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chun Gao
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Pu Xi
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shengping Li
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Ran Wei
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
4
|
Hu C, Chen Y, Yin X, Xu R, Yin C, Wang C, Zhao Y. Pancreatic endocrine and exocrine signaling and crosstalk in physiological and pathological status. Signal Transduct Target Ther 2025; 10:39. [PMID: 39948335 PMCID: PMC11825823 DOI: 10.1038/s41392-024-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/16/2025] Open
Abstract
The pancreas, an organ with dual functions, regulates blood glucose levels through the endocrine system by secreting hormones such as insulin and glucagon. It also aids digestion through the exocrine system by secreting digestive enzymes. Complex interactions and signaling mechanisms between the endocrine and exocrine functions of the pancreas play a crucial role in maintaining metabolic homeostasis and overall health. Compelling evidence indicates direct and indirect crosstalk between the endocrine and exocrine parts, influencing the development of diseases affecting both. From a developmental perspective, the exocrine and endocrine parts share the same origin-the "tip-trunk" domain. In certain circumstances, pancreatic exocrine cells may transdifferentiate into endocrine-like cells, such as insulin-secreting cells. Additionally, several pancreatic diseases, including pancreatic cancer, pancreatitis, and diabetes, exhibit potential relevance to both endocrine and exocrine functions. Endocrine cells may communicate with exocrine cells directly through cytokines or indirectly by regulating the immune microenvironment. This crosstalk affects the onset and progression of these diseases. This review summarizes the history and milestones of findings related to the exocrine and endocrine pancreas, their embryonic development, phenotypic transformations, signaling roles in health and disease, the endocrine-exocrine crosstalk from the perspective of diseases, and potential therapeutic targets. Elucidating the regulatory mechanisms of pancreatic endocrine and exocrine signaling and provide novel insights for the understanding and treatment of diseases.
Collapse
Grants
- National High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
- cNational High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
Collapse
Affiliation(s)
- Chenglin Hu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chenxue Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
5
|
Wang J, Xu K, Zhou C, Wang X, Zuo J, Zeng C, Zhou P, Gao X, Zhang L, Wang X. A novel model based on clinical and computed tomography (CT) indices to predict the risk factors of postoperative major complications in patients undergoing pancreaticoduodenectomy. PeerJ 2024; 12:e18753. [PMID: 39713149 PMCID: PMC11663404 DOI: 10.7717/peerj.18753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024] Open
Abstract
Background Postoperative complications are prone to occur in patients after radical pancreaticoduodenectomy (PD). This study aimed to construct and validate a model for predicting postoperative major complications in patients after PD. Methods The clinical data of 360 patients who underwent PD were retrospectively collected from two centers between January 2019 and December 2023. Visceral adipose volume (VAV) and subcutaneous adipose volume (SAV) were measured using three-dimensional (3D) computed tomography (CT) reconstruction. According to the Clavien-Dindo classification system, the postoperative complications were graded. Subsequently, a predictive model was constructed based on the results of least absolute shrinkage and selection operator (LASSO) multivariate logistic regression analysis and stepwise (stepAIC) selection. The nomogram was internally validated by the training and test cohort. The discriminatory ability and clinical utility of the nomogram were evaluated by area under the receiver operating characteristic (ROC) curve (AUC), calibration curve, and decision curve analysis (DCA). Results The major complications occurred in 13.3% (n = 48) of patients after PD. The nomogram revealed that high VAV/SAV, high system inflammation response index (SIRI), high triglyceride glucose-body mass index (TyG-BMI), low prognostic nutritional index (PNI) and CA199 ≥ 37 were independent risk factors for major complications. The C-index of this model was 0.854 (95%CI [0.800-0.907]), showing excellent discrimination. The calibration curve demonstrated satisfactory concordance between nomogram predictions and actual observations. The DCA curve indicated the substantial clinical utility of the nomogram. Conclusion The model based on clinical and CT indices demonstrates good predictive performance and clinical benefit for major complications in patients undergoing PD.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kangjing Xu
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Changsheng Zhou
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinbo Wang
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Junbo Zuo
- Department of General Surgery, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Chenghao Zeng
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Pinwen Zhou
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuejin Gao
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Li Zhang
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinying Wang
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Lyu H, Kong J, Chen J, Zhang R, Xiao S, Guo D, Zhang Q, Chen XZ, Tang J, Zhou C. The Emerging Scenario of Ferroptosis in Pancreatic Cancer Tumorigenesis and Treatment. Int J Mol Sci 2024; 25:13334. [PMID: 39769097 PMCID: PMC11727763 DOI: 10.3390/ijms252413334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/05/2025] Open
Abstract
Pancreatic cancer remains one of the most lethal forms of cancer. Currently, there is a lack of effective drug treatments for pancreatic cancer. However, as a newly discovered form of non-apoptotic cell death, ferroptosis has garnered increasing attention in relation to pancreatic cancer. Understanding the role of ferroptosis in the tumorigenesis and treatment of pancreatic cancer may enable more effective clinical trials and treatments for pancreatic cancer and may minimize side effects or restrict the emergence of drug resistance. In this review, we summarize the current knowledge regarding the process and underlying mechanisms of ferroptosis, as well as its dual role in both promoting tumorigenesis and facilitating treatment strategies for pancreatic cancer. Additionally, how ferroptosis is implicated in the development of pancreatitis and insulin resistance, indicating that ferroptosis may play an important role in the risk of pancreatitis- and insulin-resistance-related pancreatic cancers, is also addressed.
