1
|
Khoshbayan A, Golmoradi Zadeh R, Taati Moghadam M, Mirkalantari S, Darbandi A. Molecular determination of O25b/ST131 clone type among extended spectrum β-lactamases production Escherichia coli recovering from urinary tract infection isolates. Ann Clin Microbiol Antimicrob 2022; 21:35. [PMID: 35927655 PMCID: PMC9351160 DOI: 10.1186/s12941-022-00526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Escherichia coli (E. coli) O25b/ST131 clone causes urinary tract infection (UTI) and is associated with a broad spectrum of other infections, such as intra-abdominal and soft tissue infections, that can be affecting bloodstream infections. Therefore, since O25b/ST131 has been reported in several studies from Iran, in the current study, we have investigated the molecular characteristics, typing, and biofilm formation of O25b/ST131 clone type E. coli collected from UTI specimens. Methods A total of 173 E. coli isolates from UTI were collected. The susceptibility to all fourth generations of cephalosporins (cefazolin, cefuroxime, ceftriaxone, cefotaxime, ceftazidime, cefepime) and ampicillin, ampicillin-sulbactam and aztreonam was determined. Class A ESBLs, class D ESBL and the presence of pabB gene screenings to detect of O25b/ST131 clone type were performed by using of PCR. Biofilm formation was compared between O25b/ST131 isolates and non-O25b/ST131 isolates. Finally, ERIC-PCR was used for typing of ESBL positive isolates. Results Ninety-four ESBL positive were detected of which 79 of them were O25b/ST131. Antimicrobial susceptibility test data showed that most antibiotics had a higher rate of resistance in isolates of the O25b/ST131 clonal type. Biofilm formation showed that there was a weak association between O25b/ST131 clone type isolates and the level of the biofilm formation. ERIC-PCR results showed that E. coli isolates were genetically diverse and classified into 14 groups. Conclusion Our results demonstrated the importance and high prevalence of E. coli O25b/ST131 among UTI isolates with the ability to spread fast and disseminate antibiotic resistance genes.
Collapse
Affiliation(s)
- Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Rezvan Golmoradi Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Taati Moghadam
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Gong L, Zhang L, Liu X, Odilov B, Li S, Hu Z, Xiao X. Distribution and Antibiotic Susceptibility Pattern of Multidrug-Resistant Bacteria and Risk Factors Among Kidney Transplantation Recipients with Infections Over 13 Years: A Retrospective Study. Infect Drug Resist 2022; 14:5661-5669. [PMID: 34992392 PMCID: PMC8713706 DOI: 10.2147/idr.s318941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background Infection ranks as the most common complication after kidney transplantation (KT) and threatens outcomes of kidney transplantation recipients (KTR). This study aimed to investigate the microbiological profile of infection, assess bacterial resistance and identify risk factors for multidrug-resistant (MDR) bacterial infection among KTR. Methods During the study period, 866 recipients underwent kidney transplant surgery. We studied the distribution of pathogens, resistance rate of MDR bacteria and the risk factors of MDR bacterial infection. Results Totally, 214 species of pathogens (110 species were MDR bacteria) were isolated in 119 KTR. Escherichia coli (E. coli) was the most common bacteria of the infection. MDR extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (ESBL-E) were most resistant to ampicillin, cefazolin, ciprofloxacin and complex sulfamethoxazole, while quite sensitive to imipenem, amikacin and piperacillin/tazobactam (PIT). All MDR gram-positive bacteria were quite sensitive to linezolid and vancomycin, except that MDR Staphylococcus was also susceptible to rifampicin. Female gender (OR = 3.497, 95% CI = 1.445–8.467, P = 0.006), pathogen types > 1 (OR = 3.832, 95% CI = 1.429–10.273, P = 0.008) and postoperative time < 3 months (OR = 0.331, 95% CI = 0.137–0.799, P = 0.014) were independent risk factors for MDR bacterial infection. Conclusion PIT and amikacin may be an alternative choice of ESBL-E infection. Rifampicin can also be prescribed for MDR Staphylococcus infection. MDR bacterial infection was associated with female gender, pathogen types more than 1 and 3 months postoperative period.
