1
|
Kamoshida G, Yamada N, Yamaguchi D, Yahiro K, Morita Y. Colistin Resistance in Acinetobacter baumannii: Basic and Clinical Insights. Biol Pharm Bull 2025; 48:213-221. [PMID: 40024691 DOI: 10.1248/bpb.b23-00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The emergence of drug-resistant bacteria has posed a significant problem in medical institutions worldwide. Colistin, which targets lipopolysaccharide (LPS), serves as a last-resort antimicrobial agent against multidrug-resistant Gram-negative bacteria. Nevertheless, Acinetobacter baumannii, a pathogen with a worldwide prevalence of antimicrobial resistance, has been reported to develop resistance to colistin frequently. In this review, we discuss how A. baumannii acquires resistance to colistin, focusing on modification as well as loss of LPS present in its outer membrane, which is the primary mechanism of A. baumannii's resistance to colistin. Basic and clinical insights regarding colistin resistance in A. baumannii have been discussed in isolation. Therefore, we discuss the relationship between these 2 colistin resistance mechanisms in terms of the frequency and fitness of genetic mutations based on the insights from basic studies and clinical settings. We concluded that understanding the detailed mechanisms of colistin drug resistance requires a comprehensive understanding of both the frequency of mutations and the effects of selection pressure. Finally, we highlight the importance of promoting research from both basic science and clinical perspectives.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
- Laboratory of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, 5 Misasagi-nakauchi-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Noriteru Yamada
- Laboratory of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, 5 Misasagi-nakauchi-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Daiki Yamaguchi
- Laboratory of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, 5 Misasagi-nakauchi-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kinnosuke Yahiro
- Laboratory of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, 5 Misasagi-nakauchi-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
2
|
Jo J, Lee JY, Cho H, Ko KS. Treatment of Colistin Dependence-Developing Acinetobacter baumannii with Antibiotic Combinations at Subinhibitory Concentrations. Microb Drug Resist 2023; 29:448-455. [PMID: 37379479 DOI: 10.1089/mdr.2022.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Recent studies have revealed that colistin dependence frequently develops in colistin-susceptible Acinetobacter baumannii isolates. Despite resistance in parental strains, colistin-dependent mutants showed increased susceptibility to several antibiotics, which suggests the possibility of developing strategies to eliminate multidrug-resistant (MDR) A. baumannii. We investigated in vitro and in vivo efficacy of combinations of colistin and other antibiotics using MDR A. baumannii strains H08-391, H06-855, and H09-94, which are colistin-susceptible but develops colistin dependence upon exposure to colistin. An in vitro time-killing assay, a checkerboard assay, and an antibiotic treatment assay using Galleria mellonella larvae were performed. Although a single treatment of colistin at a high concentration did not prevent colistin dependence, combinations of colistin with other antibiotics at subinhibitory concentrations, especially amikacin, eradicated the strains by inhibiting the development of colistin dependence, in the in vitro time-killing assay. Only 40% of G. mellonella larvae infected by A. baumannii survived with colistin treatment alone; however, all or most of them survived following treatment with the combination of colistin and other antibiotics (amikacin, ceftriaxone, and tetracycline). Our results suggest the possibility of the combination of colistin and amikacin or other antibiotics as one of therapeutic options against A. baumannii infections by eliminating colistin-dependent mutants.