Collapse
Affiliation(s)
- Hao Lyu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jinghua Kong
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jiasi Chen
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qi Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Cefan Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
7
|
Garcia CC, Venkat A, McQuaid DC, Agabiti S, Tong A, Cardone RL, Starble R, Sogunro A, Jacox JB, Ruiz CF, Kibbey RG, Krishnaswamy S, Muzumdar MD. Beta cells are essential drivers of pancreatic ductal adenocarcinoma development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626079. [PMID: 39677599 PMCID: PMC11642786 DOI: 10.1101/2024.11.29.626079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Pancreatic endocrine-exocrine crosstalk plays a key role in normal physiology and disease. For instance, endocrine islet beta (β) cell secretion of insulin or cholecystokinin (CCK) promotes progression of pancreatic adenocarcinoma (PDAC), an exocrine cell-derived tumor. However, the cellular and molecular mechanisms that govern endocrine-exocrine signaling in tumorigenesis remain incompletely understood. We find that β cell ablation impedes PDAC development in mice, arguing that the endocrine pancreas is critical for exocrine tumorigenesis. Conversely, obesity induces β cell hormone dysregulation, alters CCK-dependent peri-islet exocrine cell transcriptional states, and enhances islet proximal tumor formation. Single-cell RNA-sequencing, in silico latent-space archetypal and trajectory analysis, and genetic lineage tracing in vivo reveal that obesity stimulates postnatal immature β cell expansion and adaptation towards a pro-tumorigenic CCK+ state via JNK/cJun stress-responsive signaling. These results define endocrine-exocrine signaling as a driver of PDAC development and uncover new avenues to target the endocrine pancreas to subvert exocrine tumorigenesis.
Collapse
|
8
|
Wu R, Zhu H, He Q, Yuan T, Yang B. Metabolic reprogramming in KRAS-mutant cancers: Proven targetable vulnerabilities and potential therapeutic strategies. Drug Discov Today 2024; 29:104220. [PMID: 39481592 DOI: 10.1016/j.drudis.2024.104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Kras (Ki-ras2 Kirsten rat sarcoma viral oncogene homolog), one of the most frequently mutated oncogenes in the human genome, is considered 'untargetable'. Although specific KRASG12C inhibitors have been developed, their overall impact is limited, highlighting the need for further research on targeting KRAS-mutant cancers. Metabolic abnormalities are key hallmarks of cancer, with KRAS-driven tumors exhibiting traits like glycolysis upregulation, glutamine addiction, lipid droplet accumulation, highly active macropinocytosis, and metabolic reprogramming-associated tumor microenvironment remodeling. Targeting these unique metabolic characteristics offers a promising strategy for new cancer treatments. This review summarizes recent advances in our understanding of the metabolic network in KRAS-mutated tumor cells, discusses potential targetable vulnerabilities, and outlines clinical developments in relevant therapies, while also addressing challenges to improve strategies against these aggressive cancers.
Collapse
Affiliation(s)
- Ruilin Wu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Yuan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China.
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Cortez NE, Bacha TA, Ead AS, Rodriguez Lanzi C, Lacroix C, Franceschetti A, Hong BV, Matsukuma K, Mackenzie GG. The Impact of a Ketogenic Diet on Late-Stage Pancreatic Carcinogenesis in Mice: Efficacy and Safety Studies. Nutrients 2024; 16:3919. [PMID: 39599705 PMCID: PMC11597385 DOI: 10.3390/nu16223919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND High-fat diets (HFDs) have been associated with an increased risk of pancreatic cancer. In contrast, ketogenic diets (KDs) have been shown to display anti-tumor characteristics. The objective of this work was to evaluate the efficacy of a KD on late-stage pancreatic carcinogenesis in a genetically modified mouse model of pancreatic cancer [LSL-KrasG12D/+; Ptf1-Cre (KC) mice], as well as its liver safety, and to compare it to that of an HFD. METHODS Six-month-old female and male KC mice were randomly allocated to either a control diet (CD) (%kcal: 20% fat, 15% protein, 65% carbohydrates), an HFD (%kcal: 40% fat, 15% protein, 45% carbohydrate) or a KD (%kcal: 84% fat, 15% protein, 1% carbohydrate) and fed these diets for 6 months. RESULTS HFD-fed, but not KD-fed, mice showed a 15% increase in body weight, plus elevated serum insulin (2.4-fold increase) and leptin (2.9-fold increase) levels, compared to CD-fed mice. At the pancreas level, no differences in pancreatic cancer incidence rates were observed among the diet groups. Regarding the liver safety profile, the HFD-fed mice had higher serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), when compared to the CD and KD groups. In addition, upon histologic examination, an HFD, but not a KD, showed a ~2-fold increase in both macro- and microsteatosis, as well as 35% and 32% higher levels of TLR4 and NF-κB activation, respectively, compared to CD-fed mice. CONCLUSIONS In summary, although a KD intervention alone did not prevent pancreatic carcinogenesis, our data suggests that a KD modulates insulin signaling and hepatic lipid metabolism, highlighting its beneficial effects on healthspan and liver function when compared to an HFD.
