1
|
Jiang H, Ye J. The Warburg effect: The hacked mitochondrial-nuclear communication in cancer. Semin Cancer Biol 2025; 112:93-111. [PMID: 40147702 DOI: 10.1016/j.semcancer.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Mitochondrial-nuclear communication is vital for maintaining cellular homeostasis. This communication begins with mitochondria sensing environmental cues and transmitting signals to the nucleus through the retrograde cascade, involving metabolic signals such as substrates for epigenetic modifications, ATP and AMP levels, calcium flux, etc. These signals inform the nucleus about the cell's metabolic state, remodel epigenome and regulate gene expression, and modulate mitochondrial function and dynamics through the anterograde feedback cascade to control cell fate and physiology. Disruption of this communication can lead to cellular dysfunction and disease progression, particularly in cancer. The Warburg effect is the metabolic hallmark of cancer, characterized by disruption of mitochondrial respiration and increased lactate generation from glycolysis. This metabolic reprogramming rewires retrograde signaling, leading to epigenetic changes and dedifferentiation, further reprogramming mitochondrial function and promoting carcinogenesis. Understanding these processes and their link to tumorigenesis is crucial for uncovering tumorigenesis mechanisms. Therapeutic strategies targeting these disrupted pathways, including metabolic and epigenetic components, provide promising avenues for cancer treatment.
Collapse
Affiliation(s)
- Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Zeng Y, Jiang X. Lactylation: From Homeostasis to Pathological Implications and Therapeutic Strategies. MedComm (Beijing) 2025; 6:e70226. [PMID: 40443721 PMCID: PMC12122191 DOI: 10.1002/mco2.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 06/02/2025] Open
Abstract
Lactylation, a recently identified post-translational modification, represents a groundbreaking addition to the epigenetic landscape, revealing its pivotal role in gene regulation and metabolic adaptation. Unlike traditional modifications, lactylation directly links metabolic intermediates, such as lactate, to protein function and cellular behavior. Emerging evidence highlights the critical involvement of lactylation in diverse biological processes, including immune response modulation, cellular differentiation, and tumor progression. However, its regulatory mechanisms, biological implications, and disease associations remain poorly understood. This review systematically explores the enzymatic and nonenzymatic mechanisms underlying protein lactylation, shedding light on the interplay between cellular metabolism and epigenetic control. We comprehensively analyze its biological functions in normal physiology, such as immune homeostasis and tissue repair, and its dysregulation in pathological contexts, including cancer, inflammation, and metabolic disorders. Moreover, we discuss advanced detection technologies and potential therapeutic interventions targeting lactylation pathways. By integrating these insights, this review aims to bridge critical knowledge gaps and propose future directions for research. Highlighting lactylation's multifaceted roles in health and disease, this review provides a timely resource for understanding its clinical implications, particularly as a novel target for precision medicine in metabolic and oncological therapies.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan ProvinceThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Yixiao Yuan
- Department of Medicine, UF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
| | - Fan Zhou
- Department of Hematologythe Second Hospital Affiliated to Kunming Medical UniversityKunmingChina
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Jun Pu
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan ProvinceThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Yong Zeng
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan ProvinceThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Xiulin Jiang
- Department of Medicine, UF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
3
|
Guo D, Meng Y, Zhao G, Wu Q, Lu Z. Moonlighting functions of glucose metabolic enzymes and metabolites in cancer. Nat Rev Cancer 2025; 25:426-446. [PMID: 40175621 DOI: 10.1038/s41568-025-00800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 04/04/2025]
Abstract
Glucose metabolic enzymes and their metabolites not only provide energy and building blocks for synthesizing macromolecules but also possess non-canonical or moonlighting functions in response to extracellular and intracellular signalling. These moonlighting functions modulate various cellular activities, including gene expression, cell cycle progression, DNA repair, autophagy, senescence and apoptosis, cell proliferation, remodelling of the tumour microenvironment and immune responses. These functions integrate glucose metabolism with other essential cellular activities, driving cancer progression. Targeting these moonlighting functions could open new therapeutic avenues and lead to cancer-specific treatments.
