1
|
Scaturro M, Lanni A, Mancini F, Girolamo A, Fillo S, Ciammaruconi A, Lista F, Cocuzza CE, Musumeci R, Ginevra C, Descours G, Jarraud S, Iera J, Visca P, Ricci ML. Antimicrobial susceptibility and epidemiological types of Legionella pneumophila human isolates from Italy (1987-2020). J Glob Antimicrob Resist 2025; 41:181-188. [PMID: 39824283 DOI: 10.1016/j.jgar.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025] Open
Abstract
OBJECTIVES Although antimicrobial resistance has not yet emerged as an overarching problem for Legionella pneumophila (L. pneumophila) infection, the description of clinical and environmental strains resistant to fluoroquinolones and macrolides is a cause of concern. This study aimed to investigate the antimicrobial susceptibility of L. pneumophila human isolates in Italy. METHODS A total of 204 L. pneumophila clinical isolates were tested for sensitivity to 9 antibiotics using the broth microdilution assay (BMD). All isolates were typed by sequence-based typing, and Legionella pneumophila serogroup 1 (Lp1) isolates by monoclonal antibody subgrouping. Minimum inhibitory concentration (MIC) data were correlated with the possible source of infection and geographical distribution. The presence of the lpeAB efflux pump genes was also investigated. The genome sequences of a subpopulation of isolates showing reduced susceptibility to azithromycin were also analysed. RESULTS The L. pneumophila isolates did not show significant resistance to the tested antibiotics, although a trend toward reduced sensitivity to azithromycin was observed in a subpopulation of 46 strains, most of which belonged to sequence type 1 (ST1), the second most widespread ST in Italy. An amplicon of the expected size overlapping the lpeAB genes was obtained only in the 46-subpopulation above mentioned. In 4 of the 46 isolates, sequencing analysis showed the occurrence of amino-acid substitutions already described in other strains. No further mutation was found. CONCLUSIONS The presence of L. pneumophila strains with reduced susceptibility or resistance to azithromycin should be monitored to predict future trends and suggest to physicians a combined therapy with fluoroquinolones when a poor response to azithromycin is observed. © 2025 The Author(s). Published by Elsevier Ltd on behalf of International Society for Antimicrobial Chemotherapy.
Collapse
Affiliation(s)
- Maria Scaturro
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| | - Alessio Lanni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabiola Mancini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| | - Antonietta Girolamo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Fillo
- Scientific Department, Army Medical Center, Rome, Italy
| | | | | | - Clementina Elvezia Cocuzza
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy; MicroMiB Biorepository, University of Milano-Bicocca, Associated Member of the JRU MIRRI-IT, Monza, Italy
| | - Rosario Musumeci
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy; MicroMiB Biorepository, University of Milano-Bicocca, Associated Member of the JRU MIRRI-IT, Monza, Italy
| | - Christophe Ginevra
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France; CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Team, University of Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Ghislaine Descours
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France; CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Team, University of Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Sophie Jarraud
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France; CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Team, University of Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Jessica Iera
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Visca
- Department of Science, University of Roma Tre, Rome, Italy
| | - Maria Luisa Ricci
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland.
| |
Collapse
|
2
|
Redwitz J, Streich P, Zamfir M, Walser-Reichenbach SM, Seidel M, Herr CEW, Heinze S, Quartucci C. Verification and application of qPCR and viability-qPCR for Legionella monitoring in evaporative cooling systems complementing the conventional culture method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176011. [PMID: 39236821 DOI: 10.1016/j.scitotenv.2024.176011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/09/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
To date, in many countries the only legally valid method for evaporative cooling system (ECS) monitoring is the culture method. However, a duration of up to 14 days and a risk of underestimation of Legionella concentrations are seen as limitations of cultivation methods. Rapid cultivation-independent methods are an important step towards a more practicable monitoring of ECS to quickly control interventions if elevated concentrations of Legionella are found. Two commercial kits for quantitative polymerase chain reaction (qPCR) and viability-qPCR (v-qPCR) were studied, comprising sample filtration and DNA extraction. Cryopreserved Legionella pneumophila were established as calibration standard with intact (ILC) and total Legionella count (TLC) determined by flow cytometry before conducting spiking experiments in commercial mineral water and artificial process water. Final assessment was carried out using real ECS samples. Recovery and robustness ranged from 86 to 108 % for qPCR with a drop to 40-60 % for v-qPCR when compared to direct extraction, possibly attributable to cell damage during sample concentration. All methods including culture did perform well regarding linearity with R2 ≥ 0.95 for most trials. Detected concentrations in comparison to spiked Legionella counts differed with culture averaging 25 ± 7 % of spiked ILC and v-qPCR being closest to spiked concentrations with 65-144 %. In comparison, qPCR was several fold above spiked TLC concentrations. For real ECS samples Legionella spp. were detected in concentrations above 103 GU/100 mL by v-qPCR in 70-92 % of samples, depending on the kit used. Most of these samples were either culture-negative or not evaluable on agar plates. This study showed that a cryopreserved bacterial standard based examination is applicable and can be used for future v-qPCR verification. For assessment of differences in results between culture and v-qPCR/qPCR in ECS samples expert knowledge about the operating mode and used analytical methods is required. Guidelines addressing this issue could be a solution.
