1
|
Cardinale V, Capurso G, Ianiro G, Gasbarrini A, Arcidiacono PG, Alvaro D. Intestinal permeability changes with bacterial translocation as key events modulating systemic host immune response to SARS-CoV-2: A working hypothesis. Dig Liver Dis 2020; 52:1383-1389. [PMID: 33023827 PMCID: PMC7494274 DOI: 10.1016/j.dld.2020.09.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/16/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
The microbiota-gut-liver-lung axis plays a bidirectional role in the pathophysiology of a number of infectious diseases. During the course of severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and 2 (SARS-CoV-2) infection, this pathway is unbalanced due to intestinal involvement and systemic inflammatory response. Moreover, there is convincing preliminary evidence linking microbiota-gut-liver axis perturbations, proinflammatory status, and endothelial damage in noncommunicable preventable diseases with coronavirus disease 2019 (Covid-19) severity. Intestinal damage due to SARS-CoV-2 infection, systemic inflammation-induced dysfunction, and IL-6-mediated diffuse vascular damage may increase intestinal permeability and precipitate bacterial translocation. The systemic release of damage- and pathogen-associated molecular patterns (e.g. lipopolysaccharides) and consequent immune-activation may in turn auto-fuel vicious cycles of systemic inflammation and tissue damage. Thus, intestinal bacterial translocation may play an additive/synergistic role in the cytokine release syndrome in Covid-19. This review provides evidence on gut-liver axis involvement in Covid-19 as well as insights into the hypothesis that intestinal endotheliitis and permeability changes with bacterial translocation are key pathophysiologic events modulating systemic inflammatory response. Moreover, it presents an overview of readily applicable measures for the modulation of the gut-liver axis and microbiota in clinical practice.
Collapse
Affiliation(s)
- Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, Rome 00185, Italy.
| | - Gabriele Capurso
- Pancreato-biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Paolo Giorgio Arcidiacono
- Pancreato-biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell'Università 37, Rome 00185, Italy
| |
Collapse
|
2
|
Ruck CE, Odumade OA, Smolen KK. Vaccine Interactions With the Infant Microbiome: Do They Define Health and Disease? Front Pediatr 2020; 8:565368. [PMID: 33324590 PMCID: PMC7725791 DOI: 10.3389/fped.2020.565368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
Over the past decade, there has been a growing awareness of the vital role of the microbiome in the function of the immune system. Recently, several studies have demonstrated a relationship between the composition of the microbiome and the vaccine-specific immune response. As a result of these findings, the administration of probiotics has been proposed as a means of boosting vaccine-specific immunity. Early results have so far been highly inconsistent, with little evidence of sustained benefit. To date, a precise determination of the aspects of the microbiome that impact immunity is still lacking, and the mechanisms of action are also unknown. Further investigations into these questions are necessary to effectively manipulate the microbiome for the purpose of boosting immunity and enhancing vaccine-specific responses in infants. In this review, we summarize recent studies aimed at altering the neonatal gut microbiome to enhance vaccine responses and highlight gaps in knowledge and understanding. We also discuss research strategies aimed at filling these gaps and developing potential therapeutic interventions.
Collapse
Affiliation(s)
- Candice E. Ruck
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Oludare A. Odumade
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Medicine Critical Care, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kinga K. Smolen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Institute for Medical Immunology, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
Is a healthy microbiome responsible for lower mortality in COVID-19? Biologia (Bratisl) 2020; 76:819-829. [PMID: 33078028 PMCID: PMC7557238 DOI: 10.2478/s11756-020-00614-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022]
Abstract
The novel severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) is the cause of an ongoing pandemic with significant case fatality ratio (CFR) worldwide. Although SARS-CoV-2 primarily causes respiratory infection by binding to ACE2 receptors present on alveolar epithelial cells, studies have been published linking the disease to the small intestine enterocytes and its microbiome. Dysbiosis of microbiome, mainly intestinal and lung, can affect the course of the disease. Environmental factors, such as reduced intake of commensal bacteria from the environment or their products in the diet, play an important role in microbiome formation, which can significantly affect the immune response. In elderly, obese or chronically ill people, the microbiota is often damaged. Therefore, we speculate that a good microbiome may be one of the factors responsible for lower CFR from the coronavirus disease 2019 (COVID-19). An approach using tailored nutrition and supplements known to improve the intestinal microbiota and its immune function might help minimize the impact of the disease at least on people at higher risk from coronavirus.
Collapse
|
4
|
Fjeldhøj S, Fuglsang E, Sørensen CA, Frøkiær H, Krogfelt KA, Laursen RP, Slotved HC. Factors influencing PCV13 specific antibody response in Danish children starting in day care. Sci Rep 2020; 10:6179. [PMID: 32277105 PMCID: PMC7148338 DOI: 10.1038/s41598-020-63080-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/24/2020] [Indexed: 11/25/2022] Open
Abstract
This study examines different factors influencing the 13-valent pneumococcal conjugate vaccine (PCV13) specific antibody response in 8–13 months old Danish children starting in day care. We present secondary findings to the ProbiComp study, which included nose swabs, buccal swabs and blood samples from the children before entering day care (baseline) and again after 6 months. Pneumococci isolated from nose swabs were identified by latex agglutination kit and Quellung reaction. Luminex-based assay was used for antibody measurements against specific anti-pneumococcal capsular IgG. Buccal gene expression was analyzed by qPCR. Statistical analyses were performed in R and included Pearson’s Chi-squared test, Welch two sample t-test and linear regression models. The PCV13 antibody response was unaffected by whether the children were carriers or non-carriers of any pneumococcal serotype. Having siblings increased the risk of carrying serotype 21 before day care (p = 0.020), and having siblings increased the PCV13 antibody response at the end of study (p = 0.0135). Hepatitis B-vaccination increased the PCV13 antibody response before day care attendance (p = 0.005). The expression of IL8 and IL1B was higher in children carrying any pneumococcal serotype at baseline compared to non-carriers (p = 0.0125 and p = 0.0268 respectively).
Collapse
Affiliation(s)
- Sine Fjeldhøj
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Copenhagen, 2300, Denmark
| | - Eva Fuglsang
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Camilla Adler Sørensen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Copenhagen, 2300, Denmark
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Copenhagen, 2300, Denmark.,Department of Science and Environment, Roskilde University, Roskilde, 4000, Denmark
| | - Rikke Pilmann Laursen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Hans-Christian Slotved
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Copenhagen, 2300, Denmark.
| |
Collapse
|