1
|
Srisutham S, Saejeng A, Khantikul N, Sugaram R, Sangsri R, Dondorp AM, Day NPJ, Imwong M. Advancing artemisinin resistance monitoring using a high sensitivity ddPCR assay for Pfkelch13 mutation detection in Asia. Sci Rep 2025; 15:4869. [PMID: 39929914 PMCID: PMC11811204 DOI: 10.1038/s41598-025-86630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
The spread of Pfkelch13 mutations in Southeast Asia threatens the effectiveness of artemisinin-based combination therapies (ACTs) for malaria. Previous studies revealed a high prevalence of key mutations, including C580Y, P574L, and R561H, emphasizing the need for the surveillance to combat drug resistance. This study, we developed a droplet digital PCR (ddPCR) assay for the rapid screening of common mutations including P441L, Y493H, P527H, G538V, R539T, I543T, R561H, P574L, C580Y, and A675V. The assay was designed to detect minor populations of mutant strain within multiple infection, offering high sensitivity and specificity using artificial mixtures of mutant and wild-type alleles. Field samples collected in Thailand during 2015-2020 and in 2023 (N = 130) were also analyzed to validate the assay in a real-world setting. The ddPCR assay demonstrated exceptional performance, with 100% sensitivity and 90% specificity. The R539T, R561H, and C580Y mutations were detected in clinical samples collected from several study sites in Thailand. Notably, the R561H mutation was detected in 100% of the P. falciparum isolates from Mae Hong Son, Thailand in 2023, underscoring the assay's utility in identifying critical mutations associated with drug resistance. Moreover, ddPCR can detect multiple parasite populations in clinical samples and can be used to analyze the ratios of wild-type and mutant alleles. These results validate the assay's ability to serve as a powerful tool for the early detection of minor allele frequencies, facilitating the timely implementation of interventions to curb the spread of ACT resistance. The ddPCR assays developed in this study provide a sensitive and specific method for detecting Pfkelch13 mutations, allowing the identification of minor parasite populations with artemisinin resistance. These assays enhance our ability to monitor and respond to malaria drug resistance, offering a crucial tool for early detection and contributing to global malaria elimination efforts.
Collapse
Affiliation(s)
- Suttipat Srisutham
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Aungkana Saejeng
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Nardlada Khantikul
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Rungniran Sugaram
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Raweewan Sangsri
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Ye R, Zhang Y, Zhang D. Evaluations of candidate markers of dihydroartemisinin-piperaquine resistance in Plasmodium falciparum isolates from the China-Myanmar, Thailand-Myanmar, and Thailand-Cambodia borders. Parasit Vectors 2022; 15:130. [PMID: 35413937 PMCID: PMC9004172 DOI: 10.1186/s13071-022-05239-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background The fast-declining clinical efficacy of dihydroartemisinin-piperaquine (DHA-PPQ) in Cambodia is a warning of the underlying westward dissemination of piperaquine resistance in the Greater Mekong Subregion (GMS). Mutations in the Plasmodium falciparum Kelch 13-propeller (PfK13) and the P. falciparum chloroquine resistance transporter (PfCRT), as well as plasmepsin 2/3 gene amplification, have been discovered as molecular markers for predicting DHA-PPQ treatment failure. Determining whether these genetic variations of P. falciparum are linked to DHA-PPQ resistance is critical, especially along the China–Myanmar (CM) border, where PPQ has been utilized for decades. Methods A total of 173 P. falciparum samples of dried blood spots (DBS) were collected along the CM border between 2007 and 2010, the Thailand–Cambodia (TC) border between 2009 and 2013, and the Thailand–Myanmar (TM) border between 2012 and 2014. PCR and sequencing were used to identified PfCRT mutations, while qPCR was used to determine the copy number of plasmepsin 2/3. The prevalence of DHA-PPQ resistance in three locations was investigated using data paired with K13 mutations. Results Three fragments of the pfcrt gene were amplified for all 173 samples, and seven SNPs were identified (M74I, N75E/D, K76T, H97L, I218F, A220S, I356L). No new PfCRT mutations conferring resistance to PPQ (T93S, H97Y, F145I, M343L, and G353V) were discovered, except for one mutant I218F identified in the TM border (2.27%, 1/44). Additionally, mutant H97L was found in the TC, TM, and CM borders at 3.57% (1/28), 6.82% (3/44), and 1% (1/101), respectively. A substantial K13 C580Y variant prevalence was found in the TC and TM border, accounting for 64.29% (18/28) and 43.18% (19/44), respectively, while only 1% (1/101) was found in the CM border. The K13 F446I variant was only identified and found to reach a high level (28.71%, 29/101) in the CM border. Furthermore, 10.71% (3/28) of TC isolates and 2.27% (1/44) of TM isolates carried more than one copy of plasmepsin 2/3 and K13 C580Y variant, while no plasmepsin 2/3 amplification was identified in the CM isolates. Conclusions Compared with the P. falciparum samples collected from the TC and TM borders, fewer parasites carried plasmepsin 2/3 amplification and novel PfCRT variants, while more parasites carried predominant K13 mutations at position F446I, in the CM border. Clear evidence of DHA-PPQ resistance associated with candidate markers was not found in this border region suggesting a further evaluation of these markers and continuous surveillance is warranted. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05239-1.
Collapse
Affiliation(s)
- Run Ye
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Yilong Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, People's Republic of China.
| | - Dongmei Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
3
|
Kunasol C, Dondorp AM, Batty EM, Nakhonsri V, Sinjanakhom P, Day NPJ, Imwong M. Comparative analysis of targeted next-generation sequencing for Plasmodium falciparum drug resistance markers. Sci Rep 2022; 12:5563. [PMID: 35365711 PMCID: PMC8974807 DOI: 10.1038/s41598-022-09474-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
Well-defined molecular resistance markers are available for a range of antimalarial drugs, and molecular surveillance is increasingly important for monitoring antimalarial drug resistance. Different genotyping platforms are available, but these have not been compared in detail. We compared Targeted Amplicon Deep sequencing (TADs) using Ion Torrent PGM with Illumina MiSeq for the typing of antimalarial drug resistance genes. We developed and validated protocols to type the molecular resistance markers pfcrt, pfdhfr, pfdhps, pfmdr1, pfkelch, and pfcytochrome b, in Plasmodium falciparum for the Ion Torrent PGM and Illumina MiSeq sequencing platforms. With P. falciparum 3D7 and K1 as reference strains, whole blood samples (N = 20) and blood spots from Rapid Diagnostic Test (RDT) samples (N = 5) from patients with uncomplicated falciparum malaria from Ubon Ratchathani were assessed on both platforms and compared for coverage (average reads per amplicon), sequencing accuracy, variant accuracy, false positive rate, false negative rate, and alternative allele detection, with conventional Sanger sequencing as the reference method for SNP calling. Both whole blood and RDT samples could be successfully sequenced using the Ion Torrent PGM and Illumina MiSeq platforms. Coverage of reads per amplicon was higher with Illumina MiSeq (28,886 reads) than with Ion Torrent PGM (1754 reads). In laboratory generated artificial mixed infections, the two platforms could detect the minor allele down to 1% density at 500X coverage. SNPs calls from both platforms were in complete agreement with conventional Sanger sequencing. The methods can be multiplexed with up to 96 samples per run, which reduces cost by 86% compared to conventional Sanger sequencing. Both platforms, using the developed TAD protocols, provide an accurate method for molecular surveillance of drug resistance markers in P. falciparum, but Illumina MiSeq provides higher coverage than Ion Torrent PGM.