Collapse
Affiliation(s)
- Jeongwoo Jo
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ji Young Lee
- Research Institute for Future Medical Science, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Hongbaek Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
3
|
Paredes-Amaya CC, Ulloa MT, García-Angulo VA. Fierce poison to others: the phenomenon of bacterial dependence on antibiotics. J Biomed Sci 2023; 30:67. [PMID: 37574554 PMCID: PMC10424368 DOI: 10.1186/s12929-023-00963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Beyond the development of resistance, the effects of antibiotics on bacteria and microbial communities are complex and far from exhaustively studied. In the context of the current global antimicrobial resistance crisis, understanding the adaptive and physiological responses of bacteria to antimicrobials is of paramount importance along with the development of new therapies. Bacterial dependence on antibiotics is a phenomenon in which antimicrobials instead of eliminating the pathogens actually provide a boost for their growth. This trait comprises an extreme example of the complexities of responses elicited by microorganisms to these drugs. This compelling evolutionary trait was readily described along with the first wave of antibiotics use and dependence to various antimicrobials has been reported. Nevertheless, current molecular characterizations have been focused on dependence on vancomycin, linezolid and colistin, three critically important antibiotics frequently used as last resource therapy for multi resistant pathogens. Outstanding advances have been made in understanding the molecular basis for the dependence to vancomycin, including specific mutations involved. Regarding linezolid and colistin, the general physiological components affected by the dependence, namely ribosomes and membrane function respectively, have been established. Nonetheless the implications of antibiotic dependence in clinically relevant features, such as virulence, epidemics, relationship with development of resistance, diagnostics and therapy effectiveness require clarification. This review presents a brief introduction of the phenomenon of bacterial dependence to antibiotics and a summary on early and current research concerning the basis for this trait. Furthermore, the available information on the effect of dependence in key clinical aspects is discussed. The studies performed so far underline the need to fully disclose the biological and clinical significance of this trait in pathogens to successfully assess its role in resistance and to design adjusted therapies.
Collapse
Affiliation(s)
- Claudia C Paredes-Amaya
- Microbiology Department, Escuela de Ciencias Básicas, Facultad de Salud, Universidad del Valle, Cali, Colombia
| | - María Teresa Ulloa
- Microbiology and Micology Program, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Independencia 1027, Independencia, RM, Santiago, Chile
- Vertebral I+D+i - Corporation for Assistance for Burned Children (Coaniquem), Santiago, Chile
| | - Víctor Antonio García-Angulo
- Microbiology and Micology Program, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Independencia 1027, Independencia, RM, Santiago, Chile.
| |
Collapse
|
4
|
Kamoshida G, Yamada N, Nakamura T, Yamaguchi D, Kai D, Yamashita M, Hayashi C, Kanda N, Sakaguchi M, Morimoto H, Sawada T, Okada T, Kaya Y, Takemoto N, Yahiro K. Preferential Selection of Low-Frequency, Lipopolysaccharide-Modified, Colistin-Resistant Mutants with a Combination of Antimicrobials in Acinetobacter baumannii. Microbiol Spectr 2022; 10:e0192822. [PMID: 36173297 PMCID: PMC9602988 DOI: 10.1128/spectrum.01928-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022] Open
Abstract
Colistin, which targets lipopolysaccharide (LPS), is used as a last-resort drug against severe infections caused by drug-resistant Acinetobacter baumannii. However, A. baumannii possesses two colistin-resistance mechanisms. LPS modification caused by mutations in pmrAB genes is often observed in clinical isolates of multidrug-resistant Gram-negative pathogens. In addition to LPS modification, A. baumannii has a unique colistin resistance mechanism, a complete loss of LPS due to mutations in the lpxACD genes, which are involved in LPS biosynthesis. This study aimed to elucidate the detailed mechanism of the emergence of colistin-resistant A. baumannii using strains with the same genetic background. Various colistin-resistant strains were generated experimentally using colistin alone and in combination with other antimicrobials, such as meropenem and ciprofloxacin, and the mutation spectrum was analyzed. In vitro selection of A. baumannii in the presence of colistin led to the emergence of strains harboring mutations in lpxACD genes, resulting in LPS-deficient colistin-resistant strains. However, combination of colistin with other