Collapse
Affiliation(s)
- Liying Gong
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Luwei Zhang
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xiaoli Liu
- Department of Kidney Transplantation, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Bekzod Odilov
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Shengnan Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Zhao Hu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xiaoyan Xiao
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
3
|
Jafari A, Falahatkar S, Delpasand K, Sabati H, Sedigh Ebrahim-Saraie H. Emergence of Escherichia coli ST131 Causing Urinary Tract Infection in Western Asia: A Systematic Review and Meta-Analysis. Microb Drug Resist 2020; 26:1357-1364. [PMID: 32380906 DOI: 10.1089/mdr.2019.0312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Escherichia coli sequence type (ST) 131 is considered a high-risk pandemic clone and frequently extended-spectrum β-lactamase (ESBL)-producing clone that is strongly associated with the global dissemination of CTX-M-15 type. The emergence of ST131 has become a public health threat because this clonal group typically exhibits multiple virulence factors and antimicrobial resistance. Therefore, this study aimed to analyze the literature published on the estimation of the prevalence of clone ST131 among E. coli strains isolated from patients with urinary tract infections in western Asia. A systematic search was carried out to identify eligible articles in the Web of Science, PubMed, Scopus, Embase, and Google Scholar electronic databases from January 2010 to December 2018. Next, 13 articles meeting the inclusion criteria were selected for data extraction and analysis by Comprehensive Meta-Analysis Software. The included studies were conducted in Iran, Jordan, Kuwait, Pakistan, Saudi Arabia, Turkey, and Yemen. In all studies, the pooled prevalence of ST131 was 24.6% (95% CI: 13.5%-40.4%) in wild type isolates, 42.7% (95% CI: 32.5%-53.5%) among ESBLs-producing isolates, and 64.8% (95% CI: 36%-85.5%) among multiple-drug resistant (MDR) isolates. Moreover, the prevalence of ST131 isolates carrying CTX-M-15 type was 68% (95% CI: 48.4%-82.8%). Our study indicated the high prevalence of broadly disseminated ST131 clone among MDR and ESBLs isolates in western Asia. Moreover, O25b was the predominant ST131 clone type, which was mostly associated with CTX-M-15 type.
Collapse
Affiliation(s)
- Alireza Jafari
- Urology Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Siavash Falahatkar
- Urology Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kourosh Delpasand
- Department of Medical Ethics, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hoda Sabati
- Biotechnology and Biological Science Research Center, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hadi Sedigh Ebrahim-Saraie
- Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
4
|
van Hout D, Verschuuren TD, Bruijning-Verhagen PCJ, Bosch T, Schürch AC, Willems RJL, Bonten MJM, Kluytmans JAJW. Extended-spectrum beta-lactamase (ESBL)-producing and non-ESBL-producing Escherichia coli isolates causing bacteremia in the Netherlands (2014 - 2016) differ in clonal distribution, antimicrobial resistance gene and virulence gene content. PLoS One 2020; 15:e0227604. [PMID: 31935253 PMCID: PMC6959556 DOI: 10.1371/journal.pone.0227604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Knowledge on the molecular epidemiology of Escherichia coli causing E. coli bacteremia (ECB) in the Netherlands is mostly based on extended-spectrum beta-lactamase-producing E. coli (ESBL-Ec). We determined differences in clonality and resistance and virulence gene (VG) content between non-ESBL-producing E. coli (non-ESBL-Ec) and ESBL-Ec isolates from ECB episodes with different epidemiological characteristics. METHODS A random selection of non-ESBL-Ec isolates as well as all available ESBL-Ec blood isolates was obtained from two Dutch hospitals between 2014 and 2016. Whole genome sequencing was performed to infer sequence types (STs), serotypes, acquired antibiotic resistance genes and VG scores, based on presence of 49 predefined putative pathogenic