Collapse
Affiliation(s)
- Chanon Kunasol
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd., Bangkok, 10400, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth M Batty
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Vorthunju Nakhonsri
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), 144 Innovation Cluster 2 Building (INC) Tower A, Thailand Science Park, Khlong Nueng, Khlong Luang District, Pathum Thani, Thailand
| | - Puritat Sinjanakhom
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd., Bangkok, 10400, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd., Bangkok, 10400, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Murmu LK, Barik TK. An analysis of Plasmodium falciparum-K13 mutations in India. J Parasit Dis 2022; 46:296-303. [PMID: 35299922 PMCID: PMC8901923 DOI: 10.1007/s12639-021-01425-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022] Open
Abstract
Malaria is one of the deadliest parasitic diseases in human. Currently, Artemisinin-based combination therapy is considered as the gold standard and most common treatment option. However, the origin and transmission of Plasmodium falciparum from the Greater Mekong Subregion, which has decreased artemisinin (ART) sensitivity, has sparked global concern. The reduced ART sensitivity has been associated with mutations in the Atpase6 and Kelch13 propeller domain of Plasmodium falciparum. A molecular marker is critically needed to monitor the spread of artemisinin resistance. In this article, we reviewed the k13 mutations and potential marker for ART resistance in India. There have been fourteen mutations identified, three of which have been validated by the World Health Organization (WHO) as artemisinin resistance mutations (F446I, R561H/C, and R539T). Among them, the role of F446I and R561H/C in ART resistance is conflicting. R539T and G625R mutation has been identified as an ART- resistance marker in India.
Collapse
Affiliation(s)
- Laxman Kumar Murmu
- P.G. Department of Zoology, Berhampur University, Berhampur, Ganjam, 760007 Odisha India
| | - Tapan Kumar Barik
- P.G. Department of Zoology, Berhampur University, Berhampur, Ganjam, 760007 Odisha India
| |
Collapse
|
5
|
Thieu NQ, Chinh VD, Van Hanh T, Van Dung N, Takagi H, Annoura T, Kawai S, Masuda G, Van Tuan N, Hung VV, Nakazawa S, Culleton R, Binh NTH, Maeno Y. Reduction in Plasmodium falciparum Pfk13 and pfg377 allele diversity through time in southern Vietnam. Trop Med Health 2022; 50:19. [PMID: 35232492 PMCID: PMC8887123 DOI: 10.1186/s41182-022-00409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background Plasmodium falciparum has acquired resistance to artemisinin in Southeast Asia, with mutations in the P. falciparum Kelch-13 (Pfk13) gene associated with the resistance phenotype. The widespread use of Artemisinin-based combination therapy (ACT)s in Southeast Asia has led to the selection and spread of parasites carrying mutations in Pfk13. We characterised the allele diversity of Pfk13 and pfg377, an artemisinin-resistance neutral polymorphic gene, in parasite DNA extracted human blood from in southern Vietnam in 2003, 2012, 2015 and 2018. Method This study was conducted in Bu Gia Map commune, Binh Phuoc province, Vietnam, from May 2018 to January 2019. Twenty-four samples from 2018 to 2019, 30 from 2003, 24 from 2012 and 32 from 2015 were analysed. Malaria-infected human blood was collected by finger-prick and used for molecular analysis. A nested-PCR targeting the small subunit ribosomal RNA gene was used for Plasmodium species identification, followed by amplification and nucleotide sequencing of Pfk13 and region 3 of pfg377. Archived blood samples collected in the same region in 2012 and 2015 were also analysed as above for comparison. Results The genetic diversity of Pfk13 and pfg377 was lower in 2018–2019 compared to 2012 and 2015. The number of distinct Pfk13 mutants decreased from three in 2012 and 2015, P553L, V568G and C580Y, to one, C580Y in 2018–2019. In 2018–2019, the frequency of C580Y mutant strains was 71% (17/24 isolates). All samples were wild type in 2003. In 2012 and 2015, there were single-strain infections as well as co-infections with two mutant strains or with mutant and wild strains, whereas there were no co-infections in 2018. pfg377 allele diversity decreased from five alleles in 2012 to two alleles in 2018–2019. Conclusion The genetic diversity of P. falciparum was reduced at the two genetic loci surveyed in this study, Pfk13 and pfg377. In the case of the former gene, we observed an increase in the prevalence of parasites carrying the C580Y gene, known to confer reduced susceptibility to ACTs. The reduction in the diversity of pfg377 may be linked to the clonal expansion of parasite strains carrying the C580Y mutation, leading to an overall reduction in parasite genetic diversity across the population. Supplementary Information The online version contains supplementary material available at 10.1186/s41182-022-00409-4.
Collapse
|
6
|
In Vitro Susceptibility of Plasmodium falciparum Isolates from the China-Myanmar Border Area to Piperaquine and Association with Candidate Markers. Antimicrob Agents Chemother 2021; 65:AAC.02305-20. [PMID: 33685900 PMCID: PMC8092910 DOI: 10.1128/aac.02305-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum from the Greater Mekong subregion has evolved resistance to the artemisinin-based combination therapy dihydroartemisinin and the partner drug piperaquine. To monitor the potential westward spread or independent evolution of piperaquine resistance, we evaluated the in vitro susceptibility of 120 P. falciparum isolates collected at the China-Myanmar border during 2007-2016. The parasite isolates displayed a relatively wide range of piperaquine susceptibility estimates. While 56.7% of the parasites showed bimodal drug response curves, all but five generated area-under-the-curve (AUC) estimates consistent with a susceptible phenotype. Using the piperaquine survival assay (PSA), 5.6% parasites showed reduced susceptibility. Of note, parasites from 2014-2016 showed the highest AUC value and the highest proportion with a bimodal curve, suggesting falling effectiveness in these later years. Unsupervised K-mean analysis of the combined data assigned parasites into three clusters and identified significant correlations between IC50, IC90, and AUC values. No parasites carried the E415G mutation in a putative exo-nuclease, new mutations in PfCRT, or amplification of the plasmepsin 2/3 genes, suggesting mechanisms of reduced piperaquine susceptibility that differ from those described in other countries of the region. The association of increased AUC, IC50, and IC90 values with major PfK13 mutations (F446I and G533S) suggests that piperaquine resistance may evolve in these PfK13 genetic backgrounds. Additionally, the Pfmdr1 F1226Y mutation was associated with significantly higher PSA values. Further elucidation of piperaquine resistance mechanisms and continuous surveillance are warranted.