Collapse
Affiliation(s)
- Natalia E. Cortez
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
- Department of Clinical and Biological Sciences, 10125 Turin, Italy
| | - Tarek A. Bacha
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
| | - Aya Samir Ead
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
| | - Cecilia Rodriguez Lanzi
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
| | - Cassandra Lacroix
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
| | - Anais Franceschetti
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
| | - Brian V. Hong
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
| | - Karen Matsukuma
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA;
- Davis Comprehensive Cancer Center, University of California, Sacramento, CA 95817, USA
| | - Gerardo G. Mackenzie
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
- Davis Comprehensive Cancer Center, University of California, Sacramento, CA 95817, USA
| |
Collapse
|
10
|
Wlodarczyk B, Durko L, Walczak K, Talar-Wojnarowska R, Malecka-Wojciesko E. Select Endocrine Disorders and Exosomes in Early PDAC Diagnosis. Int J Mol Sci 2024; 25:12159. [PMID: 39596226 PMCID: PMC11594802 DOI: 10.3390/ijms252212159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Disturbances in carbohydrate metabolism are suggested to be the early symptoms of pancreatic ductal adenocarcinoma (PDAC). The accumulated data suggests that endocrine function-related biomarkers may represent a breakthrough in the early detection of PDAC. Factors which may predispose one to the development of PDAC are insulin resistance and hyperinsulinemia. Elevated insulin levels induce the onset of carcinogenesis by altering the differentiation and function of islet cells through stimulating growth factors, including insulin-like growth factors (IGFs). Impaired β cell function, along with the impact of PDAC-released factors (e.g., adrenomedullin (ADM), IGF-1, and macrophage inhibitory factor (MIF) on pancreatic islets, may contribute to the induction of diabetes associated with PDAC. Recently, exosomes have attracted worldwide attention due to their role in varied features of cell function, particularly in cancer progression. Exosomes comprise of small extracellular vesicles produced by almost all cells. These vesicles contain a vast array of biomolecules, including proteins and microRNAs. Exosomes participate in cancer growth and promote angiogenesis. They promote tumorigenesis and metastasis, and are associated with the acquisition of cancer cells resistant to chemotherapy. Data have been accumulating recently on the role of exosomes in the rapid recognition, prognosis and potential therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Barbara Wlodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| | - Lukasz Durko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| | - Konrad Walczak
- Department of Internal Diseases and Nephrodiabetology, Medical University of Lodz, 90-549 Lodz, Poland
| | | | - Ewa Malecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
11
|
Chen Y, Yin X, Xu R, Ruze R, Song J, Yin C, Hu C, Wang C, Xu Q, Zhao Y. Cancer-Associated Endocrine Cells Participate in Pancreatic Carcinogenesis. Gastroenterology 2024; 167:1167-1182.e23. [PMID: 39048054 DOI: 10.1053/j.gastro.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND & AIMS The pancreas is composed of endocrine and exocrine parts, and its interlacing structure indicates potential interaction between endocrine and exocrine cells. Although the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) has been well characterized, the role of pancreatic endocrine cells during carcinogenesis is relatively understudied. METHODS The changes of endocrine cells in PDAC by single-cell transcriptome sequencing, spatial transcriptome sequencing, and multiplex immunohistochemistry were depicted. After that, the interaction between pancreatic carcinogenesis and endocrine changes was explored in orthotopic transplantation mice, KrasLSL-G12DPdx1-Cre mice, and KrasLSL-G12Dp53LoxPPdx1-CreER mice. Finally, we proved the mechanism of the interaction between endocrine and exocrine parts of the pancreas through islet isolation, co-culture in vitro and co-injection in vivo. RESULTS Pancreatic endocrine cells displayed significantly different transcriptomic characteristics and increased interaction with exocrine part in PDAC. Specifically, among all of the changes, pancreatic polypeptide-positive cells showed a sharp increment accompanied by the progression of the cancer lesion, which might be derived from the transdifferentiation of α and β cells. Interestingly, it was proved that PDAC cells were able to induce the transdifferentiation of pancreatic α cells and β cells into glucagon-pancreatic polypeptide and insulin-pancreatic polypeptide double-positive cells, which further promoted carcinogenesis and development of PDAC in a paracrine-dependent manner and formed a reciprocal interaction. CONCLUSIONS This study systematically maps the alteration of pancreatic endocrine cells in PDAC and elucidates the potential endocrine-exocrine interaction mechanisms during PDAC carcinogenesis. In addition, cancer-associated endocrine cells are defined and characterized, thereby further broadening the composition of PDAC microenvironment.
Collapse
MESH Headings
- Animals
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Mice
- Humans
- Tumor Microenvironment
- Coculture Techniques
- Single-Cell Analysis
- Cell Transdifferentiation
- Insulin-Secreting Cells/pathology
- Insulin-Secreting Cells/metabolism
- Transcriptome
- Cell Line, Tumor
- Glucagon-Secreting Cells/pathology
- Glucagon-Secreting Cells/metabolism
- Carcinogenesis/pathology
- Carcinogenesis/genetics
- Gene Expression Regulation, Neoplastic
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/genetics
- Gene Expression Profiling
- Disease Models, Animal
- Mice, Transgenic
Collapse
Affiliation(s)
- Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Chenxue Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Chenglin Hu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China; Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China.