Collapse
Affiliation(s)
- Dong Guo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Meng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Gaoxiang Zhao
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Qingang Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Zhang L, Yang Y, Li Y, Wang C, Bian C, Wang H, Wang F. Epigenetic regulation of histone modifications in glioblastoma: recent advances and therapeutic insights. Biomark Res 2025; 13:80. [PMID: 40450300 DOI: 10.1186/s40364-025-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 05/14/2025] [Indexed: 06/03/2025] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor, characterized by its aggressive behavior, limited treatment options, and poor prognosis. Despite advances in surgery, radiotherapy, and chemotherapy, the median survival of GBM patients remains disappointingly short. Recent studies have underscored the critical role of histone modifications in GBM malignant progression and therapy resistance. Histones, protein components of chromatin, undergo various modifications, including acetylation and methylation. These modifications significantly affect gene expression, thereby promoting tumorigenesis and resistance to therapy. Targeting histone modifications has emerged as a promising therapeutic approach. Numerous pre-clinical studies have evaluated histone modification agents in GBM, including histone deacetylase inhibitors and histone methyltransferase inhibitors. These studies demonstrate that modulating histone modifications can alter gene expression patterns, inhibit tumor growth, induce apoptosis, and sensitize tumor cells to conventional treatments. Some agents have advanced to clinical trials, aiming to translate preclinical efficacy into clinical benefit. However, clinical outcomes remain suboptimal, as many agents fail to significantly improve GBM patient prognosis. These challenges are attributed to the complexity of histone modification networks and the adaptive responses of the tumor microenvironment. This review provides a comprehensive overview of epigenetic regulation mechanisms involving histone modifications in GBM, covering their roles in tumor development, tumor microenvironment remodeling, and therapeutic resistance. Additionally, the review discusses current clinical trials targeting histone modifications in GBM, highlighting successes, limitations, and future perspectives.
Collapse
Affiliation(s)
- Li Zhang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanchu Li
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenyu Wang
- Yuexiu District, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan 2 Road, Guangzhou City, Guangdong Province, China
| | - Chenbin Bian
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongbin Wang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Wang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Wang X, Guo Y, Fu Y, Zhang C, Chen W, Tang X, Yu Y, Chen Y, Ding G, Zhang J. Acyl post-translational modification of proteins by metabolites in cancer cells. Cell Death Discov 2025; 11:247. [PMID: 40399304 PMCID: PMC12095473 DOI: 10.1038/s41420-025-02535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 05/01/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025] Open
Abstract
The relationship between metabolism and cancer is a major focus of current research, with an increasing number of studies highlighting the significant role of various metabolites in tumor cells, such as lactate, acetic acid, lysine, serine, tryptophan, palmitic acid, succinate, etc. These metabolites are involved in numerous biological processes within tumor cells, including transcription, translation, post-translational modification (PTM) of proteins, cell cycle regulation, and metabolism, thereby modulating tumor proliferation, migration, and drug resistance. Metabolite-mediated PTMs of proteins undoubtedly play a vital role in tumor cells, affecting both histones and non-histone proteins, covering modifications such as lactylation, crotonylation, acetylation, palmitoylation, and succinylation. Therefore, this review aims to elaborate on the abnormal levels of some major metabolites, related metabolic pathways, and the latest protein acyl PTMs they mediate in tumor cells, providing new insights for diagnosis and therapy in the field of oncology.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yining Guo
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yutian Fu
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zhang
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiwu Chen
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyu Tang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanlan Yu
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Yicheng Chen
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Guoqing Ding
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Jie Zhang