Collapse
|
7
|
Reyser T, Paloque L, Ouji M, Nguyen M, Ménard S, Witkowski B, Augereau JM, Benoit-Vical F. Identification of compounds active against quiescent artemisinin-resistant Plasmodium falciparum parasites via the quiescent-stage survival assay (QSA). J Antimicrob Chemother 2020; 75:2826-2834. [PMID: 32653910 DOI: 10.1093/jac/dkaa250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Quiescence is an unconventional mechanism of Plasmodium survival, mediating artemisinin resistance. This phenomenon increases the risk of clinical failures following artemisinin-based combination therapies (ACTs) by slowing parasite clearance and allowing the selection of parasites resistant to partner drugs. OBJECTIVES To thwart this multiresistance, the quiescent state of artemisinin-resistant parasites must be taken into consideration from the very early stages of the drug discovery process. METHODS We designed a novel phenotypic assay we have named the quiescent-stage survival assay (QSA) to assess the antiplasmodial activity of drugs on quiescent parasites. This assay was first validated on quiescent forms from different artemisinin-resistant parasite lines (laboratory strain and field isolates), using two reference drugs with different mechanisms of action: chloroquine and atovaquone. Furthermore, the efficacies of different partner drugs of artemisinins used in ACTs were investigated against both laboratory strains and field isolates from Cambodia. RESULTS Our results highlight that because of the mechanism of quiescence and the respective pharmacological targets of drugs, drug efficacies on artemisinin-resistant parasites may be different between quiescent parasites and their proliferating forms. CONCLUSIONS These data confirm the high relevance of adding the chemosensitivity evaluation of quiescent parasites by the specific in vitro QSA to the antiplasmodial drug development process in the current worrisome context of artemisinin resistance.
Collapse
Affiliation(s)
- Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France
| | - Manel Ouji
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France
| | - Michel Nguyen
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France
| | - Sandie Ménard
- UMR152 UPS-IRD, Université de Toulouse, Toulouse, France
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France.,INSERM, Institut National de la Santé et de la Recherche Scientifique, France
| |
Collapse
|
8
|
Bwire GM, Ngasala B, Mikomangwa WP, Kilonzi M, Kamuhabwa AAR. Detection of mutations associated with artemisinin resistance at k13-propeller gene and a near complete return of chloroquine susceptible falciparum malaria in Southeast of Tanzania. Sci Rep 2020; 10:3500. [PMID: 32103124 PMCID: PMC7044163 DOI: 10.1038/s41598-020-60549-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/12/2020] [Indexed: 11/09/2022] Open
Abstract
In Tanzania, chloroquine was replaced by sulphadoxine- pyrimethamine (SP) as a first-line for treatment of uncomplicated malaria. Due to high resistance in malaria parasites, SP lasted for only 5 years and by the end of 2006 it was replaced with the current artemisinin combination therapy. We therefore, set a study to determine the current genotypic mutations associated with Plasmodium falciparum resistance to artemisinin, partner drugs and chloroquine. Parasites DNA were extracted from dried blood spots collected by finger-prick from Tanzanian malaria infected patients. DNA were sequenced using MiSeq then genotypes were translated into drug resistance haplotypes at Wellcome Sanger Institute, UK. About 422 samples were successful sequenced for K13 gene (marker for artemisinin resistance), the wild type (WT) was found in 391 samples (92.7%) whereby 31 samples (7.3%) had mutations in K13 gene. Of 31 samples with mutations, one sample had R561H, a mutation that has been associated with delayed parasite clearance in Southeast Asia, another sample had A578S, a mutation not associated with artemisinin whilst 29 samples had K13 novel mutations. There were no mutations in PGB, EXO, P23_BP and PfMDR1 at position 86 and 1246 (markers for resistance in artemisinin partner drugs) but 270 samples (60.4%) had mutations at PfMDR1 Y184F. Additionally, genotyped PfCRT at positions 72-76 (major predictors for chroquine resistance), found WT gene in 443 out of 444 samples (99.8%). In conclusion, this study found mutations in K13-propeller gene and high prevalence of chloroquine susceptible P. falciparum in Southeast of Tanzania.
Collapse
Affiliation(s)
- George M Bwire
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania.
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Wigilya P Mikomangwa
- Department of Clinical Pharmacy and Pharmacology, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania
| | - Manase Kilonzi
- Department of Clinical Pharmacy and Pharmacology, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania
| | - Appolinary A R Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania
| |
Collapse
|
9
|
Chhibber-Goel J, Sharma A. Profiles of Kelch mutations in Plasmodium falciparum across South Asia and their implications for tracking drug resistance. Int J Parasitol Drugs Drug Resist 2019; 11:49-58. [PMID: 31606696 PMCID: PMC6796718 DOI: 10.1016/j.ijpddr.2019.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022]
Abstract
Artemisinin-based combination therapy (ACT) offers highly successful treatment of malaria. Emergence and spread of Plasmodium falciparum (Pf) parasites with decreased susceptibility to ACT in South-East Asia has caused concern worldwide. The current accepted criteria to assess artemisinin (ART) resistance relies upon data on treatment failure, delayed parasite clearance at day 3 (DPC3), parasite clearance half-life (PCHL) and in-vitro/ex-vivo ring stage survival assays (RSAs). Interestingly, some studies suggest that DPC3 does not provide a distinct separation between ART sensitive/resistant strains, and RSA differences may also be inconclusive. More recently, recrudescence of ART treated Pf, independent of the presence of Kelch 13 (K13) mutation (C580Y), has been reported in the monkey malaria model suggesting that genes other than K13 like coronin, dhps, dhfr, crt, mdr1 and plasmepsin1 may contribute towards ACT failure. Here we have collated the distribution of K13 mutants from Pf strains in South Asia. A total of fifty Pf-K13 mutations have been studied for ART resistance in South Asia of which nine have been validated while eleven are potentials for ART resistance. The remaining thirty K13 mutations have been reported from various locations in South Asia but lack corroborative clinical data on ART resistance/ACT failure. Of the fifty, fourteen K13 mutations have been identified in India including four novel mutations (S549Y, G625R, N657H, D702N). Structural mapping of these K13 mutations does not offer any coherent explanation for their contribution towards ART resistance as they are scattered in the K13 structure. Thus, K13 mutations likely provide only a partial synopsis, and we propose that all suspect cases of ACT failure be assessed by: 1) DPC3, 2) PCHL, 3) in-vitro/ex-vivo RSAs and 4) GWAS data in an effort to annotate the resistance status of the parasites. These efforts may help in surveillance and containment of ART resistance/ACT failure in South Asia.