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Avogaro A. Diabetes and obesity: the role of stress in the development of cancer. Endocrine 2024; 86:48-57. [PMID: 38831236 PMCID: PMC11445296 DOI: 10.1007/s12020-024-03886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Diabesity is a condition where an individual has both diabetes and obesity, which can lead to severe complications including cardiovascular disease, a leading cause of mortality. Recently, cancer has become a leading cause of excess hospitalizations, and both diabetes and obesity are associated with a higher risk of developing several types of cancer. In this review, we propose that chronic stress significantly increases this association. Managing diabetes and obesity is challenging as they both cause significant distress. The relationship between stress and cancer is interconnected, with anxiety and depression being common in cancer patients. Cancer diagnosis and treatment can cause lasting changes in the body's neuroendocrine system, with stress causing an excessive release of catecholamines and prostaglandins in patients undergoing cancer surgery, which promotes the spread of cancer to other parts of the body. Furthermore, stress could significantly increase the risk of cancer in patients with diabetes, obesity, or both.
Collapse
Affiliation(s)
- Angelo Avogaro
- Department of Medicine.(DIMED), Unit of Metabolic Disease, University of Padova University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
| |
Collapse
|
13
|
Noè R, Carrer A. Diet predisposes to pancreatic cancer through cellular nutrient sensing pathways. FEBS Lett 2024; 598:2470-2481. [PMID: 38886112 DOI: 10.1002/1873-3468.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Pancreatic cancer is a lethal disease with limited effective treatments. A deeper understanding of its molecular mechanisms is crucial to reduce incidence and mortality. Epidemiological evidence suggests a link between diet and disease risk, though dietary recommendations for at-risk individuals remain debated. Here, we propose that cell-intrinsic nutrient sensing pathways respond to specific diet-derived cues to facilitate oncogenic transformation of pancreatic epithelial cells. This review explores how diet influences pancreatic cancer predisposition through nutrient sensing and downstream consequences for (pre-)cancer cell biology. We also examine experimental evidence connecting specific food intake to pancreatic cancer progression, highlighting nutrient sensing as a promising target for therapeutic development to mitigate disease risk.
Collapse
Affiliation(s)
- Roberta Noè
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| | - Alessandro Carrer
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
14
|
Jacquemin P. On the Effects of Gene Mutations in Pancreatic Tumorigenesis, Depending on the Cell Types and Times When They Are Induced. Cell Mol Gastroenterol Hepatol 2024; 18:101394. [PMID: 39288898 PMCID: PMC11519692 DOI: 10.1016/j.jcmgh.2024.101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Affiliation(s)
- Patrick Jacquemin
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium.
| |
Collapse
|
15
|
Patterson L, Toledo FGS, Maitra A, Chari ST. Pancreatic Cancer-Induced Metabolic Dysregulation Syndrome: Clinical Profile, Proposed Mechanisms, and Unanswered Questions. Gastroenterology 2024:S0016-5085(24)05412-X. [PMID: 39222716 DOI: 10.1053/j.gastro.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Affiliation(s)
- LaNisha Patterson
- Department of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anirban Maitra
- Department of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suresh T Chari
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
16
|
Saeki K, Wood IS, Wang WCK, Patil S, Sun Y, Schaeffer DF, Su GH, Kopp JL. Acvr1b Loss Increases Formation of Pancreatic Precancerous Lesions From Acinar and Ductal Cells of Origin. Cell Mol Gastroenterol Hepatol 2024; 18:101387. [PMID: 39111635 PMCID: PMC11404226 DOI: 10.1016/j.jcmgh.2024.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma can develop from precursor lesions, including pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasm (IPMN). Previous studies indicated that loss of Acvr1b accelerates the Kras-mediated development of papillary IPMN in the mouse pancreas; however, the cell type predominantly affected by these genetic changes remains unclear. METHODS We investigated the contribution of cellular origin by inducing IPMN associated mutations (KRASG12D expression and Acvr1b loss) specifically in acinar (Ptf1aCreER;KrasLSL-G12D;Acvr1bfl/fl mice) or ductal (Sox9CreER;KrasLSL-G12D;Acvr1bfl/fl mice) cells in mice. We then performed magnetic resonance imaging and a thorough histopathologic analysis of their pancreatic tissues. RESULTS The loss of Acvr1b increased the development of pancreatic intraepithelial neoplasia and IPMN-like lesions when either acinar or ductal cells expressed a Kras mutation. Magnetic resonance imaging, immunohistochemistry, and histology revealed large IPMN-like lesions in these mice that exhibited features of flat, gastric epithelium. In addition, cyst formation in both mouse models was accompanied by chronic pancreatitis. Experimental acute pancreatitis accelerated the development of large mucinous cysts and pancreatic intraepithelial neoplasia when acinar, but not ductal, cells expressed mutant Kras and lost Acvr1b. CONCLUSIONS These findings indicate that loss of Acvr1b in the presence of the Kras oncogene promotes the development of large and small precancerous lesions from both ductal and acinar cells. However, the IPMN-like phenotype was not equivalent to that observed when these mutations were made in all pancreatic cells during development. Our study underscores the significance of the cellular context in the initiation and progression of precursor lesions from exocrine cells.