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Roh YJ, Kim H, Choi DW. Metabolic Sparks in the Liver: Metabolic and Epigenetic Reprogramming in Hepatic Stellate Cells Activation and Its Implications for Human Metabolic Diseases. Diabetes Metab J 2025; 49:368-385. [PMID: 40367987 PMCID: PMC12086559 DOI: 10.4093/dmj.2025.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025] Open
Abstract
The liver plays a fundamental role in metabolic homeostasis, integrating systemic fuel utilization with the progression of various metabolic diseases. Hepatic stellate cells (HSCs) are a key nonparenchymal cell type in the liver, which is essential for maintaining hepatic architecture in their quiescent state. However, upon chronic liver injury or metabolic stress, HSCs become activated, leading to excessive extracellular matrix deposition and pro-fibrotic signaling, ultimately positioning them as key players in liver pathology. Emerging evidence highlights the critical roles of metabolic reprogramming and epigenetic regulation in HSCs activation. HSCs activation is driven by both intrinsic fuel metabolism reprogramming and extrinsic metabolic cues from the microenvironment, while the metabolic intermediates actively reshape the epigenetic landscape, reinforcing fibrogenic transcriptional programs. In this review, we summarize recent advances in understanding how metabolic and epigenetic alterations drive HSCs activation, thereby shaping transcriptional programs that sustain fibrosis, and discuss potential therapeutic strategies to target these interconnected pathways in human metabolic diseases.
Collapse
Affiliation(s)
- Yeon Jin Roh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Hyeonki Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Dong Wook Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
7
|
Han M, He W, Zhu W, Guo L. The role of protein lactylation in brain health and disease: current advances and future directions. Cell Death Discov 2025; 11:213. [PMID: 40307243 PMCID: PMC12043837 DOI: 10.1038/s41420-025-02408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/19/2025] [Accepted: 03/18/2025] [Indexed: 05/02/2025] Open
Abstract
Lactate, the end product of glycolysis, plays a crucial role in cellular signaling and metabolism. The discovery of lactylation, a novel post-translational modification, has uncovered the role of lactate in regulating diseases, especially in the brain. Lactylation connects genetic encoding with protein function, thereby influencing key biological processes. Increasing evidence supports lactate-mediated lactylation as a critical modulator in neurological disorders. This review offers an overview of lactate metabolism and lactylation, highlighting recent advances in understanding the regulatory enzymes of lactylation and their role in the central nervous system. We investigate the impact of lactylation on brain dysfunctions, including neurodegenerative diseases, cerebrovascular disorders, neuroinflammation, brain tumors, and psychiatric conditions. Moreover, we highlight the therapeutic potential of targeting lactylation in treating brain disorders and outline key research gaps and future directions needed to advance this promising field.
Collapse
Affiliation(s)
- Mingrui Han
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Queen Mary school, medical department, Nanchang University, Nanchang, Jiangxi, China
| | - Wenfeng He
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Wengen Zhu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Linjuan Guo
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
| |
Collapse
|
8
|
Qiao Y, Liu Y, Ran R, Zhou Y, Gong J, Liu L, Zhang Y, Wang H, Fan Y, Fan Y, Nan G, Zhang P, Yang J. Lactate metabolism and lactylation in breast cancer: mechanisms and implications. Cancer Metastasis Rev 2025; 44:48. [PMID: 40295451 PMCID: PMC12037681 DOI: 10.1007/s10555-025-10264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 04/06/2025] [Indexed: 04/30/2025]
Abstract
As the end-product of glycolysis, lactate serves as a regulator of protein lactylation in addition to being an energy substrate, metabolite, and signaling molecule in cancer. The reprogramming of glucose metabolism and the Warburg effect in breast cancer results in extensive lactate production and accumulation, making it likely that lactylation in tumor tissue is also abnormal. This review summarizes evidence on lactylation derived from studies of lactate metabolism and disease, highlighting the role of lactate in the tumor microenvironment of breast cancer and detailing the levels of lactylation and cancer-promoting mechanisms across various tumors. The roles of lactate and lactylation, along with potential intervention mechanisms, are presented and discussed, offering valuable insights for future research on the role of lactylation in tumors.