Collapse
Affiliation(s)
- Jyoti Chhibber-Goel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
10
|
No evidence of P. falciparum K13 artemisinin conferring mutations over a 24-year analysis in Coastal Kenya, but a near complete reversion to chloroquine wild type parasites. Antimicrob Agents Chemother 2019:AAC.01067-19. [PMID: 31591113 PMCID: PMC6879256 DOI: 10.1128/aac.01067-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antimalarial drug resistance is a substantial impediment to malaria control. The spread of resistance has been described using genetic markers, which are important epidemiological tools. We carried out a temporal analysis of changes in allele frequencies of 12 drug resistance markers over 2 decades of changing antimalarial drug policy in Kenya. Antimalarial drug resistance is a substantial impediment to malaria control. The spread of resistance has been described using genetic markers, which are important epidemiological tools. We carried out a temporal analysis of changes in allele frequencies of 12 drug resistance markers over 2 decades of changing antimalarial drug policy in Kenya. We did not detect any of the validated kelch 13 (k13) artemisinin resistance markers; nonetheless, a single k13 allele, K189T, was maintained at a stable high frequency (>10%) over time. There was a distinct shift from chloroquine-resistant transporter (crt)-76, multidrug-resistant gene 1 (mdr1)-86 and mdr1-1246 chloroquine (CQ) resistance alleles to a 99% prevalence of CQ-sensitive alleles in the population, following the withdrawal of CQ from routine use. In contrast, the dihydropteroate synthetase (dhps) double mutant (437G and 540E) associated with sulfadoxine-pyrimethamine (SP) resistance was maintained at a high frequency (>75%), after a change from SP to artemisinin combination therapies (ACTs). The novel cysteine desulfurase (nfs) K65 allele, implicated in resistance to lumefantrine in a West African study, showed a gradual significant decline in allele frequency pre- and post-ACT introduction (from 38% to 20%), suggesting evidence of directional selection in Kenya, potentially not due to lumefantrine. The high frequency of CQ-sensitive parasites circulating in the population suggests that the reintroduction of CQ in combination therapy for the treatment of malaria can be considered in the future. However, the risk of a reemergence of CQ-resistant parasites circulating below detectable levels or being reintroduced from other regions remains.
Collapse
|
11
|
Buppan P, Seethamchai S, Kuamsab N, Harnyuttanakorn P, Putaporntip C, Jongwutiwes S. Multiple Novel Mutations in Plasmodium falciparum Chloroquine Resistance Transporter Gene during Implementation of Artemisinin Combination Therapy in Thailand. Am J Trop Med Hyg 2019; 99:987-994. [PMID: 30141388 DOI: 10.4269/ajtmh.18-0401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mutations in the chloroquine resistance transporter gene of Plasmodium falciparum (Pfcrt) are associated with drug susceptibility status of chloroquine and other antimalarials that interfere with heme detoxification process including artemisinin. We aim to investigate whether an increase in duration of artemisinin combination therapy (ACT) in Thailand could affect mutations in Pfcrt. The complete coding sequences of Pfcrt and dihydrofolate reductase (Pfdhfr), and size polymorphisms of the merozoite surface proteins-1 and 2 (Pfmsp-1 and Pfmsp-2) of 189 P. falciparum isolates collected during 1991 and 2016 were analyzed. In total, 12 novel amino acid substitutions and 13 novel PfCRT haplotypes were identified. The most prevalent haplotype belonged to the Dd2 sequence and no wild type was found. A significant positive correlation between the frequency of Pfcrt mutants and the year of sample collection was observed during nationwide ACT implementation (r = 0.780; P = 0.038). The number of haplotypes and nucleotide diversity of isolates collected during 3-day ACT (2009-2016) significantly outnumbered those collected before this treatment regimen. Positive Darwinian selection occurred in the transmembrane domains only among isolates collected during 3-day ACT but not among those collected before this period. No remarkable change was observed in the molecular indices for other loci analyzed when similar comparisons were performed. An increase in the duration of artesunate in combination therapy in Thailand could exert selective pressure on the Pfcrt locus, resulting in emergence of novel variants. The impact of these novel haplotypes on antimalarial susceptibilities requires further study.
Collapse
Affiliation(s)
- Pattakorn Buppan
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Sunee Seethamchai
- Department of Biology, Faculty of Science, Naresuan University, Pitsanulok Province, Thailand
| | - Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Khammanee T, Sawangjaroen N, Buncherd H, Tun AW, Thanapongpichat S. Molecular Surveillance of Pfkelch13 and Pfmdr1 Mutations in Plasmodium falciparum Isolates from Southern Thailand. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:369-377. [PMID: 31533403 PMCID: PMC6753301 DOI: 10.3347/kjp.2019.57.4.369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/15/2019] [Indexed: 01/11/2023]
Abstract
Artemisinin-based combination therapy (ACT) resistance is widespread throughout the Greater Mekong Subregion. This raises concern over the antimalarial treatment in Thailand since it shares borders with Cambodia, Laos, and Myanmar where high ACT failure rates were reported. It is crucial to have information about the spread of ACT resistance for efficient planning and treatment. This study was to identify the molecular markers for antimalarial drug resistance: Pfkelch13 and Pfmdr1 mutations from 5 provinces of southern Thailand, from 2012 to 2017, of which 2 provinces on the Thai- Myanmar border (Chumphon and Ranong), one on Thai-Malaysia border (Yala) and 2 from non-border provinces (Phang Nga and Surat Thani). The results showed that C580Y mutation of Pfkelch13 was found mainly in the province on the Thai-Myanmar border. No mutations in the PfKelch13 gene were found in Surat Thani and Yala. The Pfmdr1 gene isolated from the Thai-Malaysia border was a different pattern from those found in other areas (100% N86Y) whereas wild type strain was present in Phang Nga. Our study indicated that the molecular markers of artemisinin resistance were spread in the provinces bordering along the Thai-Myanmar, and the pattern of Pfmdr1 mutations from the areas along the international border of Thailand differed from those of the non-border provinces. The information of the molecular markers from this study highlighted the recent spread of artemisinin resistant parasites from the endemic area, and the data will be useful for optimizing antimalarial treatment based on regional differences.