Collapse
Affiliation(s)
- Kiyoshi Saeki
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York; Department of Otolaryngology and Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Ian S Wood
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Wei Chuan Kevin Wang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Shilpa Patil
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Yanping Sun
- Oncology Precision Therapeutics and Imaging Core (OPTIC), Columbia University Medical Center, New York, New York
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Gloria H Su
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York; Department of Otolaryngology and Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Janel L Kopp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
17
|
Wu H, Fu M, Wu M, Cao Z, Zhang Q, Liu Z. Emerging mechanisms and promising approaches in pancreatic cancer metabolism. Cell Death Dis 2024; 15:553. [PMID: 39090116 PMCID: PMC11294586 DOI: 10.1038/s41419-024-06930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Pancreatic cancer is an aggressive cancer with a poor prognosis. Metabolic abnormalities are one of the hallmarks of pancreatic cancer, and pancreatic cancer cells can adapt to biosynthesis, energy intake, and redox needs through metabolic reprogramming to tolerate nutrient deficiency and hypoxic microenvironments. Pancreatic cancer cells can use glucose, amino acids, and lipids as energy to maintain malignant growth. Moreover, they also metabolically interact with cells in the tumour microenvironment to change cell fate, promote tumour progression, and even affect immune responses. Importantly, metabolic changes at the body level deserve more attention. Basic research and clinical trials based on targeted metabolic therapy or in combination with other treatments are in full swing. A more comprehensive and in-depth understanding of the metabolic regulation of pancreatic cancer cells will not only enrich the understanding of the mechanisms of disease progression but also provide inspiration for new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hao Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengdi Fu
- Department of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qiyao Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
18
|
Song Y, Jiang L, Han Y, Zhang S, Li S. Triglyceride-glucose index and glycemic dynamics in pancreatic ductal adenocarcinoma: implications for disease progression and prognosis. J Transl Med 2024; 22:708. [PMID: 39080703 PMCID: PMC11290143 DOI: 10.1186/s12967-024-05524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND To elucidate the relationship between the triglyceride-glycemic index (TyG) and clinical characteristics of pancreatic ductal adenocarcinoma (PDAC). METHODS A total of 1,594 individuals diagnosed with pancreatic and periampullary neoplasms were categorized into four groups: PDAC-early (n = 403), locally advanced PDAC (LAPC, n = 315), PDAC-late with distant metastasis (n = 371), and other tumor types (n = 505). TyG-high was defined as a TyG index greater than 8.81 in males and 8.73 in females. RESULTS The prevalence of TyG-high status was highest in PDAC-early (68.48%), followed by LAPC (53.33%), and lowest in PDAC-late (44.47%). TyG-high status significantly predicted worse PDAC prognosis (P = 0.0166), particularly in PDAC-late (P = 0.0420). Despite similar blood glucose levels across PDAC groups (P = 0.897), PDAC-early patients showed significantly higher rates of glycemic disturbances (56.33% vs. 32.28%) and TyG-high status (68.48% vs. 47.13%) compared to those with other tumors. Progressive increases in glycemic disturbances and TyG-high status were observed from benign to pre-malignant lesions and PDAC-early. PDAC-early patients at the pancreatic head exhibited higher rates of glycemic disturbances (58.12% vs. 33.33%, P < 0.0001), larger pancreatic duct diameters (0.4056 cm vs. 0.3398 cm, P = 0.0043), and poorer prognosis compared to periampullary cancers, although the TyG-high rate and body mass index were similar. CONCLUSION The TyG index exhibits a complex association with PDAC stages, profoundly shaping glycemic profiles. At the initial stages of PDAC, a notable elevation in TyG-high status and glycemic disturbances is observed. However, in advanced PDAC, while the TyG-high rate diminishes, abnormal glucose levels persist.
Collapse
Affiliation(s)
- Yunda Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Lingmin Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yuanxia Han
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Subo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, China.
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, China.
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
19
|
Fu Y, Tao J, Liu T, Liu Y, Qiu J, Su D, Wang R, Luo W, Cao Z, Weng G, Zhang T, Zhao Y. Unbiasedly decoding the tumor microenvironment with single-cell multiomics analysis in pancreatic cancer. Mol Cancer 2024; 23:140. [PMID: 38982491 PMCID: PMC11232163 DOI: 10.1186/s12943-024-02050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a poor prognosis and limited therapeutic options. Research on the tumor microenvironment (TME) of PDAC has propelled the development of immunotherapeutic and targeted therapeutic strategies with a promising future. The emergence of single-cell sequencing and mass spectrometry technologies, coupled with spatial omics, has collectively revealed the heterogeneity of the TME from a multiomics perspective, outlined the development trajectories of cell lineages, and revealed important functions of previously underrated myeloid cells and tumor stroma cells. Concurrently, these findings necessitated more refined annotations of biological functions at the cell cluster or single-cell level. Precise identification of all cell clusters is urgently needed to determine whether they have been investigated adequately and to identify target cell clusters with antitumor potential, design compatible treatment strategies, and determine treatment resistance. Here, we summarize recent research on the PDAC TME at the single-cell multiomics level, with an unbiased focus on the functions and potential classification bases of every cellular component within the TME, and look forward to the prospects of integrating single-cell multiomics data and retrospectively reusing bulk sequencing data, hoping to provide new insights into the PDAC TME.