Collapse
Affiliation(s)
- Yifan Qiao
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yijia Liu
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ran Ran
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhou
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Gong
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijuan Liu
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yusi Zhang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Wang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Fan
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yihan Fan
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gengrui Nan
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peng Zhang
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China.
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China.
| | - Jin Yang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
9
|
Sun Y, Wang H, Cui Z, Yu T, Song Y, Gao H, Tang R, Wang X, Li B, Li W, Wang Z. Lactylation in cancer progression and drug resistance. Drug Resist Updat 2025; 81:101248. [PMID: 40287994 DOI: 10.1016/j.drup.2025.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Lactate plays a crucial role as an energy substrate, metabolite, and signaling molecule in cancer. Lactate has long been considered a byproduct of glycolysis. Still, the lactate shuttle hypothesis has changed the lactate paradigm, revealing the implications of lactate in cellular metabolism and cellular communications that can transcend the compartment barrier and occur within and between different cells, tissues, and organs. Due to the Warburg effect, the tumor produces a large amount of lactate, thus creating a low-nutrition, hypoxic, and low-pH tumor microenvironment (TME). Consequently, immunosuppressive networks are built to acquire immune evasion potential and regulate tumor growth. Lactylation is a newly discovered post-translational modification of lysine residues with the capacity for transcriptional regulation via histone modification and modulation of non-histone protein functions, which links gene regulation to cellular metabolism by aberrant metabolism activity and epigenetic modification. There is growing evidence that lactylation plays a crucial role in cancer progression and drug resistance. Targeting lactylation enzymes or metabolic pathways has shown promising effects in suppressing cancer progression and drug resistance, highlighting the therapeutic potential of this modification. Therefore, in this review, we offer a systematic overview of lactate homeostasis in physiological and pathological processes as well as discuss the influence of lactylation in cancer progression and drug resistance and underlying molecular mechanisms, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Yuxiu Sun
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - He Wang
- Department of Breast Medicine 2, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhe Cui
- Laboratory Department, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Tingting Yu
- Department of Gynecology Surgery 4, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yuanming Song
- Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Haolai Gao
- First Clinical College, Liaoning University of Traditional Chinese Medicine Affiliated Hospital, Liaoning Provincial Traditional Chinese Medicine Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
| | - Ruihong Tang
- Medical Equipment Department, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Xinlei Wang
- Department of Interventional Therapy, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Binru Li
- Department of Thoracic Medicine 2, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Wenxin Li
- Second Ward of Hepatobiliary and Pancreatic Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
10
|
Qiu Q, Deng H, Song P, Liu Y, Zhang M. Lactylation in Glioblastoma: A Novel Epigenetic Modifier Bridging Epigenetic Plasticity and Metabolic Reprogramming. Int J Mol Sci 2025; 26:3368. [PMID: 40244246 PMCID: PMC11989911 DOI: 10.3390/ijms26073368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Glioblastoma, the most common and aggressive primary malignant brain tumor, is characterized by a high rate of recurrence, disability, and lethality. Therefore, there is a pressing need to develop more effective prognostic biomarkers and treatment approaches for glioblastoma. Lactylation, an emerging form of protein post-translational modification, has been closely associated with lactate, a metabolite of glycolysis. Since the initial identification of lactylation sites in core histones in 2019, accumulating evidence has shown the critical role that lactylation plays in glioblastoma development, assessment of poor clinical prognosis, and immunosuppression, which provides a fresh angle for investigating the connection between metabolic reprogramming and epigenetic plasticity in glioblastoma cells. The objective of this paper is to present an overview of the metabolic and epigenetic roles of lactylation in the expanding field of glioblastoma research and explore the practical value of developing novel treatment plans combining targeted therapy and immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.Q.); (H.D.); (P.S.); (Y.L.)
