1
|
Weng SS, Lin L, Xie JF, Hu BC, Ma XQ, Xia J, Jiang Y, Zhou H, wu XY, Jin YH, Wu GQ, Yang Y, Sun RH, Yu YS, Zhao DD. Performance of ddPCR-GNB for microbial diagnosis of suspected bloodstream infection due to the four most common gram-negative bacteria: a prospective, multicenter study. Microbiol Spectr 2025; 13:e0101524. [PMID: 39998247 PMCID: PMC11960046 DOI: 10.1128/spectrum.01015-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
We aimed to validate the performance of ddPCR-GNB, a plasma droplet digital PCR panel targeting the four most common gram-negative bacteria, for patients with suspected bloodstream infection (BSI). Patients suspected of having BSIs were prospectively enrolled. The results of blood culture and ddPCR-GNB were compared, and cases with discordant results were arbitrated on the basis of additional microbiological results and clinical evidence. A total of 1,041 patients were enrolled. Blood culture and ddPCR-GNB results were positive for targeted bacteria in 6.3% and 31.7% of patients, respectively. The overall per-patient sensitivity and specificity of ddPCR-GNB for proven BSIs were 98.5% (95% CI, 91.9% to 99.9%) and 72.8% (95% CI, 69.9% to 75.5%), respectively; the negative predictive value was 99.9% (95% CI, 99.2% to 100%). The discordant results included 265 cases (25.5%) with negative companion blood culture results but positive ddPCR-GNB results and one case vice versa. A total of 23.7% of the cases were attributed to probable (n = 126) or possible (n = 121) BSIs. If both probable and possible BSIs were assumed to be true positives, the per-patient specificity of ddPCR-GNB would be 97.5%. The ddPCR-GNB panel demonstrated excellent microbial diagnostic performance in identifying targeted bacteria for patients with suspected BSI. IMPORTANCE This is the first multicentral study to validate the clinical performance of ddPCR in etiological diagnosis of bloodstream infection. The results showed that ddPCR has high sensitivity and increased detection rate compared with blood culture. The study proved the potential of the ddPCR method in microbial diagnoses.
Collapse
Affiliation(s)
- Shan-shan Weng
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Lin
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, China
| | - Jian-feng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bang-chuan Hu
- Intensive Care Unit, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xue-qing Ma
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiang Xia
- Pilot Gene Technologies (Hangzhou) Co., Ltd, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-yan wu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yu-hong Jin
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Guo-qiu Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ren-Hua Sun
- Intensive Care Unit, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yun-song Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong-dong Zhao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Samuel L. Direct-from-Blood Detection of Pathogens: a Review of Technology and Challenges. J Clin Microbiol 2023; 61:e0023121. [PMID: 37222587 PMCID: PMC10358183 DOI: 10.1128/jcm.00231-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Blood cultures have been the staple of clinical microbiology laboratories for well over half a century, but gaps remain in our ability to identify the causative agent in patients presenting with signs and symptoms of sepsis. Molecular technologies have revolutionized the clinical microbiology laboratory in many areas but have yet to present a viable alternative to blood cultures. There has been a recent surge of interest in utilizing novel approaches to address this challenge. In this minireview, I discuss whether molecular tools will finally give us the answers we need and the practical challenges of incorporating them into the diagnostic algorithm.