Collapse
Affiliation(s)
- Yifan Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tao Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruobing Wang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhe Cao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guihu Weng
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
20
|
Li J, Sun L, Bian F, Pandol SJ, Li L. Emerging approaches for the development of artificial islets. SMART MEDICINE 2024; 3:e20230042. [PMID: 39188698 PMCID: PMC11235711 DOI: 10.1002/smmd.20230042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/05/2024] [Indexed: 08/28/2024]
Abstract
The islet of Langerhans, functioning as a "mini organ", plays a vital role in regulating endocrine activities due to its intricate structure. Dysfunction in these islets is closely associated with the development of diabetes mellitus (DM). To offer valuable insights for DM research and treatment, various approaches have been proposed to create artificial islets or islet organoids with high similarity to natural islets, under the collaborative effort of biologists, clinical physicians, and biomedical engineers. This review investigates the design and fabrication of artificial islets considering both biological and tissue engineering aspects. It begins by examining the natural structures and functions of native islets and proceeds to analyze the protocols for generating islets from stem cells. The review also outlines various techniques used in crafting artificial islets, with a specific focus on hydrogel-based ones. Additionally, it provides a concise overview of the materials and devices employed in the clinical applications of artificial islets. Throughout, the primary goal is to develop artificial islets, thereby bridging the realms of developmental biology, clinical medicine, and tissue engineering.
Collapse
Affiliation(s)
- Jingbo Li
- Department of EndocrinologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Lingyu Sun
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Feika Bian
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Stephen J. Pandol
- Division of GastroenterologyDepartment of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Ling Li
- Department of EndocrinologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
21
|
Stangis MM, Chen Z, Min J, Glass SE, Jackson JO, Radyk MD, Hoi XP, Brennen WN, Yu M, Dinh HQ, Coffey RJ, Shrubsole MJ, Chan KS, Grady WM, Yegnasubramanian S, Lyssiotis CA, Maitra A, Halberg RB, Dey N, Lau KS. The Hallmarks of Precancer. Cancer Discov 2024; 14:683-689. [PMID: 38571435 PMCID: PMC11170686 DOI: 10.1158/2159-8290.cd-23-1550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Research on precancers, as defined as at-risk tissues and early lesions, is of high significance given the effectiveness of early intervention. We discuss the need for risk stratification to prevent overtreatment, an emphasis on the role of genetic and epigenetic aging when considering risk, and the importance of integrating macroenvironmental risk factors with molecules and cells in lesions and at-risk normal tissues for developing effective intervention and health policy strategies.
Collapse
Affiliation(s)
- Mary M. Stangis
- Department of Oncology – McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
- Department of Medicine – Gastroenterology Division, University of Wisconsin-Madison
- Carbone Cancer Center, University of Wisconsin-Madison
| | - Zhengyi Chen
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine
- Epithelial Biology Center, Vanderbilt University Medical Center
| | - Jimin Min
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center
| | - Sarah E. Glass
- Epithelial Biology Center, Vanderbilt University Medical Center
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine
| | - Jordan O. Jackson
- Department of Laboratory Medicine and Pathology, University of Washington
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
| | - Megan D. Radyk
- Department of Molecular & Integrative Physiology, University of Michigan Medical School
| | - Xen Ping Hoi
- Department of Urology, Houston Methodist Research Institute
- Neal Cancer Center, Houston Methodist Research Institute
| | - W. Nathaniel Brennen
- Department of Oncology – Genitourinary Cancer Disease Division, Johns Hopkins Medicine
- Department of Pharmacology and Molecular Sciences, Johns Hopkins Medicine
- Department of Urology, Johns Hopkins Medicine
| | - Ming Yu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
- Department of Medicine – Division of Gastroenterology, University of Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Huy Q. Dinh
- Department of Oncology – McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison
| | - Robert J. Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine
- Department of Medicine – Division of Gastroenterology, Hepatology, & Nutrition, Vanderbilt University Medical Center
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center
| | - Martha J. Shrubsole
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center
- Department of Medicine – Division of Epidemiology, Vanderbilt University Medical Center
| | - Keith S. Chan
- Department of Urology, Houston Methodist Research Institute
- Neal Cancer Center, Houston Methodist Research Institute
| | - William M. Grady
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
- Department of Medicine – Division of Gastroenterology, University of Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Srinivasan Yegnasubramanian
- Department of Oncology – Genitourinary Cancer Disease Division, Johns Hopkins Medicine
- Radiation Oncology and Molecular Radiation Sciences – Molecular Radiation Science Division, Johns Hopkins Medicine
- Department of Pathology – Kidney-Urologic Pathology Division, Johns Hopkins Medicine