antimicrobials led to the selection of pmrAB mutant strains, resulting in strains with modified LPS (LPS-modified strains). Further, the LPS-deficient strains showed decreased fitness and increased susceptibility to many antibiotics and disinfectants. As LPS-deficient strains have a higher biological cost than LPS-modified strains, our findings suggested that pmrAB mutants are more likely to be isolated in clinical settings. We provide novel insights into the mechanisms of resistance to colistin and provide substantial solutions along with precautions for facilitating current research and treatment of colistin-resistant A. baumannii infections. IMPORTANCE Acinetobacter baumannii has developed resistance to various antimicrobial drugs, and its drug-resistant strains cause nosocomial infections. Controlling these infections has become a global clinical challenge. Carbapenem antibiotics are the frontline treatment drugs for infectious diseases caused by A. baumannii. For patients with infections caused by carbapenem-resistant A. baumannii, colistin-based therapy is often the only treatment option. However, A. baumannii readily acquires resistance to colistin. Many patients infected with colistin-resistant A. baumannii undergo colistin treatment before isolation of the colistin-resistant strain, and it is hypothesized that colistin resistance predominantly emerges under selective pressure during colistin therapy. Although the concomitant use of colistin and carbapenems has been reported to have a synergistic effect in vitro against carbapenem-resistant A. baumannii strains, our observations strongly suggest the need for attention to the emergence of strains with a modified lipopolysaccharide during treatment.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Noriteru Yamada
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tomoka Nakamura
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daiki Yamaguchi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daichi Kai
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Maho Yamashita
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Chiaki Hayashi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Nana Kanda
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Moe Sakaguchi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hitoshi Morimoto
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Teppei Sawada
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tomoko Okada
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuki Kaya
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kinnosuke Yahiro
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
5
|
Lee H, Ko KS. Effect of multiple, compatible plasmids on the fitness of the bacterial host by inducing transcriptional changes. J Antimicrob Chemother 2021; 76:2528-2537. [PMID: 34279638 DOI: 10.1093/jac/dkab240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Bacteria that acquire plasmids incur a biological cost. Despite this fact, clinical Enterobacteriaceae isolates commonly contain multiple co-existing plasmids harbouring carbapenemase genes. METHODS Six different plasmids carrying blaNDM-1, blaNDM-5, blaCTX-M-15, blaKPC-2, blaOXA-181 and blaOXA-232 genes were obtained from Klebsiella pneumoniae and Escherichia coli clinical isolates. Using the E. coli DH5α strain as recipient, 14 transconjugants with diverse plasmid combinations (single or double plasmids) were generated. For each of these, the effects of plasmid carriage on the bacterial host were investigated using in vitro and in vivo competition assays; additionally, the effects were investigated in the context of biofilm formation, serum resistance and survival inside macrophages. Transcriptomic changes in single- and double-plasmid recipients were also investigated. RESULTS Increased in vitro and in vivo competitiveness was observed when two plasmids carrying blaNDM-1 and blaOXA-232 were co-introduced into the host bacteria. However, DH5α::pNDM5 + pOXA232 and other double-plasmid recipients did not show such competitiveness. DH5α::pNDM5 + pOXA181 did not show any fitness cost compared with a plasmid-free host and single-plasmid transconjugants, while both the double-plasmid recipients with pCTXM15 or pKPC2 exhibited a fitness burden. The double-plasmid recipient DH5α::pNDM1 + pOXA232 also exhibited increased biofilm formation, serum resistance and survival inside macrophages. Transcriptomic analysis revealed that the genes of DH5α::pNDM1 + pOXA232 involved in metabolic pathways, transport and stress response were up-regulated, while those involved in translation were down-regulated. CONCLUSIONS Our study suggests that bacterial strains can gain fitness through the acquisition of multiple plasmids harbouring antibiotic resistance genes, which may be mediated by transcriptomic changes in the chromosomal genes of the bacterial host.