Collapse
Affiliation(s)
- Linoj Samuel
- Division of Clinical Microbiology, Department of Pathology and Laboratory Medicine, Henry Ford Health, Detroit, Michigan, USA
| |
Collapse
|
3
|
Urosevic N, Merritt AJ, Inglis TJJ. Plasma cfDNA predictors of established bacteraemic infection. Access Microbiol 2022; 4:acmi000373. [PMID: 36004363 PMCID: PMC9394668 DOI: 10.1099/acmi.0.000373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction. Increased plasma cell-free DNA (cfDNA) has been reported for various diseases in which cell death and tissue/organ damage contribute to pathogenesis, including sepsis. Gap Statement. While several studies report a rise in plasma cfDNA in bacteraemia and sepsis, the main source of cfDNA has not been identified. Aim. In this study, we wanted to determine which of nuclear, mitochondrial or bacterial cfDNA is the major contributor to raised plasma cfDNA in hospital subjects with bloodstream infections and could therefore serve as a predictor of bacteraemic disease severity. Methodology. The total plasma concentration of double-stranded cfDNA was determined using a fluorometric assay. The presence of bacterial DNA was identified by PCR and DNA sequencing. The copy numbers of human genes, nuclear β globin and mitochondrial MTATP8, were determined by droplet digital PCR. The presence, size and concentration of apoptotic DNA from human cells were established using lab-on-a-chip technology. Results. We observed a significant difference in total plasma cfDNA from a median of 75 ng ml−1 in hospitalised subjects without bacteraemia to a median of 370 ng ml−1 (P=0.0003) in bacteraemic subjects. The copy numbers of nuclear DNA in bacteraemic also differed between a median of 1.6 copies µl−1 and 7.3 copies µl−1 (P=0.0004), respectively. In contrast, increased mitochondrial cfDNA was not specific for bacteraemic subjects, as shown by median values of 58 copies µl−1 in bacteraemic subjects, 55 copies µl−1 in other hospitalised subjects and 5.4 copies µl−1 in healthy controls. Apoptotic nucleosomal cfDNA was detected only in a subpopulation of bacteraemic subjects with documented comorbidities, consistent with elevated plasma C-reactive protein (CRP) levels in these subjects. No bacterial cfDNA was reliably detected by PCR in plasma of bacteraemic subjects over the course of infection with several bacterial pathogens. Conclusions. Our data revealed distinctive plasma cfDNA signatures in different groups of hospital subjects. The total cfDNA was significantly increased in hospital subjects with laboratory-confirmed bloodstream infections comprising nuclear and apoptotic, but not mitochondrial or bacterial cfDNAs. The apoptotic cfDNA, potentially derived from blood cells, predicted established bacteraemia. These findings deserve further investigation in different hospital settings, where cfDNA measurement could provide simple and quantifiable parameters for monitoring a disease progression.
Collapse
Affiliation(s)
- Nadezda Urosevic
- School of Medicine, Faculty of Health & Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, Faculty of Health & Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Adam J. Merritt
- Department of Microbiology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA, Australia
| | - Timothy J. J. Inglis
- School of Medicine, Faculty of Health & Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, Faculty of Health & Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Department of Microbiology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA, Australia
| |
Collapse
|
4
|
Chakaroun R, Massier L, Musat N, Kovacs P. New Paradigms for Familiar Diseases: Lessons Learned on Circulatory Bacterial Signatures in Cardiometabolic Diseases. Exp Clin Endocrinol Diabetes 2022; 130:313-326. [PMID: 35320847 DOI: 10.1055/a-1756-4509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Despite the strongly accumulating evidence for microbial signatures in metabolic tissues, including the blood, suggesting a novel paradigm for metabolic disease development, the notion of a core blood bacterial signature in health and disease remains a contentious concept. Recent studies clearly demonstrate that under a strict contamination-free environment, methods such as 16 S rRNA gene sequencing, fluorescence in-situ hybridization, transmission electron microscopy, and several more, allied with advanced bioinformatics tools, allow unambiguous detection and quantification of bacteria and bacterial DNA in human tissues. Bacterial load and compositional changes in the blood have been reported for numerous disease states, suggesting that bacteria and their components may partially induce systemic inflammation in cardiometabolic disease. This concept has been so far primarily based on measurements of surrogate parameters. It is now highly desirable to translate the current knowledge into diagnostic, prognostic, and therapeutic approaches.This review addresses the potential clinical relevance of a blood bacterial signature pertinent to cardiometabolic diseases and outcomes and new avenues for translational approaches. It discusses pitfalls related to research in low bacterial biomass while proposing mitigation strategies for future research and application approaches.