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School
- Internal Medicine – Division of Gastroenterology, University of Michigan Medical School
- Rogel Cancer Center, University of Michigan Medical School
| | - Anirban Maitra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center
| | - Richard B. Halberg
- Department of Oncology – McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
- Department of Medicine – Gastroenterology Division, University of Wisconsin-Madison
- Carbone Cancer Center, University of Wisconsin-Madison
| | - Neelendu Dey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
- Department of Medicine – Division of Gastroenterology, University of Washington
| | - Ken S. Lau
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine
- Epithelial Biology Center, Vanderbilt University Medical Center
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center
- Department of Surgery, Vanderbilt University Medical Center
| |
Collapse
|
22
|
Schnell O, Barnard-Kelly K, Battelino T, Ceriello A, Larsson HE, Fernández-Fernández B, Forst T, Frias JP, Gavin JR, Giorgino F, Groop PH, Heerspink HJL, Herzig S, Hummel M, Huntley G, Ibrahim M, Itzhak B, Jacob S, Ji L, Kosiborod M, Lalic N, Macieira S, Malik RA, Mankovsky B, Marx N, Mathieu C, Müller TD, Ray K, Rodbard HW, Rossing P, Rydén L, Schumm-Draeger PM, Schwarz P, Škrha J, Snoek F, Tacke F, Taylor B, Jeppesen BT, Tesfaye S, Topsever P, Vilsbøll T, Yu X, Standl E. CVOT Summit Report 2023: new cardiovascular, kidney, and metabolic outcomes. Cardiovasc Diabetol 2024; 23:104. [PMID: 38504284 PMCID: PMC10953147 DOI: 10.1186/s12933-024-02180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
The 9th Cardiovascular Outcome Trial (CVOT) Summit: Congress on Cardiovascular, Kidney, and Metabolic Outcomes was held virtually on November 30-December 1, 2023. This reference congress served as a platform for in-depth discussions and exchange on recently completed outcomes trials including dapagliflozin (DAPA-MI), semaglutide (SELECT and STEP-HFpEF) and bempedoic acid (CLEAR Outcomes), and the advances they represent in reducing the risk of major adverse cardiovascular events (MACE), improving metabolic outcomes, and treating obesity-related heart failure with preserved ejection fraction (HFpEF). A broad audience of endocrinologists, diabetologists, cardiologists, nephrologists and primary care physicians participated in online discussions on guideline updates for the management of cardiovascular disease (CVD) in diabetes, heart failure (HF) and chronic kidney disease (CKD); advances in the management of type 1 diabetes (T1D) and its comorbidities; advances in the management of CKD with SGLT2 inhibitors and non-steroidal mineralocorticoid receptor antagonists (nsMRAs); and advances in the treatment of obesity with GLP-1 and dual GIP/GLP-1 receptor agonists. The association of diabetes and obesity with nonalcoholic steatohepatitis (NASH; metabolic dysfunction-associated steatohepatitis, MASH) and cancer and possible treatments for these complications were also explored. It is generally assumed that treatment of chronic diseases is equally effective for all patients. However, as discussed at the Summit, this assumption may not be true. Therefore, it is important to enroll patients from diverse racial and ethnic groups in clinical trials and to analyze patient-reported outcomes to assess treatment efficacy, and to develop innovative approaches to tailor medications to those who benefit most with minimal side effects. Other keys to a successful management of diabetes and comorbidities, including dementia, entail the use of continuous glucose monitoring (CGM) technology and the implementation of appropriate patient-physician communication strategies. The 10th Cardiovascular Outcome Trial Summit will be held virtually on December 5-6, 2024 ( http://www.cvot.org ).
Collapse
Affiliation(s)
- Oliver Schnell
- Forschergruppe Diabetes e. V, Helmholtz Center Munich, Ingolstaedter Landstraße 1, 85764, Neuherberg (Munich), Germany.
| | | | - Tadej Battelino
- University Medical Center, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Helena Elding Larsson
- Department of Pediatrics, Skåne University Hospital, Malmö/Lund, Sweden
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | | | - Thomas Forst
- CRS Clinical Research Services Mannheim GmbH, Mannheim, Germany
| | | | - James R Gavin
- Emory University School of Medicine, Atlanta, GA, United States of America
| | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Per-Henrik Groop
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Diabetes, Central Medical School, Monash University, Melbourne, Australia
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan Herzig
- Division Diabetic Complications, Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
| | - Michael Hummel
- Forschergruppe Diabetes e. V, Helmholtz Center Munich, Ingolstaedter Landstraße 1, 85764, Neuherberg (Munich), Germany
| | - George Huntley
- Diabetes Leadership Council, Indianapolis, IN, United States of America
| | - Mahmoud Ibrahim
- Center for Diabetes Education, EDC, Charlotte, NC, United States of America
| | - Baruch Itzhak
- Clalit Health Services, Haifa, Israel
- Technion Faculty of Medicine, Haifa, Israel
| | - Stephan Jacob
- Practice for Prevention and Therapy and Cardio-Metabolic Institute, Villingen-Schwenningen, Germany
| | - Linong Ji
- Peking University People's Hospital, Xicheng District, Beijing, China
| | - Mikhail Kosiborod
- Department of Cardiovascular Disease, Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States of America
| | - Nebosja Lalic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Rayaz A Malik
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Ar-Rayyan, Doha, Qatar
| | - Boris Mankovsky
- Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Nikolaus Marx