Collapse
Affiliation(s)
- J Redwitz
- Department of Occupational and Environmental Health, Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany.
| | - P Streich
- Chair of Analytical Chemistry and Water Chemistry, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - M Zamfir
- Department of Occupational and Environmental Health, Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany
| | - S M Walser-Reichenbach
- Department of Occupational and Environmental Health, Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany
| | - M Seidel
- Chair of Analytical Chemistry and Water Chemistry, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - C E W Herr
- Department of Occupational and Environmental Health, Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - S Heinze
- Department of Occupational and Environmental Health, Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - C Quartucci
- Department of Occupational and Environmental Health, Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Michel C, Echahidi F, Place S, Filippin L, Colombie V, Yin N, Martiny D, Vandenberg O, Piérard D, Hallin M. From Investigating a Case of Cellulitis to Exploring Nosocomial Infection Control of ST1 Legionella pneumophila Using Genomic Approaches. Microorganisms 2024; 12:857. [PMID: 38792686 PMCID: PMC11123157 DOI: 10.3390/microorganisms12050857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Legionella pneumophila can cause a large panel of symptoms besides the classic pneumonia presentation. Here we present a case of fatal nosocomial cellulitis in an immunocompromised patient followed, a year later, by a second case of Legionnaires' disease in the same ward. While the first case was easily assumed as nosocomial based on the date of symptom onset, the second case required clear typing results to be assigned either as nosocomial and related to the same environmental source as the first case, or community acquired. To untangle this specific question, we applied core-genome multilocus typing (MLST), whole-genome single nucleotide polymorphism and whole-genome MLST methods to a collection of 36 Belgian and 41 international sequence-type 1 (ST1) isolates using both thresholds recommended in the literature and tailored threshold based on local epidemiological data. Based on the thresholds applied to cluster isolates together, the three methods gave different results and no firm conclusion about the nosocomial setting of the second case could been drawn. Our data highlight that despite promising results in the study of outbreaks and for large-scale epidemiological investigations, next-generation sequencing typing methods applied to ST1 outbreak investigation still need standardization regarding both wet-lab protocols and bioinformatics. A deeper evaluation of the L. pneumophila evolutionary clock is also required to increase our understanding of genomic differences between isolates sampled during a clinical infection and in the environment.