Collapse
Affiliation(s)
- Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Lucas Massier
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Deutsches Zentrum für Diabetesforschung eV, Neuherberg, Germany
| |
Collapse
|
5
|
Blood Bacteria-Free DNA in Septic Mice Enhances LPS-Induced Inflammation in Mice through Macrophage Response. Int J Mol Sci 2022; 23:ijms23031907. [PMID: 35163830 PMCID: PMC8836862 DOI: 10.3390/ijms23031907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023] Open
Abstract
Although bacteria-free DNA in blood during systemic infection is mainly derived from bacterial death, translocation of the DNA from the gut into the blood circulation (gut translocation) is also possible. Hence, several mouse models with experiments on macrophages were conducted to explore the sources, influences, and impacts of bacteria-free DNA in sepsis. First, bacteria-free DNA and bacteriome in blood were demonstrated in cecal ligation and puncture (CLP) sepsis mice. Second, administration of bacterial lysate (a source of bacterial DNA) in dextran sulfate solution (DSS)-induced mucositis mice elevated blood bacteria-free DNA without bacteremia supported gut translocation of free DNA. The absence of blood bacteria-free DNA in DSS mice without bacterial lysate implies an impact of the abundance of bacterial DNA in intestinal contents on the translocation of free DNA. Third, higher serum cytokines in mice after injection of combined bacterial DNA with lipopolysaccharide (LPS), when compared to LPS injection alone, supported an influence of blood bacteria-free DNA on systemic inflammation. The synergistic effects of free DNA and LPS on macrophage pro-inflammatory responses, as indicated by supernatant cytokines (TNF-α, IL-6, and IL-10), pro-inflammatory genes (NFκB, iNOS, and IL-1β), and profound energy alteration (enhanced glycolysis with reduced mitochondrial functions), which was neutralized by TLR-9 inhibition (chloroquine), were demonstrated. In conclusion, the presence of bacteria-free DNA in sepsis mice is partly due to gut translocation of bacteria-free DNA into the systemic circulation, which would enhance sepsis severity. Inhibition of the responses against bacterial DNA by TLR-9 inhibition could attenuate LPS-DNA synergy in macrophages and might help improve sepsis hyper-inflammation in some situations.
Collapse
|
6
|
Sampath S, Baby J, Krishna B, Dendukuri N, Thomas T. Blood Cultures and Molecular Diagnostics in Intensive Care Units to Diagnose Sepsis: A Bayesian Latent Class Model Analysis. Indian J Crit Care Med 2022; 25:1402-1407. [PMID: 35027801 PMCID: PMC8693100 DOI: 10.5005/jp-journals-10071-24051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Confirmation of sepsis by standard blood cultures (STD) is often inconclusive due to slow growth and low positivity. Molecular diagnostics (MOL) are faster and may have higher positivity, but test performance can be inaccurately estimated if STD methods are used as comparators. Bayesian latent class models (LCMs) can evaluate diagnostic methods when there is no "gold standard." Intensive care unit studies that have used LCMs to combine and compare STD and MOL method performance and estimate the prevalence of sepsis have not been described. Patients and methods Results from an ICU sepsis study that used both tests simultaneously were analyzed. Bayesian LCMs combined prior prevalence of sepsis, prior diagnostic characteristics of the two methods, and the study results to estimate the posterior prevalence and diagnostic characteristics. Sensitivity analyses were performed using objective (published studies) and subjective (expert opinion) prior parameters. Positive predictive values (PPVs) of the prevalence of sepsis were estimated for all combinations of test results. Results The range of posterior estimates was: sepsis prevalence (0.38-0.88), sensitivities (STD: 0.2-0.35, MOL: 0.56-0.86), and specificities (STD: 0.87-0.99, MOL: 0.72-0.95). The PPV (sepsis) of both tests being positive was (0.72-0.99). Conclusion LCMs combined two imperfect methods to estimate prevalence, PPV, and diagnostic characteristics. The posterior estimates (STD sensitivity < MOL and STD specificity > MOL) seem to reflect the clinical experience appropriately. The high PPV when both methods show positive results can be useful for ruling in disease. How to cite this article Sampath S, Baby J, Krishna B, Dendukuri N, Thomas T. Blood Cultures and Molecular Diagnostics in Intensive Care Units to Diagnose Sepsis: A Bayesian Latent Class Model Analysis. Indian J Crit Care Med 2021;25(12):1402-1407.