- Clinic for Cardiology, Pneumology, Angiology and Internal Intensive Care Medicine (Medical Clinic I), RWTH Aachen University Hospital, Aachen, Germany
| | - Chantal Mathieu
- Department of Endocrinology, Catholic University Leuven, Leuven, Belgium
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Munich, Germany
- Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Kausik Ray
- School of Public Health, Imperial College London, London, United Kingdom
| | - Helena W Rodbard
- Endocrine and Metabolic Consultants, Rockville, MD, United States of America
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars Rydén
- Department of Medicine K2, Karolinska Institute, Stockholm, Sweden
| | | | - Peter Schwarz
- Medical Clinic III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jan Škrha
- Third Medical Department and Laboratory for Endocrinology and Metabolism, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Frank Snoek
- Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Bruce Taylor
- Diabetes Patient Advocacy Coalition, Tampa, FL, United States of America
| | | | - Solomon Tesfaye
- Sheffield Teaching Hospitals, Sheffield, United Kingdom
- University of Sheffield, Sheffield, United Kingdom
| | - Pinar Topsever
- Department of Family Medicine, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Türkiye
| | - Tina Vilsbøll
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Eberhard Standl
- Forschergruppe Diabetes e. V, Helmholtz Center Munich, Ingolstaedter Landstraße 1, 85764, Neuherberg (Munich), Germany
| |
Collapse
|
23
|
Vélez-Bonet E, Gumpper-Fedus K, Cruz-Monserrate Z. Exploring the Role of Hyperinsulinemia in Obesity-Associated Tumor Development. Cancer Res 2024; 84:351-352. [PMID: 38095504 PMCID: PMC11472301 DOI: 10.1158/0008-5472.can-23-3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024]
Abstract
Although there has been a long-standing connection between hyperinsulinemia and cancer development, there is a lack of understanding of the role of the insulin receptor on cells that can become cancerous. In a recent issue of Cell Metabolism, Zhang and colleagues, using a diet-induced obesity mouse model, identified a direct function of insulin receptors on pancreatic acinar cells expressing a KRASG12D mutation in promoting obesity-associated pancreatic cancer. Furthermore, insulin receptor signaling from hyperinsulinemia promoted the secretion of digestive enzymes that contributed to acinar to ductal metaplasia. These findings highlight an important connection between obesity, diabetes, and pancreatic tumor development and suggest potential strategies for obesity-associated cancer prevention targeting the insulin receptor signaling pathways.
Collapse
Affiliation(s)
- Ericka Vélez-Bonet
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
- Program of Human Nutrition, College of Education and Human Ecology, The Ohio State University Columbus, OH
| | - Kristyn Gumpper-Fedus
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
24
|
Sbeit W, Gershovitz G, Shahin A, Shhadeh S, Salman M, Basheer M, Khoury T. Obesity Is Associated with Distal Migration of Pancreatic Adenocarcinoma to Body and Tail: A Multi-Center Study. Cancers (Basel) 2024; 16:359. [PMID: 38254848 PMCID: PMC10814908 DOI: 10.3390/cancers16020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Pancreatic adenocarcinoma (PAC) is one of the most lethal types of cancer. Most cases of PAC occur in the head of the pancreas. Given the proximity of the pancreatic head to the bile duct, most patients present clinically during early stages of the disease, while distally located PAC could have delayed clinical presentation. (2) Aims: To assess predictors of non-head PAC. (3) Methods: A retrospective multicenter study was conducted, including all patients who had endoscopic ultrasound (EUS) for pancreatic masses and who had histologic confirmation of PAC. (4) Results: Of the 151 patients included, 92 (60.9%) had pancreatic head cancer, and 59 (39.1%) had distal pancreatic cancer. PAC at body was the most common location in the distal PAC group (31 patients (52.5%)). Logistic regression analysis demonstrated a significant association of obesity with distal migration of PAC (OR 4.44, 95% CI 1.15-17.19, p = 0.03), while none of the other assessed parameters showed a significant association. Notably, abdominal pain was more significantly associated with distal PAC vs. head location (OR 2.85, 95% CI 1.32-6.16, p = 0.008). (5) Conclusions: Obesity shows a significant association as a clinical predictor of distal PAC. Further studies are needed to better explore this association.
Collapse
Affiliation(s)
- Wisam Sbeit
- Gastroenterology Department, Galilee Medical Center, Nahariya 22100, Israel; (W.S.); (G.G.); (A.S.); (S.S.); (M.B.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Gil Gershovitz
- Gastroenterology Department, Galilee Medical Center, Nahariya 22100, Israel; (W.S.); (G.G.); (A.S.); (S.S.); (M.B.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Amir Shahin
- Gastroenterology Department, Galilee Medical Center, Nahariya 22100, Israel; (W.S.); (G.G.); (A.S.); (S.S.); (M.B.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Shhady Shhadeh
- Gastroenterology Department, Galilee Medical Center, Nahariya 22100, Israel; (W.S.); (G.G.); (A.S.); (S.S.); (M.B.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Mahmoud Salman
- Department of Surgery, Shaare Zedek Medical Center, Jerusalem 91120, Israel;
| | - Maamoun Basheer
- Gastroenterology Department, Galilee Medical Center, Nahariya 22100, Israel; (W.S.); (G.G.); (A.S.); (S.S.); (M.B.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Tawfik Khoury
- Gastroenterology Department, Galilee Medical Center, Nahariya 22100, Israel; (W.S.); (G.G.); (A.S.); (S.S.); (M.B.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|