| |
Collapse
|
11
|
Liu R, Zhao Y. l-Lactate. Trends Endocrinol Metab 2025:S1043-2760(25)00046-3. [PMID: 40180879 DOI: 10.1016/j.tem.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Affiliation(s)
- Ruilong Liu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
12
|
Zhang W, Shan G, Bi G, Hu Z, Yi Y, Zeng D, Lin Z, Zhan C. Lactylation and regulated cell death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119927. [PMID: 40023198 DOI: 10.1016/j.bbamcr.2025.119927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Lactylation, a newly identified post-translational modification, entails the attachment of lactate to lysine residues within proteins, profoundly modulating diverse cellular mechanisms underlying regulated cell death (RCD). This modification encompasses two primary categories: histone lactylation and non-histone lactylation. Histone lactylation assumes a pivotal regulatory function in the RCD process, primarily by modulating the transcriptional landscape of genes implicated in cell death. In contrast, non-histone lactylation exerts its influence by targeting transferases, transcription, cell cycle progression, death pathways, and metabolic processes that are intricately involved in RCD. This review provides a comprehensive overview of recent breakthroughs in understanding how lactylation regulates RCD, while also offering insights into potential avenues for future research, thereby deepening our comprehension of cellular fate determination.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yanjun Yi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Dejun Zeng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China.
| |
Collapse
|
13
|
Ren H, Tang Y, Zhang D. The emerging role of protein L-lactylation in metabolic regulation and cell signalling. Nat Metab 2025; 7:647-664. [PMID: 40175761 DOI: 10.1038/s42255-025-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025]
Abstract
L-Lactate has emerged as a crucial metabolic intermediate, moving beyond its traditional view as a mere waste product. The recent discovery of L-lactate-driven protein lactylation as a post-translational modification has unveiled a pathway that highlights the role of lactate in cellular signalling. In this Perspective, we explore the enzymatic and metabolic mechanisms underlying protein lactylation and its impacts on both histone and non-histone proteins in the contexts of physiology and diseases. We discuss growing evidence suggesting that this modification regulates a wide range of cellular functions and is involved in various physiological and pathological processes, such as cell-fate determination, development, cardiovascular diseases, cancer and autoimmune disorders. We propose that protein lactylation acts as a pivotal mechanism, integrating metabolic and signalling pathways to enable cellular adaptation, and highlight its potential as a therapeutic target in various diseases.
Collapse
Affiliation(s)
- Haowen Ren
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Yuwei Tang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Di Zhang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
14
|
Zong Z, Ren J, Yang B, Zhang L, Zhou F. Emerging roles of lysine lactyltransferases and lactylation. Nat Cell Biol 2025; 27:563-574. [PMID: 40185947 DOI: 10.1038/s41556-025-01635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/13/2025] [Indexed: 04/07/2025]
Abstract
Given its various roles in cellular functions, lactate is no longer considered a waste product of metabolism and lactate sensing is a pivotal step in the transduction of lactate signals. Lysine lactylation is a recently identified post-translational modification that serves as an intracellular mechanism of lactate sensing and transfer. Although acetyltransferases such as p300 exhibit general acyl transfer activity, no bona fide lactyltransferases have been identified. Recently, the protein synthesis machinery, alanyl-tRNA synthetase 1 (AARS1), AARS2 and their Escherichia coli orthologue AlaRS, have been shown to be able to sense lactate and mediate lactyl transfer and are thus considered pan-lactyltransferases. Here we highlight the mechanisms and functions of these lactyltransferases and discuss potential strategies that could be exploited for the treatment of human diseases.