Collapse
Affiliation(s)
- Sriram Sampath
- Department of Critical Care Medicine, Bengaluru, Karnataka, India
| | - Jeswin Baby
- Division of Epidemiology and Biostatistics, St John's Research Institute, Bengaluru, Karnataka, India; Department of Statistical Sciences, Kannur University, Kannur, Kerala, India
| | - Bhuvana Krishna
- Department of Critical Care Medicine, St John's Medical College and Hospital, Bengaluru, Karnataka, India
| | | | - Tinku Thomas
- Department of Biostatistics, St John's Medical College, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Performance of PCR/Electrospray Ionization-Mass Spectrometry on Whole Blood for Detection of Bloodstream Microorganisms in Patients with Suspected Sepsis. J Clin Microbiol 2020; 58:JCM.01860-19. [PMID: 32641399 PMCID: PMC7448645 DOI: 10.1128/jcm.01860-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/01/2020] [Indexed: 12/29/2022] Open
Abstract
Blood culture (BC) often fails to detect bloodstream microorganisms in sepsis. However, molecular diagnostics hold great potential. The molecular method PCR/electrospray ionization-mass spectrometry (PCR/ESI-MS) can detect DNA from hundreds of different microorganisms in whole blood. The aim of the present study was to evaluate the performance of this method in a multicenter study including 16 teaching hospitals in the United States (n = 13) and Europe (n = 3). First, on testing of 2,754 contrived whole blood samples, with or without spiked microorganisms, PCR/ESI-MS produced 99.1% true-positive and 97.2% true-negative results. Second, among 1,460 patients with suspected sepsis (sepsis-2 definition), BC and PCR/ESI-MS on whole blood were positive in 14.6% and 25.6% of cases, respectively, with the following result combinations: BC positive and PCR/ESI-MS negative, 4.3%; BC positive and PCR/ESI-MS positive, 10.3%; BC negative and PCR/ESI-MS positive, 15.3%; and BC negative and PCR/ESI-MS negative, 70.1%. Compared with BC, PCR/ESI-MS showed the following sensitivities (coagulase-negative staphylococci not included): Gram-positive bacteria, 58%; Gram-negative bacteria, 78%; and Candida species, 83%. The specificities were >94% for all individual species. Patients who had received prior antimicrobial medications (n = 603) had significantly higher PCR/ESI-MS positivity rates than patients without prior antimicrobial treatment-31% versus 22% (P < 0.0001)-with pronounced differences for Gram-negative bacteria and Candida species. In conclusion, PCR/ESI-MS showed excellent performance on contrived samples. On clinical samples, it showed high specificities, moderately high sensitivities for Gram-negative bacteria and Candida species, and elevated positivity rates during antimicrobial treatment. These promising results encourage further development of molecular diagnostics to be used with whole blood for detection of bloodstream microorganisms in sepsis.
Collapse
|
8
|
D'Onofrio V, Salimans L, Bedenić B, Cartuyvels R, Barišić I, Gyssens IC. The Clinical Impact of Rapid Molecular Microbiological Diagnostics for Pathogen and Resistance Gene Identification in Patients With Sepsis: A Systematic Review. Open Forum Infect Dis 2020; 7:ofaa352. [PMID: 33033730 PMCID: PMC7528559 DOI: 10.1093/ofid/ofaa352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Fast microbiological diagnostics (MDx) are needed to ensure early targeted antimicrobial treatment in sepsis. This systematic review focuses on the impact on antimicrobial management and patient outcomes of MDx for pathogen and resistance gene identification compared with blood cultures. PubMed was searched for clinical studies using either whole blood directly or after short-term incubation. Twenty-five articles were retrieved describing the outcomes of 8 different MDx. Three interventional studies showed a significant increase in appropriateness of antimicrobial therapy and a nonsignificant change in time to appropriate therapy. Impact on mortality was conflicting. Length of stay was significantly lower in 2 studies. A significant decrease in antimicrobial cost was demonstrated in 6 studies. The limitations of this systematic review include the low number and observed heterogeneity of clinical studies. In conclusion, potential benefits of MDx regarding antimicrobial management and some patient outcomes were reported. More rigorous intervention studies are needed focusing on the direct benefits for patients.