Collapse
Affiliation(s)
- Thunchanok Khammanee
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nongyao Sawangjaroen
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Aung Win Tun
- Faculty of Graduate Studies, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
13
|
Phompradit P, Chaijaroenkul W, Muhamad P, Na-Bangchang K. K13 propeller domain mutations and pfmdr1 amplification in isolates of Plasmodium falciparum collected from Thai-Myanmar border area in 2006-2010. Folia Parasitol (Praha) 2019; 66. [PMID: 31239407 DOI: 10.14411/fp.2019.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/23/2019] [Indexed: 11/19/2022]
Abstract
The K13 propeller domain mutation and pfmdr1 amplification have been proposed as useful molecular markers for detection and monitoring of artemisinin resistant Plasmodium falciparum Welch, 1897. Genomic DNA isolates of P. falciparum was extracted from 235 dried blood spot or whole blood samples collected from patients with uncomplicated falciparum malaria residing in areas along the Thai-Myanmar border during 2006-2010. Nested polymerase chain reaction (PCR) and sequencing were performed to detect mutations in K13 propeller domain of P. falciparum at codon 427-709. Pfmdr1 gene copy number was determined by SYBR Green I real-time PCR. High prevalence of pfmdr1 multiple copies was observed (42.5% of isolates). The presence of K13 mutations was low (40/235, 17.2%). Seventeen mutations had previously been reported and six mutations were newly detected. The C580Y was found in two isolates (0.9%). The F446I, N458Y and P574L mutations were commonly detected. Seven isolates had both K13 mutation and pfmdr1 multiple copies. It needs to be confirmed whether parasites harbouring both K13 mutation and pfmdr1 multiple copies and/or the observed new mutations of K13 propeller domain are associated with clinical artemisinin resistance.
Collapse
Affiliation(s)
- Papichaya Phompradit
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Thailand
| | - Wanna Chaijaroenkul
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Thailand
| | - Phunuch Muhamad
- Drug Discovery and Development Center, Office of Advanced Science and Technology Thammasat University, Thailand
| | - Kesara Na-Bangchang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Thailand
| |
Collapse
|
14
|
Ocan M, Akena D, Nsobya S, Kamya MR, Senono R, Kinengyere AA, Obuku E. K13-propeller gene polymorphisms in Plasmodium falciparum parasite population in malaria affected countries: a systematic review of prevalence and risk factors. Malar J 2019; 18:60. [PMID: 30846002 PMCID: PMC6407282 DOI: 10.1186/s12936-019-2701-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/01/2019] [Indexed: 01/01/2023] Open
Abstract
Background Efficacy of artemisinin (ART) agents, a critical element of current malaria control efforts is threatened by emergence and spread of resistance. Mutations in pfkelch13 gene associated with ART-resistance evolved in Southeast Asia (SEA). k13 mutations whose role in ART-resistance remains unknown, have subsequently emerged independently across all malaria-affected regions. The aim of this systematic review was to determine the prevalence and identify risk factors of Plasmodium falciparum k13 mutations in malaria-endemic countries. Methods An electronic search of studies from 2014 to date was done in MEDLINE via PubMED, SCOPUS, EMBASE and LILACS/VHL databases. Mesh terms and Boolean operators (AND, OR) were used. Two librarians independently conducted this search (RS and AK). The articles were screened for inclusion using a priori criteria set following PRISMA-P and STREGA guidelines. Three independent reviewers (NL, BB, and OM) extracted the data. Data analysis was performed in Open Meta Analyst software. Random effects analysis (DL) was used and heterogeneity established using I2-statistic. Results A total of 482 articles were retrieved from Pubmed = 302, Lilacs/Vhl = 50, Embase = 80, and Scopus = 37; Bibliography/other searches = 13, of which 374 did not meet the inclusion criteria. The aggregate prevalence of single nucleotide polymorphisms (SNPs) in pfkelch13 gene was 27.6% (3694/14,827) (95% CI 22.9%, 32.3%). Sub-group analysis showed that aggregate prevalence of non-synonymous SNPs in pfkelch13 gene was higher, 45.4% (95% CI 35.4%, 55.3%) in Southeast Asia as opposed to 7.6% (95% CI 5.6%, 9.5%) in the African region. A total of 165 independent k13 mutations were identified across malaria-affected regions globally. A total of 16 non-validated k13 mutations were associated with increased ART parasite clearance half-life (t1/2 > 5 h). The majority, 45.5% (75/165), of the mutations were reported in single P. falciparum parasite infections. Of the 165 k13-mutations, over half were reported as new alleles. Twenty (20) non-propeller mutations in the pfkelch13 gene were identified. Conclusion This review identified emergence of potential ART-resistance mediating k13 mutations in the African region. Diversity of mutations in pfkelch13 gene is highest in African region compared to SEA. Mutations outside the pfkelch13 propeller region associated with increased ART parasite clearance half-life occur in malaria-affected regions.
Collapse
Affiliation(s)
- Moses Ocan
- Department of Pharmacology & Therapeutics, Makerere University, P.O. Box 7072, Kampala, Uganda. .,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda.
| | - Dickens Akena
- Department of Psychiatry, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Sam Nsobya
- Department of Medical Microbiology, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Moses R Kamya
- Department of Medicine, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Richard Senono
- Infectious Disease Institute, Makerere University, P. O. Box 22418, Kampala, Uganda
| | | | - Ekwaro Obuku
- Clinical Epidemiology Unit, Department of Medicine, Makerere University, P.O. Box 7072, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda.,Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
15
|
Yao Y, Wu K, Xu M, Yang Y, Zhang Y, Yang W, Shang R, Du W, Tan H, Chen J, Lin M, Li J. Surveillance of Genetic Variations Associated with Antimalarial Resistance of Plasmodium falciparum Isolates from Returned Migrant Workers in Wuhan, Central China. Antimicrob Agents Chemother 2018; 62:AAC.02387-17. [PMID: 29941645 PMCID: PMC6125563 DOI: 10.1128/aac.02387-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/15/2018] [Indexed: 02/05/2023] Open
Abstract
Antimalarial drug resistance developed in Plasmodium falciparum has become a problem for malaria control. Evaluation of drug resistance is the first step for effective malaria control. In this study, we investigated the gene mutations of P. falciparum using blood samples from returned Chinese migrant workers in order to identify drug resistance-associated molecular markers. These workers returned from Africa and Southeast Asia (SEA) during 2011 to 2016. Polymorphisms in pfcrt, pfmdr1, and k13-propeller genes and the haplotype patterns of Pfcrt and Pfmdr1 were analyzed. The results showed the presence of four haplotypes of Pfcrt codons 72 to 76, including CVMNK (wild type), SVMNT and CVIET (mutation types), and CV M/I N/E K/T (mixed type), with 50.57%, 1.14%, 25.00%, and 23.30% prevalence, respectively. For Pfmdr1, N86Y (22.28%) and Y184F (60.01%) were the main prevalent mutations (mutations are underlined). The prevalence of mutation at position 550, 561, 575, and 589 of K13-propeller were 1.09%, 0.54%, 0.54%, and 0.54%, respectively. These data suggested that Pfcrt, Pfmdr1, and K13-propeller polymorphisms are potential markers to assess drug resistance of P. falciparum in China, Africa, and SEA.