Collapse
Affiliation(s)
- Zhi Zong
- The First Affiliated Hospital of Soochow University, Suzhou, China
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Jiang Ren
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bing Yang
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Long Zhang
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Fangfang Zhou
- The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Aquilino M, Ditzer N, Namba T, Albert M. Epigenetic and metabolic regulation of developmental timing in neocortex evolution. Trends Neurosci 2025:S0166-2236(25)00056-6. [PMID: 40155272 DOI: 10.1016/j.tins.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
The human brain is characterized by impressive cognitive abilities. The neocortex is the seat of higher cognition, and neocortex expansion is a hallmark of human evolution. While developmental programs are similar in different species, the timing of developmental transitions and the capacity of neural progenitor cells (NPCs) to proliferate differ, contributing to the increased production of neurons during human cortical development. Here, we review the epigenetic regulation of developmental transitions during corticogenesis, focusing mostly on humans while building on knowledge from studies in mice. We discuss metabolic-epigenetic interplay as a potential mechanism to integrate extracellular signals into neural chromatin. Moreover, we synthesize current understanding of how epigenetic and metabolic deregulation can cause neurodevelopmental disorders. Finally, we outline how developmental timing can be investigated using brain organoid models.
Collapse
Affiliation(s)
- Matilde Aquilino
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Nora Ditzer
- Center for Regenerative Therapies Dresden, TUD Dresden University of Technology, 01307 Dresden, Germany
| | - Takashi Namba
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland; Department of Developmental Biology, Fujita Health University School of Medicine, Toyoake, Japan; International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Japan.
| | - Mareike Albert
- Center for Regenerative Therapies Dresden, TUD Dresden University of Technology, 01307 Dresden, Germany.
| |
Collapse
|
16
|
Li S, Dong L, Wang K. Current and future perspectives of lysine lactylation in cancer. Trends Cell Biol 2025; 35:190-193. [PMID: 39837737 DOI: 10.1016/j.tcb.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/23/2025]
Abstract
Lactate, a glycolytic intermediate, has a crucial role in cancer metabolism and microenvironment remodeling. Recently, researchers found that lactate mediates lysine lactylation, a novel protein post-translational modification (PTM). Here, we summarize the mechanism and role of lysine lactylation in cancer, and discuss the potential of targeting lysine lactylation in cancer therapy.
Collapse
Affiliation(s)
- Sijia Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Lixia Dong
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Kui Wang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
17
|
Rho H, Hay N. Protein lactylation in cancer: mechanisms and potential therapeutic implications. Exp Mol Med 2025; 57:545-553. [PMID: 40128358 PMCID: PMC11958728 DOI: 10.1038/s12276-025-01410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 03/26/2025] Open
Abstract
Increased glycolysis, which leads to high lactate production, is a common feature of cancer cells. Recent evidence suggests that lactate plays a role in the post-translational modification of histone and nonhistone proteins via lactylation. In contrast to genetic mutations, lactylation in cancer cells is reversible. Thus, reversing lactylation can be exploited as a pharmacological intervention for various cancers. Here we discuss recent advances in histone and nonhistone lactylation in cancer, including L-, D- and S-lactylation, as well as alanyl-tRNA synthetase as a novel lactyltransferase. We also discuss potential approaches for targeting lactylation as a therapeutic opportunity in cancer treatment.