VG. RESULTS ST73 was most prevalent among the 212 non-ESBL-Ec (N = 26, 12.3%) and ST131 among the 69 ESBL-Ec (N = 30, 43.5%). Prevalence of ST131 among non-ESBL-Ec was 10.4% (N = 22, P value < .001 compared to ESBL-Ec). O25:H4 was the most common serotype in both non-ESBL-Ec and ESBL-Ec. Median acquired resistance gene counts were 1 (IQR 1-6) and 7 (IQR 4-9) for non-ESBL-Ec and ESBL-Ec, respectively (P value < .001). Among non-ESBL-Ec, acquired resistance gene count was highest among blood isolates from a primary gastro-intestinal focus (median 4, IQR 1-8). Median VG scores were 13 (IQR 9-20) and 12 (IQR 8-14) for non-ESBL-Ec and ESBL-Ec, respectively (P value = .002). VG scores among non-ESBL-Ec from a primary urinary focus (median 15, IQR 11-21) were higher compared to non-ESBL-Ec from a primary gastro-intestinal (median 10, IQR 5-13) or hepatic-biliary focus (median 11, IQR 5-18) (P values = .007 and .04, respectively). VG content varied between different E. coli STs. CONCLUSIONS Non-ESBL-Ec and ESBL-Ec blood isolates from two Dutch hospitals differed in clonal distribution, resistance gene and VG content. Also, resistance gene and VG content differed between non-ESBL-Ec from different primary foci of ECB.
Collapse
Affiliation(s)
- Denise van Hout
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
- * E-mail:
| | - Tess D. Verschuuren
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Patricia C. J. Bruijning-Verhagen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Thijs Bosch
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Anita C. Schürch
- Department of Medical Microbiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Marc J. M. Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Jan A. J. W. Kluytmans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
- Microvida Laboratory for Medical Microbiology and Department of Infection Control, Amphia Hospital, Breda, The Netherlands
| |
Collapse
|
5
|
Liakopoulos A, van den Bunt G, Geurts Y, Bootsma MCJ, Toleman M, Ceccarelli D, van Pelt W, Mevius DJ. High Prevalence of Intra-Familial Co-colonization by Extended-Spectrum Cephalosporin Resistant Enterobacteriaceae in Preschool Children and Their Parents in Dutch Households. Front Microbiol 2018. [PMID: 29515562 PMCID: PMC5826366 DOI: 10.3389/fmicb.2018.00293] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Extended-spectrum cephalosporin-resistant (ESCR) Enterobacteriaceae pose a serious infection control challenge for public health. The emergence of the ESCR phenotype is mostly facilitated by plasmid-mediated horizontal extended-spectrum β-lactamases (ESBLs) and AmpC gene transfer within Enterobacteriaceae. Current data regarding the plasmid contribution to this emergence within the Dutch human population is limited. Hence, the aim of this study was to gain insight into the role of plasmids in the dissemination of ESBL/AmpC genes inside Dutch households with preschool children and precisely delineate co-colonization. In 87 ESCREnterobacteriaceae from fecal samples of parents and preschool children within 66 Dutch households, genomic localization, plasmid type and insertion sequences linked to ESBL/AmpC genes were determined. Chromosomal location of ESBL/AmpC genes was confirmed when needed. An epidemiologically relevant subset of the isolates based on household co-carriage was assessed by Multilocus Sequence Typing and Pulsed-Field Gel Electrophoresis for genetic relatedness. The narrow-host range I1α and F plasmids were the major facilitators of ESBL/AmpC-gene dissemination. Interestingly, we documented a relatively high occurrence of chromosomal integration of typically plasmid-encoded ESBL/AmpC-genes. A high diversity of non-epidemic Escherichia coli sequence types (STs) was revealed; the predominant STs belonged to the pandemic lineages of extraintestinal pathogenic E. coli ST131 and ST69. Intra-familiar co-carriage by identical ESCREnterobacteriaceae was documented in 7 households compared to 14 based on sole gene typing, as previously reported. Co-carriage was more frequent than expected based on pure chance, suggesting clonal transmission between children and parents within the household.