Collapse
Affiliation(s)
- Yi Yao
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Kai Wu
- Department of Schistosomiasis and Endemic Diseases, Wuhan City Center for Disease Prevention and Control, Wuhan, China
| | - Mingxing Xu
- Department of Schistosomiasis and Endemic Diseases, Wuhan City Center for Disease Prevention and Control, Wuhan, China
| | - Yan Yang
- Department of Schistosomiasis and Endemic Diseases, Wuhan City Center for Disease Prevention and Control, Wuhan, China
| | - Yijing Zhang
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Wenjing Yang
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Ronghua Shang
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Weixing Du
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Huabing Tan
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jiangtao Chen
- Laboratory Medical Center, Huizhou Municipal Central Hospital, Huizhou, China
| | - Min Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
16
|
Emergence and Spread of kelch13 Mutations Associated with Artemisinin Resistance in Plasmodium falciparum Parasites in 12 Thai Provinces from 2007 to 2016. Antimicrob Agents Chemother 2018; 62:AAC.02141-17. [PMID: 29378723 DOI: 10.1128/aac.02141-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/17/2018] [Indexed: 02/02/2023] Open
Abstract
Artemisinin-based combination therapy (ACT) is the most effective and widely used treatment for uncomplicated Plasmodium falciparum malaria and is a cornerstone for malaria control and prevention globally. Resistance to artemisinin derivatives has been confirmed in the Greater Mekong Subregion (GMS) and manifests as slow parasite clearance in patients and reduced ring stage susceptibility to artemisinins in survival assays. The P. falciparumkelch13 gene mutations associated with artemisinin-resistant parasites are now widespread in the GMS. We genotyped 277 samples collected during an observational study from 2012 to 2016 from eight provinces in Thailand to identify P. falciparum kelch13 mutations. The results were combined with previously reported genotyping results from Thailand to construct a map illustrating the evolution of P. falciparum kelch13 mutations from 2007 to 2016 in that country. Different mutant alleles were found in strains with different geographical origins. The artemisinin resistance-conferring Y493H and R539T mutations were detected mainly in eastern Thailand (bordering Cambodia), while P574L was found only in western Thailand and R561H only in northwestern Thailand. The C580Y mutation was found across the entire country and was nearing fixation along the Thai-Cambodia border. Overall, the prevalence of artemisinin resistance mutations increased over the last 10 years across Thailand, especially along the Thai-Cambodia border. Molecular surveillance and therapeutic efficacy monitoring should be intensified in the region to further assess the extent and spread of artemisinin resistance.
Collapse
|
17
|
Nyunt MH, Soe MT, Myint HW, Oo HW, Aye MM, Han SS, Zaw NN, Cho C, Aung PZ, Kyaw KT, Aye TT, San NA, Ortega L, Thimasarn K, Bustos MDG, Galit S, Hoque MR, Ringwald P, Han ET, Kyaw MP. Clinical and molecular surveillance of artemisinin resistant falciparum malaria in Myanmar (2009-2013). Malar J 2017; 16:333. [PMID: 28806957 PMCID: PMC5557565 DOI: 10.1186/s12936-017-1983-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022] Open
Abstract
Background Emergence of artemisinin-resistant malaria in Southeast Asian countries threatens the global control of malaria. Although K13 kelch propeller has been assessed for artemisinin resistance molecular marker, most of the mutations need to be validated. In this study, artemisinin resistance was assessed by clinical and molecular analysis, including k13 and recently reported markers, pfarps10, pffd and pfmdr2. Methods A prospective cohort study in 1160 uncomplicated falciparum patients was conducted after treatment with artemisinin-based combination therapy (ACT), in 6 sentinel sites in Myanmar from 2009 to 2013. Therapeutic efficacy of ACT was assessed by longitudinal follow ups. Molecular markers analysis was done on all available day 0 samples. Results True recrudescence treatment failures cases and day 3 parasite positivity were detected at only the southern Myanmar sites. Day 3 positive and k13 mutants with higher prevalence of underlying genetic foci predisposing to become k13 mutant were detected only in southern Myanmar since 2009 and comparatively fewer mutations of pfarps10, pffd, and pfmdr2 were observed in western Myanmar. K13 mutations, V127M of pfarps10, D193Y of pffd, and T448I of pfmdr2 were significantly associated with day 3 positivity (OR: 6.48, 3.88, 2.88, and 2.52, respectively). Conclusions Apart from k13, pfarps10, pffd and pfmdr2 are also useful for molecular surveillance of artemisinin resistance especially where k13 mutation has not been reported. Appropriate action to eliminate the resistant parasites and surveillance on artemisinin resistance should be strengthened in Myanmar. Trial registration This study was registered with ClinicalTrials.gov, identifier NCT02792816.
Collapse
Affiliation(s)
- Myat Htut Nyunt
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.,Department of Medical Research, Yangon, Republic of the Union of Myanmar
| | - Myat Thu Soe
- Department of Medical Research, Yangon, Republic of the Union of Myanmar
| | - Hla Win Myint
- Magway District Hospital, Ministry of Health and Sports, Magway, Republic of the Union of Myanmar
| | - Htet Wai Oo
- Department of Medical Research, Yangon, Republic of the Union of Myanmar
| | - Moe Moe Aye
- Department of Medical Research, Yangon, Republic of the Union of Myanmar
| | - Soe Soe Han
- Department of Medical Research, Yangon, Republic of the Union of Myanmar
| | - Ni Ni Zaw
- Department of Medical Research, Yangon, Republic of the Union of Myanmar
| | - Cho Cho
- Department of Medical Research, Yangon, Republic of the Union of Myanmar
| | - Phyo Zaw Aung
- Department of Medical Research, Yangon, Republic of the Union of Myanmar
| | - Khin Thiri Kyaw
- Department of Medical Research, Yangon, Republic of the Union of Myanmar
| | - Thin Thin Aye
- Department of Medical Research, Yangon, Republic of the Union of Myanmar
| | - Naychi Aung San
- Department of Medical Research, Yangon, Republic of the Union of Myanmar
| | | | - Krongthong Thimasarn
- World Health Organization Country Office for Myanmar, Yangon, Republic of the Union of Myanmar
| | | | - Sherwin Galit
- Research Institute for Tropical Medicine, Alabang, Muntinlupa City, Philippines
| | - Mohammad Rafiul Hoque
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | | | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.