Collapse
Affiliation(s)
- Hyunsoo Rho
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
18
|
Shi L, Li B, Tan J, Zhu L, Zhang S, Zhang Y, Xiang M, Li J, Chen Y, Han X, Xie J, Tang Y, Rosie Xing H, Li J, Wang J. Exosomal lncRNA Mir100hg from lung cancer stem cells activates H3K14 lactylation to enhance metastatic activity in non-stem lung cancer cells. J Nanobiotechnology 2025; 23:156. [PMID: 40022086 PMCID: PMC11869636 DOI: 10.1186/s12951-025-03198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/02/2025] [Indexed: 03/03/2025] Open
Abstract
The mean survival of metastatic lung adenocarcinoma is less than 1 year, highlighting the urgent need to understand the mechanisms underlying its high mortality rate. The role of Extracellular vesicles (EVs) in facilitating the interactions between cancer cells and the metastatic microenvironment has garnered increasing attention. Previous studies on the role of EVs in metastasis have been primarily focused on cancer cell-derived EVs in modulating the functions of stromal cells. However, whether cancer stem cells (CSCs) can alter the metastatic properties of non-CSC cells, and whether EV crosstalk can mediate such interaction, have not been demonstrated prior to this report. In the present study, we integrated multi-omics sequencing and public database analysis with experimental validation to demonstrate, for the first time, the exosomal Mir100hg, derived from CSCs, could enhance the metastatic potential of non-CSCs both in vitro and in vivo. Mechanistically, HNRNPF and HNRNPA2B1 directly binds to Mir100hg, facilitating its trafficking via exosomes to non-CSCs. In non-CSCs, Mir100hg upregulates ALDOA expression, subsequently leading to elevated lactate production. Consequently, the increased lactate levels enhance H3K14 lactylation by 2.5-fold and promote the transcription of 169 metastasis-related genes. This cascade of events ultimately results in enhanced ALDOA-driven glycolysis and histone lactylation-mediated metastatic potential of non-CSC lung cancer cells. We have delineated a complex regulatory network utilized by CSCs to transfer their high metastatic activity to non-CSCs through exosomal Mir100hg, providing new mechanistic insights into the communication between these two heterogeneous tumor cell populations. These mechanistic insights provide novel therapeutic targets for metastatic lung cancer, including HNRNPF/HNRNPA2B1-mediated Mir100hg trafficking and the histone lactylation pathway, advancing our understanding of CSC-mediated metastasis while suggesting promising strategies for clinical intervention.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350000, Fujian Province, China
| | - Bowen Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jiyu Tan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Women and Children'S Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Sicheng Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yuhan Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Meng Xiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Li
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xue Han
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jiacheng Xie
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yao Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - H Rosie Xing
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Women and Children'S Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Jianyu Wang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
19
|
Tsusaka T, Najar MA, Sharma I, Marcinkiewicz MM, Crispim CVDS, Snyder NW, Burslem GM, Goldberg EL. Class I histone deacetylases catalyze lysine lactylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640220. [PMID: 40060688 PMCID: PMC11888385 DOI: 10.1101/2025.02.25.640220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Metabolism and post-translational modifications (PTMs) are intrinsically linked and the number of identified metabolites that can covalently modify proteins continues to increase. This metabolism/PTM crosstalk is especially true for lactate, the product of anaerobic metabolism following glycolysis. Lactate forms an amide bond with the ε-amino group of lysine, a modification known as lysine lactylation, or Kla. Multiple independent mechanisms have been proposed in the formation of Kla, including p300/CBP-dependent transfer from lactyl-CoA, via a high-energy intermediate lactoylglutathione species that non-enzymatically lactylates proteins, and several enzymes are reported to have lactyl transferase capability. We recently discovered that class I histone deacetylases (HDACs) 1, 2, and 3 can all reverse their canonical chemical reaction to catalyze lysine β-hydroxybutyrylation. Here we tested the hypothesis that HDACs can also catalyze Kla formation. Using biochemical, pharmacological, and genetic approaches, we found that HDAC-catalyzed lysine lactylation accounts for the majority of Kla formation in cells. Dialysis experiments confirm this is a reversible reaction that depends on lactate concentration. We also directly quantified intracellular lactyl-CoA and found that Kla abundance can be uncoupled from lactyl-CoA levels. Therefore, we propose a model in which the majority of Kla is formed through enzymatic addition of lactate by HDACs 1, 2, and 3.
Collapse
Affiliation(s)
- Takeshi Tsusaka
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mohd. Altaf Najar
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Isha Sharma
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mariola M. Marcinkiewicz
- Aging and Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Claudia Veronica Da Silva Crispim
- Aging and Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nathaniel W. Snyder
- Aging and Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - George M. Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Emily L. Goldberg
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|