Collapse
Affiliation(s)
- Apostolos Liakopoulos
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Gerrita van den Bunt
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Yvon Geurts
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Martin C J Bootsma
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Mathematics, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Mark Toleman
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Daniela Ceccarelli
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Wilfrid van Pelt
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Dik J Mevius
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Campos ACC, Andrade NL, Ferdous M, Chlebowicz MA, Santos CC, Correal JCD, Lo Ten Foe JR, Rosa ACP, Damasco PV, Friedrich AW, Rossen JWA. Comprehensive Molecular Characterization of Escherichia coli Isolates from Urine Samples of Hospitalized Patients in Rio de Janeiro, Brazil. Front Microbiol 2018; 9:243. [PMID: 29503639 PMCID: PMC5821075 DOI: 10.3389/fmicb.2018.00243] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/31/2018] [Indexed: 01/09/2023] Open
Abstract
Urinary tract infections (UTIs) are often caused by Escherichia coli. Their increasing resistance to broad-spectrum antibiotics challenges the treatment of UTIs. Whereas, E. coli ST131 is often multidrug resistant (MDR), ST69 remains susceptible to antibiotics such as cephalosporins. Both STs are commonly linked to community and nosocomial infections. E. coli phylogenetic groups B2 and D are associated with virulence and resistance profiles making them more pathogenic. Little is known about the population structure of E. coli isolates obtained from urine samples of hospitalized patients in Brazil. Therefore, we characterized E. coli isolated from urine samples of patients hospitalized at the university and three private hospitals in Rio de Janeiro, using whole genome sequencing. A high prevalence of E. coli ST131 and ST69 was found, but other lineages, namely ST73, ST648, ST405, and ST10 were also detected. Interestingly, isolates could be divided into two groups based on their antibiotic susceptibility. Isolates belonging to ST131, ST648, and ST405 showed a high resistance rate to all antibiotic classes tested, whereas isolates belonging to ST10, ST73, ST69 were in general susceptible to the antibiotics tested. Additionally, most ST69 isolates, normally resistant to aminoglycosides, were susceptible to this antibiotic in our population. The majority of ST131 isolates were ESBL-producing and belonged to serotype O25:H4 and the H30-R subclone. Previous studies showed that this subclone is often associated with more complicated UTIs, most likely due to their high resistance rate to different antibiotic classes. Sequenced isolates could be classified into five phylogenetic groups of which B2, D, and F showed higher resistance rates than groups A and B1. No significant difference for the predicted virulence genes scores was found for isolates belonging to ST131, ST648, ST405, and ST69. In contrast, the phylogenetic groups B2, D and F showed a higher predictive virulence score compared to phylogenetic groups A and B1. In conclusion, despite the diversity of E. coli isolates causing UTIs, clonal groups O25:H4-B2-ST131 H30-R, O1:H6-B2-ST648, and O102:H6-D-ST405 were the most prevalent. The emergence of highly virulent and MDR E. coli in Brazil is of high concern and requires more attention from the health authorities.