Collapse
Affiliation(s)
- Charlotte Michel
- Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
| | - Fedoua Echahidi
- Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Sammy Place
- Department of Internal Medicine and Infectious Diseases, EpiCURA Hospital, 7301 Hornu, Belgium
| | - Lorenzo Filippin
- Department of Internal Medicine and Infectious Diseases, EpiCURA Hospital, 7301 Hornu, Belgium
| | - Vincent Colombie
- Department of Internal Medicine and Infectious Diseases, EpiCURA Hospital, 7301 Hornu, Belgium
| | - Nicolas Yin
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Faculty of Medicine and Pharmacy, Mons University, Chemin du Champ de Mars 37, 7000 Mons, Belgium
| | - Olivier Vandenberg
- Innovation and Business Development Unit, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Avenue Roosevelt 50, 1050 Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Marie Hallin
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Avenue Roosevelt 50, 1050 Brussels, Belgium
- European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles (ULB), Avenue Roosevelt 50, 1050 Brussels, Belgium
| |
Collapse
|
4
|
Mentasti M, David S, Turton J, Morgan M, Turner L, Westlake J, Jenkins J, Williams C, Rey S, Watkins J, Daniel V, Mitchell S, Forbes G, Wootton M, Jones L. Clonal expansion and rapid characterization of Klebsiella pneumoniae ST1788, an otherwise uncommon strain spreading in Wales, UK. Microb Genom 2023; 9:001104. [PMID: 37668148 PMCID: PMC10569728 DOI: 10.1099/mgen.0.001104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023] Open
Abstract
A multidrug-resistant strain of Klebsiella pneumoniae (Kp) sequence type (ST) 1788, an otherwise uncommon ST worldwide, was isolated from 65 patients at 11 hospitals and 11 general practices across South and West Wales, UK, between February 2019 and November 2021. A collection of 97 Kp ST1788 isolates (including 94 from Wales) was analysed to investigate the diversity and spread across Wales and to identify molecular marker(s) to aid development of a strain-specific real-time PCR. Whole genome sequencing (WGS) was performed with Illumina technology and the data were used to perform phylogenetic analyses. Pan-genome analysis of further Kp genome collections was used to identify an ST1788-specific gene target; a real-time PCR was then validated against a panel of 314 strains and 218 broth-enriched screening samples. Low genomic diversity was demonstrated amongst the 94 isolates from Wales. Evidence of spread within and across healthcare facilities was found. A yersiniabactin locus and the KL2 capsular locus were identified in 85/94 (90.4 %) and 94/94 (100 %) genomes respectively; bla SHV-232, bla TEM-1, bla CTX-M-15 and bla OXA-1 were simultaneously carried by 86/94 (91.5 %) isolates; 4/94 (4.3 %) isolates also carried bla OXA-48 carbapenemase. Aminoglycoside and fluoroquinolone resistance markers were found in 94/94 (100 %) and 86/94 (91.5 %) isolates respectively. The ST1788-specific real-time PCR was 100 % sensitive and specific. Our analyses demonstrated recent clonal expansion and spread of Kp ST1788 in the community and across healthcare facilities in South and West Wales with isolates carrying well-defined antimicrobial resistance and virulence markers. An ST1788-specific marker was also identified, enabling rapid and reliable preliminary characterization of isolates by real-time PCR. This study confirms the utility of WGS in investigating novel strains and in aiding proactive implementation of molecular tools to assist infection control specialists.
Collapse
Affiliation(s)
- Massimo Mentasti
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Sophia David
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, OX3 7LF, UK
| | - Jane Turton
- HCAI, Fungal, AMR, AMU & Sepsis Division, UK Health Security Agency, London, NW9 5HT, UK
| | - Mari Morgan
- Healthcare Associated Infection, Antimicrobial Resistance Prescribing Programme, Public Health Wales Health Protection, Cardiff, CF10 4BZ, UK
| | - Luke Turner
- Bacteriology Department, Public Health Wales Microbiology, Swansea, SA2 8QA, UK
| | - Joseph Westlake
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Jonathan Jenkins
- Pathogen Genomics Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Catie Williams
- Pathogen Genomics Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Sara Rey
- Pathogen Genomics Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Joanne Watkins
- Pathogen Genomics Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Victoria Daniel
- Bacteriology Department, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Shanine Mitchell
- Bacteriology Department, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Gavin Forbes
- Bacteriology Department, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Lim Jones
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| |
Collapse
|
5
|
Legionnaires' Disease: Update on Diagnosis and Treatment. Infect Dis Ther 2022; 11:973-986. [PMID: 35505000 PMCID: PMC9124264 DOI: 10.1007/s40121-022-00635-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Legionellosis is the infection caused by bacteria of the genus Legionella, including a non-pneumonic influenza-like syndrome, and Legionnaires’ disease is a more serious illness characterized by pneumonia. Legionellosis is becoming increasingly important as a public health problem throughout the world; although it is an underreported disease, studies have consistently documented a high incidence. In addition, health costs associated with the disease are high. Diagnosis of Legionnaires’ disease is based mainly on the detection of Legionella pneumophila serogroup 1 antigen in urine. However, there have been advances in detection tests for patients with legionellosis. New methodologies show greater sensitivity and specificity, detect more species and serogroups of Legionella spp., and have the potential for use in epidemiological studies. Testing for Legionella spp. is recommended at hospital admission for severe community-acquired pneumonia, and antibiotics directed against Legionella spp. should be included early as empirical therapy. Inadequate or delayed antibiotic treatment in Legionella pneumonia has been associated with a worse prognosis. Either a fluoroquinolone (levofloxacin or moxifloxacin) or a macrolide (azithromycin preferred) is the recommended first-line therapy for Legionnaires’ disease; however, little information is available regarding adverse events or complications, or about the duration of antibiotic therapy and its association with clinical outcomes. Most published studies evaluating antibiotic treatment for Legionnaires’ disease are observational and consequently susceptible to bias and confounding. Well-designed studies are needed to assess the usefulness of diagnostic tests regarding clinical outcomes, as well as randomized trials comparing fluoroquinolones and macrolides or combination therapy that evaluate outcomes and adverse events.