| | - Myat Phone Kyaw
- Department of Medical Research, Yangon, Republic of the Union of Myanmar
| |
Collapse
|
18
|
Wang M, Siddiqui FA, Fan Q, Luo E, Cao Y, Cui L. Limited genetic diversity in the PvK12 Kelch protein in Plasmodium vivax isolates from Southeast Asia. Malar J 2016; 15:537. [PMID: 27821166 PMCID: PMC5100195 DOI: 10.1186/s12936-016-1583-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Artemisinin resistance in Plasmodium falciparum has emerged as a major threat for malaria control and elimination worldwide. Mutations in the Kelch propeller domain of PfK13 are the only known molecular markers for artemisinin resistance in this parasite. Over 100 non-synonymous mutations have been identified in PfK13 from various malaria endemic regions. This study aimed to investigate the genetic diversity of PvK12, the Plasmodium vivax ortholog of PfK13, in parasite populations from Southeast Asia, where artemisinin resistance in P. falciparum has emerged. Methods The PvK12 sequences in 120 P. vivax isolates collected from Thailand (22), Myanmar (32) and China (66) between 2004 and 2008 were obtained and 353 PvK12 sequences from worldwide populations were retrieved for further analysis. Results These PvK12 sequences revealed a very low level of genetic diversity (π = 0.00003) with only three single nucleotide polymorphisms (SNPs). Of these three SNPs, only G581R is nonsynonymous. The synonymous mutation S88S is present in 3% (1/32) of the Myanmar samples, while G704G and G581R are present in 1.5% (1/66) and 3% (2/66) of the samples from China, respectively. None of the mutations observed in the P. vivax samples were associated with artemisinin resistance in P. falciparum. Furthermore, analysis of 473 PvK12 sequences from twelve worldwide P. vivax populations confirmed the very limited polymorphism in this gene and detected only five distinct haplotypes. Conclusions The PvK12 sequences from global P. vivax populations displayed very limited genetic diversity indicating low levels of baseline polymorphisms of PvK12 in these areas. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1583-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meilian Wang
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110013, China. .,Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, USA.
| | - Faiza Amber Siddiqui
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, USA
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning Province, China
| | - Enjie Luo
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110013, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110013, China
| | - Liwang Cui
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110013, China. .,Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, USA.
| |
Collapse
|
19
|
Deng S, Ruan Y, Bai Y, Hu Y, Deng Z, He Y, Ruan R, Wu Y, Yang Z, Cui L. Genetic diversity of the Pvk12 gene in Plasmodium vivax from the China-Myanmar border area. Malar J 2016; 15:528. [PMID: 27809837 PMCID: PMC5096284 DOI: 10.1186/s12936-016-1592-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Plasmodium falciparum resistance to artemisinin emerged in the Greater Mekong Sub-region has been associated with mutations in the propeller domain of the kelch gene Pfk13. METHODS Here the polymorphisms in Pvk12 gene, the orthologue of Pfk13 in Plasmodium vivax, were determined by PCR and sequencing in 262 clinical isolates collected in recent years (2012-2015) from the China-Myanmar border area. RESULTS Sequencing of full-length Pvk12 genes from these isolates identified three synonymous mutations (N172N, S360S, S697S) and one non-synonymous mutation M124I, all of which were at very low prevalence (2.0-3.1%). Moreover, these mutations were non-overlapping between the two study sites on both sides of the border. Molecular evolutionary analysis detected signature of purifying selection on Pvk12. CONCLUSIONS There is no direct evidence that Pvk12 is involved in artemisinin resistance in P. vivax, but it remains a potential candidate requiring further investigation. Continuous monitoring of potential drug resistance in this parasite is needed in order to facilitate the regional malaria elimination campaign.
Collapse
Affiliation(s)
- Shuang Deng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan Province, China.,Department of Pathology, Kunming Medical University, Kunming, 650500, Yunnan Province, China
| | - Yonghua Ruan
- Department of Pathology, Kunming Medical University, Kunming, 650500, Yunnan Province, China
| | - Yao Bai
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan Province, China.,Department of Pharmacology, Kunming Medical University, Kunming, 650500, Yunnan Province, China
| | - Yue Hu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan Province, China.,Department of Pathology, Kunming Medical University, Kunming, 650500, Yunnan Province, China
| | - Zeshuai Deng
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, 650500, Yunnan Province, China
| | - Yongshu He
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, 650500, Yunnan Province, China
| | - Rui Ruan
- Department of Orthopedics, The First Affiliated Hospital, Kunming Medical University, Kunming, 650500, Yunnan Province, China
| | - Yanrui Wu
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, 650500, Yunnan Province, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan Province, China.
| | - Liwang Cui
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan Province, China.
| |
Collapse
|
20
|
Genome-wide association analysis identifies genetic loci associated with resistance to multiple antimalarials in Plasmodium falciparum from China-Myanmar border. Sci Rep 2016; 6:33891. [PMID: 27694982 PMCID: PMC5046179 DOI: 10.1038/srep33891] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/05/2016] [Indexed: 12/02/2022] Open
Abstract
Drug resistance has emerged as one of the greatest challenges facing malaria control. The recent emergence of resistance to artemisinin (ART) and its partner drugs in ART-based combination therapies (ACT) is threatening the efficacy of this front-line regimen for treating Plasmodium falciparum parasites. Thus, an understanding of the molecular mechanisms that underlie the resistance to ART and the partner drugs has become a high priority for resistance containment and malaria management. Using genome-wide association studies, we investigated the associations of genome-wide single nucleotide polymorphisms with in vitro sensitivities to 10 commonly used antimalarial drugs in 94 P. falciparum isolates from the China-Myanmar border area, a region with the longest history of ART usage. We identified several loci associated with various drugs, including those containing pfcrt and pfdhfr. Of particular interest is a locus on chromosome 10 containing the autophagy-related protein 18 (ATG18) associated with decreased sensitivities to dihydroartemisinin, artemether and piperaquine – an ACT partner drug in this area. ATG18 is a phosphatidylinositol-3-phosphate binding protein essential for autophagy and recently identified as a potential ART target. Further investigations on the ATG18 and genes at the chromosome 10 locus may provide an important lead for a connection between ART resistance and autophagy.