Collapse
Affiliation(s)
- Ana Carolina C Campos
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nathália L Andrade
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mithila Ferdous
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Monika A Chlebowicz
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Carla C Santos
- Departamento de Controle de Infecções, Hospital Rio Laranjeiras, Rio de Janeiro, Brazil
| | - Julio C D Correal
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Controle de Infecções, Hospital Rio Laranjeiras, Rio de Janeiro, Brazil
| | - Jerome R Lo Ten Foe
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ana Cláudia P Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo V Damasco
- Departamento de Doenças Infecciosas e Parasitárias, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Doenças Infecciosas e Parasitárias, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex W Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - John W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Zhou X, García-Cobos S, Ruijs GJHM, Kampinga GA, Arends JP, Borst DM, Möller LV, Holman ND, Schuurs TA, Bruijnesteijn van Coppenraet LE, Weel JF, van Zeijl JH, Köck R, Rossen JWA, Friedrich AW. Epidemiology of Extended-Spectrum β-Lactamase-Producing E. coli and Vancomycin-Resistant Enterococci in the Northern Dutch-German Cross-Border Region. Front Microbiol 2017; 8:1914. [PMID: 29051750 PMCID: PMC5633748 DOI: 10.3389/fmicb.2017.01914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/20/2017] [Indexed: 01/14/2023] Open
Abstract
Objectives: To reveal the prevalence and epidemiology of extended-spectrum β-lactamase (ESBL)- and/or plasmid AmpC (pAmpC)- and carbapenemase (CP) producing Enterobacteriaceae and vancomycin-resistant enterococci (VRE) across the Northern Dutch–German border region. Methods: A point-prevalence study on ESBL/pAmpC/CP producing Enterobacteriaceae and VRE was carried out in hospitalized patients in the Northern Netherlands (n = 445, 2012–2013) and Germany (n = 242, 2012). Healthy individuals from the Dutch community (n = 400, 2010–2012) were also screened. In addition, a genome-wide gene-by-gene approach was applied to study the epidemiology of ESBL-Escherichia coli and VRE. Results: A total of 34 isolates from 27 patients (6.1%) admitted to Dutch hospitals were ESBL/pAmpC positive and 29 ESBL-E. coli, three pAmpC-E. coli, one ESBL-Enterobacter cloacae, and one pAmpC-Proteus mirabilis were found. In the German hospital, 18 isolates (16 E. coli and 2 Klebsiella pneumoniae) from 17 patients (7.7%) were ESBL positive. In isolates from the hospitalized patients CTX-M-15 was the most frequently detected ESBL-gene. In the Dutch community, 11 individuals (2.75%) were ESBL/pAmpC positive: 10 ESBL-E. coli (CTX-M-1 being the most prevalent gene) and one pAmpC E. coli. Six Dutch (1.3%) and four German (3.9%) hospitalized patients were colonized with VRE. Genetic relatedness by core genome multi-locus sequence typing (cgMLST) was found between two ESBL-E. coli isolates from Dutch and German cross-border hospitals and between VRE isolates from different hospitals within the same region. Conclusion: The prevalence of ESBL/pAmpC-Enterobacteriaceae was similar in hospitalized patients across the Dutch–German border region, whereas VRE prevalence was slightly higher on the German side. The overall prevalence of the studied pathogens was lower in the community than in hospitals in the Northern Netherlands. Cross-border transmission of ESBL-E. coli and VRE seems unlikely based on cgMLST analysis, however continuous monitoring is necessary to control their spread and stay informed about their epidemiology.
Collapse
Affiliation(s)
- Xuewei Zhou
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, Netherlands
| | - Silvia García-Cobos
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, Netherlands
| | - Gijs J H M Ruijs
- Laboratory of Medical Microbiology and Infectious Diseases, Isala Clinics, Zwolle, Netherlands
| | - Greetje A Kampinga
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, Netherlands
| | - Jan P Arends
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, Netherlands
| | - Dirk M Borst
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, Netherlands
| | - Lieke V Möller
- Department of Microbiology, CERTE Medische Diagnostiek en Advies, Groningen, Netherlands
| | - Nicole D Holman
- Department of Intensive Care Medicine, Martini Hospital, Groningen, Netherlands
| | - Theo A Schuurs
- Centre for Infectious Diseases Friesland, Izore, Leeuwarden, Netherlands
| | | | - Jan F Weel
- Centre for Infectious Diseases Friesland, Izore, Leeuwarden, Netherlands
| | - Jan H van Zeijl
- Centre for Infectious Diseases Friesland, Izore, Leeuwarden, Netherlands
| | - Robin Köck
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.,Institute of Hospital Hygiene, Klinikum Oldenburg, Oldenburg, Germany
| | - John W A Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, Netherlands
| | - Alexander W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, Netherlands
| |
Collapse
|