Collapse
|
6
|
Guillemot J, Ginevra C, Allam C, Kay E, Gilbert C, Doublet P, Jarraud S, Chapalain A. TNF-α response in macrophages depends on clinical Legionella pneumophila isolates genotypes. Virulence 2022; 13:160-173. [PMID: 35030980 PMCID: PMC8765069 DOI: 10.1080/21505594.2021.2022861] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Legionnaires' Disease (LD) is a severe pneumonia mainly caused in Europe by Legionella pneumophila serogroup 1 (Lp1). Sequence-based typing methods reveal that some sequence types (ST) are overrepresented in clinical samples such as ST1 and ST47, suggesting that some strains are more fit for infection than others. In the present study, a collection of 108 Lp1 clinical isolates were used to evaluate the strain-dependent immune responses from human macrophages. Clinical Lp1 isolates induced differential TNFα secretion from macrophages. ST1 isolates induced a significantly higher TNF-α secretion than non-ST1, whereas ST47 isolates induced a significantly lower TNF-α secretion than non-ST47 isolates. ST1 isolates induced a significantly higher cell death than ST47 isolates evaluated by lactate dehydrogenase activity (cytotoxicity) and caspase-3 activity (apoptosis). Treatment of macrophages with anti-TNF-α antibodies significantly reduced the cell death in macrophages infected with ST1 or ST47 strains. The TNF-α secretion was neither explained by a differential bacterial replication nor by the number or type (bystander or infected) of TNF-α producing cells following infection but by a differential response from macrophages. The Paris ST1 reference strain elicited a significantly higher TNF-α gene transcription and a higher induction of NF-κB signaling pathway than the Lorraine ST47 reference strain.Clinical Lp1 isolates induce a diverse immune response and cell death, which could be related to the genotype. The two predominant sequence-types ST1 and ST47 trigger opposite inflammatory response that could be related to the host susceptibility.
Collapse
Affiliation(s)
- Johann Guillemot
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Christophe Ginevra
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Hospices Civils de Lyon, Institut Des Agents Infectieux, Centre National de Référence Des Légionelles, Lyon, France
| | - Camille Allam
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Hospices Civils de Lyon, Institut Des Agents Infectieux, Centre National de Référence Des Légionelles, Lyon, France
| | - Elisabeth Kay
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Christophe Gilbert
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Patricia Doublet
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Sophie Jarraud
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Hospices Civils de Lyon, Institut Des Agents Infectieux, Centre National de Référence Des Légionelles, Lyon, France
| | - Annelise Chapalain
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| |
Collapse
|
7
|
Legionella pneumophila-Epidemiology and Characterization of Clinical Isolates, Slovenia, 2006-2020. Diagnostics (Basel) 2021; 11:diagnostics11071201. [PMID: 34359283 PMCID: PMC8308060 DOI: 10.3390/diagnostics11071201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022] Open
Abstract
Legionella pneumophila is the causative agent of severe Legionnaires’ disease (LD). Although an increasing number of LD cases have been observed, published data from Slovenia are very limited and data on molecular epidemiology are even scarcer. The present retrospective study (2006–2020) reports the results of the microbiological diagnosis of LD, as well as the epidemiology and characterization of the Legionella clinical isolates. We tested urine samples from 15,540 patients with pneumonia symptoms for L. pneumophila infection by urine antigen test, of which 717 (4.6%) tested positive. Isolation of L. pneumophila was successfully performed from 88 clinical specimens, with 82 (93.2%) being identified as L. pneumophila sg 1 and six (6.8%) as L. pneumophila sg 2–14. Sequence-based typing (SBT) identified 33 different sequence types (STs), the most frequent being ST1 and ST23. Sequence type 1 mainly comprised isolates belonging to the Philadelphia subgroup, and ST23 mostly to Allentown/France. The standard SBT scheme, as well as Dresden phenotyping for L. pneumophila, presented a high diversity among isolates.
Collapse
|