Collapse
Affiliation(s)
- Valentino D'Onofrio
- Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Department of Infectious Diseases and Immunity, Jessa Hospital, Hasselt, Belgium.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lene Salimans
- Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Branka Bedenić
- Department of Microbiology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Ivan Barišić
- Molecular diagnostics, Austrian Institute of Technology, Vienna, Austria
| | - Inge C Gyssens
- Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Reconstituted High-density Lipoprotein Therapy Improves Survival in Mouse Models of Sepsis. Anesthesiology 2020; 132:825-838. [PMID: 32101976 DOI: 10.1097/aln.0000000000003155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND High-density lipoproteins exert pleiotropic effects including antiinflammatory, antiapoptotic, and lipopolysaccharide-neutralizing properties. The authors assessed the effects of reconstituted high-density lipoproteins (CSL-111) intravenous injection in different models of sepsis. METHODS Ten-week-old C57BL/6 mice were subjected to sepsis by cecal ligation and puncture or intraperitoneal injection of Escherichia coli or Pseudomonas aeruginosa pneumonia. CSL-111 or saline solution was administrated 2 h after the sepsis. Primary outcome was survival. Secondary outcomes were plasma cell-free DNA and cytokine concentrations, histology, bacterial count, and biodistribution. RESULTS Compared with saline, CSL-111 improved survival in cecal ligation and puncture and intraperitoneal models (13 of 16 [81%] survival rate vs. 6 of 16 [38%] in the cecal ligation and puncture model; P = 0.011; 4 of 10 [40%] vs. 0 of 10 [0%] in the intraperitoneal model; P = 0.011). Cell-free DNA concentration was lower in CSL-111 relative to saline groups (68 [24 to 123] pg/ml vs. 351 [333 to 683] pg/ml; P < 0.001). Mice injected with CSL-111 presented a decreased bacterial count at 24 h after the cecal ligation and puncture model both in plasma (200 [28 to 2,302] vs. 2,500 [953 to 3,636] colony-forming unit/ml; P = 0.021) and in the liver (1,359 [360 to 1,648] vs. 1,808 [1,464 to 2,720] colony-forming unit/ml; P = 0.031). In the pneumonia model, fewer bacteria accumulated in liver and lung of the CSL-111 group. CSL-111-injected mice had also less lung inflammation versus saline mice (CD68+ to total cells ratio: saline, 0.24 [0.22 to 0.27]; CSL-111, 0.07 [0.01 to 0.09]; P < 0.01). In all models, no difference was found for cytokine concentration. Indium bacterial labeling underlined a potential hepatic bacterial clearance possibly promoted by high-density lipoprotein uptake. CONCLUSIONS CSL-111 infusion improved survival in different experimental mouse models of sepsis. It reduced inflammation in both plasma and organs and decreased bacterial count. These results emphasized the key role for high-density lipoproteins in endothelial and organ protection, but also in lipopolysaccharide/bacteria clearance. This suggests an opportunity to explore the therapeutic potential of high-density lipoproteins in septic conditions.