Collapse
|
21
|
Woodrow CJ, White NJ. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol Rev 2016; 41:34-48. [PMID: 27613271 PMCID: PMC5424521 DOI: 10.1093/femsre/fuw037] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/11/2016] [Accepted: 07/31/2016] [Indexed: 11/25/2022] Open
Abstract
Artemisinins are the most rapidly acting of currently available antimalarial drugs. Artesunate has become the treatment of choice for severe malaria, and artemisinin-based combination therapies (ACTs) are the foundation of modern falciparum malaria treatment globally. Their safety and tolerability profile is excellent. Unfortunately, Plasmodium falciparum infections with mutations in the ‘K13’ gene, with reduced ring-stage susceptibility to artemisinins, and slow parasite clearance in patients treated with ACTs, are now widespread in Southeast Asia. We review clinical efficacy data from the region (2000–2015) that provides strong evidence that the loss of first-line ACTs in western Cambodia, first artesunate-mefloquine and then DHA-piperaquine, can be attributed primarily to K13 mutated parasites. The ring-stage activity of artemisinins is therefore critical for the sustained efficacy of ACTs; once it is lost, rapid selection of partner drug resistance and ACT failure are inevitable consequences. Consensus methods for monitoring artemisinin resistance are now available. Despite increased investment in regional control activities, ACTs are failing across an expanding area of the Greater Mekong subregion. Although multiple K13 mutations have arisen independently, successful multidrug-resistant parasite genotypes are taking over and threaten to spread to India and Africa. Stronger containment efforts and new approaches to sustaining long-term efficacy of antimalarial regimens are needed to prevent a global malaria emergency. Artemisinin resistance in Plasmodium falciparum malaria is causing failure of artemisinin-based combination therapies across an expanding area of Southeast Asia, undermining control and elimination efforts. The potential global consequences can only be avoided by new approaches that ensure sustained efficacy for antimalarial regimens in malaria affected populations.
Collapse
Affiliation(s)
- Charles J Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6, Rajvithi Road, Bangkok 10400, Thailand
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6, Rajvithi Road, Bangkok 10400, Thailand
| |
Collapse
|
22
|
Phyo AP, Ashley EA, Anderson TJC, Bozdech Z, Carrara VI, Sriprawat K, Nair S, White MM, Dziekan J, Ling C, Proux S, Konghahong K, Jeeyapant A, Woodrow CJ, Imwong M, McGready R, Lwin KM, Day NPJ, White NJ, Nosten F. Declining Efficacy of Artemisinin Combination Therapy Against P. Falciparum Malaria on the Thai-Myanmar Border (2003-2013): The Role of Parasite Genetic Factors. Clin Infect Dis 2016; 63:784-791. [PMID: 27313266 PMCID: PMC4996140 DOI: 10.1093/cid/ciw388] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/05/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Deployment of mefloquine-artesunate (MAS3) on the Thailand-Myanmar border has led to a sustained reduction in falciparum malaria, although antimalarial efficacy has declined substantially in recent years. The role of Plasmodium falciparum K13 mutations (a marker of artemisinin resistance) in reducing treatment efficacy remains controversial. METHODS Between 2003 and 2013, we studied the efficacy of MAS3 in 1005 patients with uncomplicated P. falciparum malaria in relation to molecular markers of resistance. RESULTS Polymerase chain reaction (PCR)-adjusted cure rates declined from 100% in 2003 to 81.1% in 2013 as the proportions of isolates with multiple Pfmdr1 copies doubled from 32.4% to 64.7% and those with K13 mutations increased from 6.7% to 83.4%. K13 mutations conferring moderate artemisinin resistance (notably E252Q) predominated initially but were later overtaken by propeller mutations associated with slower parasite clearance (notably C580Y). Those infected with both multiple Pfmdr1 copy number and a K13 propeller mutation were 14 times more likely to fail treatment. The PCR-adjusted cure rate was 57.8% (95% confidence interval [CI], 45.4, 68.3) compared with 97.8% (95% CI, 93.3, 99.3) in patients with K13 wild type and Pfmdr1 single copy. K13 propeller mutation alone was a strong risk factor for recrudescence (P = .009). The combined population attributable fraction of recrudescence associated with K13 mutation and Pfmdr1 amplification was 82%. CONCLUSIONS The increasing prevalence of K13 mutations was the decisive factor for the recent and rapid decline in efficacy of artemisinin-based combination (MAS3) on the Thailand-Myanmar border.
Collapse
Affiliation(s)
- Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Elizabeth A Ashley
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tim J C Anderson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio; and
| | - Zbynek Bozdech
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Verena I Carrara
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Shalini Nair
- Department of Genetics, Texas Biomedical Research Institute, San Antonio; and
| | - Marina McDew White
- Department of Genetics, Texas Biomedical Research Institute, San Antonio; and
| | - Jerzy Dziekan
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Clare Ling
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Stephane Proux
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kamonchanok Konghahong
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Atthanee Jeeyapant
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Charles J Woodrow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Khin Maung Lwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
23
|
Fairhurst RM, Dondorp AM. Artemisinin-Resistant Plasmodium falciparum Malaria. Microbiol Spectr 2016; 4:10.1128/microbiolspec.EI10-0013-2016. [PMID: 27337450 PMCID: PMC4992992 DOI: 10.1128/microbiolspec.ei10-0013-2016] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Indexed: 01/05/2023] Open
Abstract
For more than five decades, Southeast Asia (SEA) has been fertile ground for the emergence of drug-resistant Plasmodium falciparum malaria. After generating parasites resistant to chloroquine, sulfadoxine, pyrimethamine, quinine, and mefloquine, this region has now spawned parasites resistant to artemisinins, the world's most potent antimalarial drugs. In areas where artemisinin resistance is prevalent, artemisinin combination therapies (ACTs)-the first-line treatments for malaria-are failing fast. This worrisome development threatens to make malaria practically untreatable in SEA, and threatens to compromise global endeavors to eliminate this disease. A recent series of clinical, in vitro, genomics, and transcriptomics studies in SEA have defined in vivo and in vitro phenotypes of artemisinin resistance, identified its causal genetic determinant, explored its molecular mechanism, and assessed its clinical impact. Specifically, these studies have established that artemisinin resistance manifests as slow parasite clearance in patients and increased survival of early-ring-stage parasites in vitro; is caused by single nucleotide polymorphisms in the parasite's K13 gene, is associated with an upregulated "unfolded protein response" pathway that may antagonize the pro-oxidant activity of artemisinins, and selects for partner drug resistance that rapidly leads to ACT failures. In SEA, clinical studies are urgently needed to monitor ACT efficacy where K13 mutations are prevalent, test whether new combinations of currently available drugs cure ACT failures, and advance new antimalarial compounds through preclinical pipelines and into clinical trials. Intensifying these efforts should help to forestall the spread of artemisinin and partner drug resistance from SEA to sub-Saharan Africa, where the world's malaria transmission, morbidity, and mortality rates are highest.
Collapse
Affiliation(s)
- Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, United States of America
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|