Collapse
Affiliation(s)
- Haejeong Lee
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Zhu Y, Lu J, Han M, Jiang X, Azad MAK, Patil NA, Lin Y, Zhao J, Hu Y, Yu HH, Chen K, Boyce JD, Dunstan RA, Lithgow T, Barlow CK, Li W, Schneider‐Futschik EK, Wang J, Gong B, Sommer B, Creek DJ, Fu J, Wang L, Schreiber F, Velkov T, Li J. Polymyxins Bind to the Cell Surface of Unculturable Acinetobacter baumannii and Cause Unique Dependent Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000704. [PMID: 32775156 PMCID: PMC7403960 DOI: 10.1002/advs.202000704] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Indexed: 05/13/2023]
Abstract
Multidrug-resistant Acinetobacter baumannii is a top-priority pathogen globally and polymyxins are a last-line therapy. Polymyxin dependence in A. baumannii (i.e., nonculturable on agar without polymyxins) is a unique and highly-resistant phenotype with a significant potential to cause treatment failure in patients. The present study discovers that a polymyxin-dependent A. baumannii strain possesses mutations in both lpxC (lipopolysaccharide biosynthesis) and katG (reactive oxygen species scavenging) genes. Correlative multiomics analyses show a significantly remodeled cell envelope and remarkably abundant phosphatidylglycerol in the outer membrane (OM). Molecular dynamics simulations and quantitative membrane lipidomics reveal that polymyxin-dependent growth emerges only when the lipopolysaccharide-deficient OM distinctively remodels with ≥ 35% phosphatidylglycerol, and with "patch" binding on the OM by the rigid polymyxin molecules containing strong intramolecular hydrogen bonding. Rather than damaging the OM, polymyxins bind to the phosphatidylglycerol-rich OM and strengthen the membrane integrity, thereby protecting bacteria from external reactive oxygen species. Dependent growth is observed exclusively with polymyxin analogues, indicating a critical role of the specific amino acid sequence of polymyxins in forming unique structures for patch-binding to bacterial OM. Polymyxin dependence is a novel antibiotic resistance mechanism and the current findings highlight the risk of 'invisible' polymyxin-dependent isolates in the evolution of resistance.
Collapse
Affiliation(s)
- Yan Zhu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Jing Lu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Mei‐Ling Han
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Xukai Jiang
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Mohammad A. K. Azad
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Nitin A. Patil
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Yu‐Wei Lin
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Jinxin Zhao
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Yang Hu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Heidi H. Yu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Ke Chen
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - John D. Boyce
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Rhys A. Dunstan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Trevor Lithgow
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | | | - Weifeng Li
- School of Physics and State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | | | - Jiping Wang
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Bin Gong
- School of Computer Science and TechnologyShandong UniversityJinan250100China
| | - Bjorn Sommer
- Department of Computer and Information ScienceUniversity of KonstanzKonstanz78457Germany
| | - Darren J. Creek
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash UniversityMelbourne3052Australia
| | - Jing Fu
- Department of Mechanical and Aerospace EngineeringMonash UniversityMelbourne3800Australia
| | - Lushan Wang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao CampusQingdao266237China
| | - Falk Schreiber
- Department of Computer and Information ScienceUniversity of KonstanzKonstanz78457Germany
| | - Tony Velkov
- Department of Pharmacology and TherapeuticsUniversity of MelbourneMelbourne3010Australia
| | - Jian Li
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| |
Collapse
|
7
|
Lee JY, Hong YK, Ko KS. Cathelicidin LL-37 (an antimicrobial peptide)-induced colistin dependence in Acinetobacter baumannii. Diagn Microbiol Infect Dis 2020; 96:114965. [PMID: 32019695 DOI: 10.1016/j.diagmicrobio.2019.114965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
Abstract
In this study, we demonstrated the development of colistin dependence in Acinetobacter baumannii isolates after exposure to the human cationic antimicrobial peptide LL-37. The LL-37-induced colistin-dependent mutants showed susceptibility to many other antibiotics and IS1595 or ATTT insertions in LpxACD.
Collapse
Affiliation(s)
- Ji-Young Lee
- Division of Antimicrobial Resistance, Korea Centers for Disease Control and Prevention, Cheongju 28159, South Korea
| | - Yoon-Kyoung Hong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea.
| |
Collapse
|