Collapse
|
10
|
Development of a Novel and Rapid Antibody-Based Diagnostic for Chronic Staphylococcus aureus Infections Based on Biofilm Antigens. J Clin Microbiol 2020; 58:JCM.01414-19. [PMID: 32051263 DOI: 10.1128/jcm.01414-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
Prosthetic joint infections are difficult to diagnose and treat due to biofilm formation by the causative pathogens. Pathogen identification relies on microbial culture that requires days to weeks, and in the case of chronic biofilm infections, lacks sensitivity. Diagnosis of infection is often delayed past the point of effective treatment such that only the removal of the implant is curative. Early diagnosis of an infection based on antibody detection might lead to less invasive, early interventions. Our study examined antibody-based assays against the Staphylococcus aureus biofilm-upregulated antigens SAOCOL0486 (a lipoprotein), glucosaminidase (a domain of SACOL1062), and SACOL0688 (the manganese transporter MntC) for detection of chronic S. aureus infection. We evaluated these antigens by enzyme-linked immunosorbent assay (ELISA) using sera from naive rabbits and rabbits with S. aureus-mediated osteomyelitis, and then we validated a proof of concept for the lateral flow assay (LFA). The SACOL0688 LFA demonstrated 100% specificity and 100% sensitivity. We demonstrated the clinical diagnostic utility of the SACOL0688 antigen using synovial fluid (SF) from humans with orthopedic implant infections. Elevated antibody levels to SACOL0688 in clinical SF specimens correlated with 91% sensitivity and 100% specificity for the diagnosis of S. aureus infection by ELISA. We found measuring antibodies levels to SACOL0688 in SF using ELISA or LFA provides a tool for the sensitive and specific diagnosis of S. aureus prosthetic joint infection. Development of the LFA diagnostic modality is a desirable, cost-effective option, potentially providing rapid readout in minutes for chronic biofilm infections.
Collapse
|
11
|
Cavaillon J, Singer M, Skirecki T. Sepsis therapies: learning from 30 years of failure of translational research to propose new leads. EMBO Mol Med 2020; 12:e10128. [PMID: 32176432 PMCID: PMC7136965 DOI: 10.15252/emmm.201810128] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Sepsis has been identified by the World Health Organization (WHO) as a global health priority. There has been a tremendous effort to decipher underlying mechanisms responsible for organ failure and death, and to develop new treatments. Despite saving thousands of animals over the last three decades in multiple preclinical studies, no new effective drug has emerged that has clearly improved patient outcomes. In the present review, we analyze the reasons for this failure, focusing on the inclusion of inappropriate patients and the use of irrelevant animal models. We advocate against repeating the same mistakes and propose changes to the research paradigm. We discuss the long-term consequences of surviving sepsis and, finally, list some putative approaches-both old and new-that could help save lives and improve survivorship.
Collapse
Affiliation(s)
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care MedicineUniversity College LondonLondonUK
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry and Department of Anesthesiology and Intensive Care MedicineCentre of Postgraduate Medical EducationWarsawPoland
| |
Collapse
|
12
|
Tkadlec J, Bebrova E, Berousek J, Vymazal T, Adamkova J, Martinkova V, Moser C, Florea D, Drevinek P. Limited diagnostic possibilities for bloodstream infections with broad-range methods: A promising PCR/electrospray ionization-mass spectrometry platform is no longer available. Microbiologyopen 2020; 9:e1007. [PMID: 32031761 PMCID: PMC7221429 DOI: 10.1002/mbo3.1007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/07/2022] Open
Abstract
Fast and accurate detection of causative agents of bloodstream infections remains a challenge of today's microbiology. We compared the performance of cutting-edge technology based on polymerase chain reaction coupled with electrospray ionization-mass spectrometry (PCR/ESI-MS) with that of conventional broad-range 16S rRNA PCR and blood culture to address the current diagnostic possibilities for bloodstream infections. Of 160 blood samples tested, PCR/ESI-MS revealed clinically meaningful microbiological agents in 47 samples that were missed by conventional diagnostic approaches (29.4% of all analyzed samples). Notably, PCR/ESI-MS shortened the time to positivity of the blood culture-positive samples by an average of 34 hr. PCR/ESI-MS technology substantially improved current diagnostic tools and represented an opportunity to make bloodstream infections diagnostics sensitive, accurate, and timely with a broad spectrum of microorganisms covered.
Collapse
Affiliation(s)
- Jan Tkadlec
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Eliska Bebrova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jan Berousek
- Department of Anaesthesiology and Intensive Care Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Tomas Vymazal
- Department of Anaesthesiology and Intensive Care Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jaroslava Adamkova
- 3rd Department of Surgery, 1st Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Vendula Martinkova
- 3rd Department of Surgery, 1st Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Dragos Florea
- National Institute for Infectious Diseases, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Pavel Drevinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
13
|
Özenci V, Patel R, Ullberg M, Strålin K. Demise of Polymerase Chain Reaction/Electrospray Ionization-Mass Spectrometry as an Infectious Diseases Diagnostic Tool. Clin Infect Dis 2019; 66:452-455. [PMID: 29020209 DOI: 10.1093/cid/cix743] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/16/2017] [Indexed: 01/29/2023] Open
Abstract
Although there are several US Food and Drug Administration (FDA)-approved/cleared molecular microbiology diagnostics for direct analysis of patient samples, all are single target or panel-based tests. There is no FDA-approved/cleared diagnostic for broad microbial detection. Polymerase chain reaction (PCR)/electrospray ionization-mass spectrometry (PCR/ESI-MS), commercialized as the IRIDICA system (Abbott) and formerly PLEX-ID, had been under development for over a decade and had become CE-marked and commercially available in Europe in 2014. Capable of detecting a large number of microorganisms, it was under review at the FDA when, in April 2017, Abbott discontinued it. This turn of events represents not only the loss of a potential diagnostic tool for infectious diseases but may be a harbinger of similar situations with other emerging and expensive microbial diagnostics, especially genomic tests.
Collapse
Affiliation(s)
- Volkan Özenci
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota.,Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Måns Ullberg
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Instituet, Stockholm, Sweden
| |
Collapse
|
14
|
Özenci V, Strålin K. Clinical implementation of molecular methods in detection of microorganisms from blood with a special focus on PCR electrospray ionization mass spectrometry. Expert Rev Mol Diagn 2019; 19:389-395. [PMID: 30979356 DOI: 10.1080/14737159.2019.1607728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The ongoing improvement and development of state-of-the-art diagnostic methods indicate that we are in an era of revolution in clinical microbiological diagnosis of infectious diseases. Non-culture-based methods have the possibility to play a central role in delivering personalized microbiological diagnoses of severe infections. The PCR electrospray ionization mass spectrometry (PCR/ESI-MS) system is built on the principle of universal detection and specific identification. The performance studies using PCR/ESI-MS on whole blood samples, as well as our experiences, indicate that this method provides useful clinical information. These types of modern molecular methods deserve further development for broad implementation into clinical practices. Areas covered: The review describes briefly hitherto developed molecular assays in detection of microorganisms directly from whole blood and focuses on the clinical implementation of PCR/ESI-MS. Expert opinion: The detection of an extensive broad-spectrum of microorganisms directly from whole blood samples with a series of tests that are run automatically with a turn-around time of 8 h would be a desirable diagnostic tool for the clinical microbiology laboratories. We believe that the clinical experience with PCR-ESI MS may guide the development and establishment of similar state-of-the-art diagnostic technologies in medicine in the future.
Collapse
Affiliation(s)
- Volkan Özenci
- a Department of Clinical Microbiology , Karolinska University Hospital , Stockholm , Sweden.,b Division of Clinical Microbiology, Department of Laboratory Medicine , Karolinska Institutet , Stockholm , Sweden
| | - Kristoffer Strålin
- c Department of Infectious Diseases , Karolinska University Hospital , Stockholm , Sweden.,d Unit of Infectious Diseases, Department of Medicine Huddinge , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
15
|
Dubourg G, Raoult D, Fenollar F. Emerging methodologies for pathogen identification in bloodstream infections: an update. Expert Rev Mol Diagn 2019; 19:161-173. [DOI: 10.1080/14737159.2019.1568241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | | |
Collapse
|
16
|
Kailasa SK, Koduru JR, Park TJ, Wu HF, Lin YC. Progress of electrospray ionization and rapid evaporative ionization mass spectrometric techniques for the broad-range identification of microorganisms. Analyst 2019; 144:1073-1103. [DOI: 10.1039/c8an02034e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrospray ionization and rapid evaporative ionization mass spectrometric techniques have attracted much attention in the identification of microorganisms, and in the diagnosis of bacterial infections from clinical samples.
Collapse
Affiliation(s)
- Suresh Kumar Kailasa
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat – 395007
- India
- Department of Chemistry
| | | | - Tae Jung Park
- Department of Chemistry
- Institute of Interdisciplinary Convergence Research
- Research Institute of Halal Industrialization Technology
- Chung-Ang University
- Seoul 06974
| | - Hui-Fen Wu
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- Center for Nanoscience and Nanotechnology
| | - Ying-Chi Lin
- School of Pharmacy
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| |
Collapse
|
17
|
Faria MMP, Winston BW, Surette MG, Conly JM. Bacterial DNA patterns identified using paired-end Illumina sequencing of 16S rRNA genes from whole blood samples of septic patients in the emergency room and intensive care unit. BMC Microbiol 2018; 18:79. [PMID: 30045694 PMCID: PMC6060528 DOI: 10.1186/s12866-018-1211-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sepsis refers to clinical presentations ranging from mild body dysfunction to multiple organ failure. These clinical symptoms result from a systemic inflammatory response to pathogenic or potentially pathogenic microorganisms present systemically in the bloodstream. Current clinical diagnostics rely on culture enrichment techniques to identify bloodstream infections. However, a positive result is obtained in a minority of cases thereby limiting our knowledge of sepsis microbiology. Previously, a method of saponin treatment of human whole blood combined with a comprehensive bacterial DNA extraction protocol was developed. The results indicated that viable bacteria could be recovered down to 10 CFU/ml using this method. Paired-end Illumina sequencing of the 16S rRNA gene also indicated that the bacterial DNA extraction method enabled recovery of bacterial DNA from spiked blood. This manuscript outlines the application of this method to whole blood samples collected from patients with the clinical presentation of sepsis. RESULTS Blood samples from clinically septic patients were obtained with informed consent. Application of the paired-end Illumina 16S rRNA sequencing to saponin treated blood from intensive care unit (ICU) and emergency department (ED) patients indicated that bacterial DNA was present in whole blood. There were three clusters of bacterial DNA profiles which were distinguished based on the distribution of Streptococcus, Staphylococcus, and Gram-negative DNA. The profiles were examined alongside the patient's clinical data and indicated molecular profiling patterns from blood samples had good concordance with the primary source of infection. CONCLUSIONS Overall this study identified common bacterial DNA profiles in the blood of septic patients which were often associated with the patients' primary source of infection. These results indicated molecular bacterial DNA profiling could be further developed as a tool for clinical diagnostics for bloodstream infections.
Collapse
Affiliation(s)
- Monica Martins Pereira Faria
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Brent Warren Winston
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Foothills Medical Centre, Alberta Health Services, Room AGW5, 1403 29th Street NW, Calgary, AB T2N 2T9 Canada
| | - Michael Gordon Surette
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1 Canada
- Department of Medicine and Biochemistry, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1 Canada
- Department of Biomedical Sciences, Faculty of Health Science, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - John Maynard Conly
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- O’Brien Institute for Public Health, University of Calgary, Calgary, AB T2N 4N1 Canada
- Foothills Medical Centre, Alberta Health Services, Room AGW5, 1403 29th Street NW, Calgary, AB T2N 2T9 Canada
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Bloodstream infections are a major cause of hospital and ICU admission with high morbidity and mortality; however, early and targeted antimicrobial therapy reduces mortality in high-risk patients. This article focuses on the diagnosis of bloodstream infections by PCR-based approaches at an early stage to enable prompt treatment and prevent organ dysfunction. RECENT FINDINGS PCR systems offering highly multiplexed targeting of bacterial and/or fungal pathogens (in whole blood) offer the best opportunity for clinical impact, as informed decisions can be made within 4-8 h of the blood draw. Although more rapid, these systems are typically associated with lower sensitivity and specificity than postculture detection methods which rely on microbial growth. Additionally, unlike postculture methods, detection directly from blood is not prone to misleading results because of concurrent (or previous) therapy, which limit clinical relevance. SUMMARY Rapid and accurate identification of the cause of sepsis is essential in improving patient outcomes. Early identification of these pathogens by nucleic acid detection assays directly from blood samples remains key to achieving this, particularly if taken at the time of presentation. Selection of the most suitable PCR system is typically influenced by local epidemiology and by the resources of the testing laboratory.
Collapse
|