1
|
Müller FL, Bindellini D, Mikus G, Michelet R, Kloft C. Breaking barriers: The novel in vitro microdialysis system enables reproducing in vivo extraction efficiencies of linezolid. Eur J Pharm Sci 2025; 209:107085. [PMID: 40164363 DOI: 10.1016/j.ejps.2025.107085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/19/2025] [Accepted: 03/29/2025] [Indexed: 04/02/2025]
Abstract
Reported extraction efficiencies (EE) of the minimally invasive microdialysis (µD) technique for linezolid (LIN) varied in subcutaneous adipose tissue of obese 42.8 % (95 %CI:35.9 %-50.2 %) and non-obese patients 61.0 % (95 %CI:54.4 %-67.1 %). EE must be determined in vivo, as in vitro µD systems (EE=94.1 % for LIN) so far fail to reflect in vivo processes and conditions. This study aimed to develop an in vitro µD system capable of reproducing in vivo EE of LIN for different populations by mimicking tissue characteristics and processes limiting EE. Based on the static in vitro µD system two novel systems were developed: (i) mimicking catheter surrounding as artificially tissue structure (aTS) by creating a porous matrix using milling beads, and (ii) adding a surrounding flow as artificial tissue perfusion (aTP) through the aTS. While experiments using the aTS µD system resulted in a low EE of 33.2 % (95 %CI=31.8 %-34.7 %), adding aTP increased EE in a function of aTP, to a maximum of 97.2 % (95 %CI=91.1 %-104 %). The aTP µD system successfully reproduced the median reported in vivo EE range for LIN, matching EE for obese and non-obese at an aTP of 0.013 and 0.061 mL/min, respectively. By reproducing in vivo EEs for LIN, the novel aTP µD system (aTPMS) provides a platform for optimising µD settings in clinical trials, with future studies needed to explore its application to other substances.
Collapse
Affiliation(s)
- Felix Leon Müller
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstrasse 31 12169 Berlin, Germany; Graduate Research Training Program PharMetrX, Berlin Potsdam, Germany
| | - Davide Bindellini
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstrasse 31 12169 Berlin, Germany
| | - Gerd Mikus
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstrasse 31 12169 Berlin, Germany; Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 419 69120 Heidelberg, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstrasse 31 12169 Berlin, Germany.
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstrasse 31 12169 Berlin, Germany; Graduate Research Training Program PharMetrX, Berlin Potsdam, Germany.
| |
Collapse
|
2
|
Tseng YJ, Tai CH, Chen GY, Chen YL, Ku SC, Pai TY, Wu CC. Navigating pharmacokinetic and pharmacodynamics challenges of β-lactam antibiotics in patients with low body weight: efficacy, toxicity, and dosage optimization. Ther Adv Drug Saf 2025; 16:20420986251320414. [PMID: 39974281 PMCID: PMC11837059 DOI: 10.1177/20420986251320414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
Background Patients with low body weight (LBW) often exhibit altered pharmacokinetics (PK) in renal clearance and total body water. These changes complicate β-lactam antibiotic dosing, potentially resulting in suboptimal efficacy or increased toxicity. Objectives To evaluate the attainment of PK/pharmacodynamic (PD) targets, the prevalence of subtherapeutic and supratherapeutic concentrations, and the incidence of neurotoxicity among LBW patients treated with piperacillin/tazobactam (TZP), cefepime (FEP), and meropenem (MEM). Design A prospective observational study conducted at a tertiary hospital from January 2020 to December 2022. Methods Adult patients with a body mass index ⩽18.5 kg/m2 who received TZP, FEP, or MEM were included. Trough serum concentrations were analyzed for PK/PD targets: 100% time above minimum inhibitory concentration (100% fT > MIC) and 100% time above four times MIC (100% fT > 4MIC). Neurotoxicity was assessed using standardized criteria. Statistical analyses identified factors associated with concentration variability and adverse outcomes. Results Seventy-two patients were included: 29 received TZP, 23 FEP, and 20 MEM. Achievement of the 100% fT > MIC target was comparable across all antibiotics (~70%), but 100% fT > 4 MIC attainment was significantly higher for FEP (47.8%) than for TZP (10.3%) and MEM (30%) (p = 0.01). Supratherapeutic concentrations were observed in 34.8% of FEP users compared to 3.4% and 5% for TZP and MEM, respectively (p = 0.002). Neurotoxicity occurred in 13% of FEP patients but was not reported in TZP or MEM groups (p = 0.04). Subtherapeutic concentrations were noted in approximately 30% of patients across all groups. Conclusion PK changes complicate β-lactam antibiotic dosing, resulting in frequent failure to achieve PK/PD targets. FEP demonstrated a particularly high risk of supratherapeutic concentrations and neurotoxicity. Therapeutic drug monitoring is crucial to optimize dosing and improve safety in this population.
Collapse
Affiliation(s)
- Yu-Ju Tseng
- Department of Pharmacy, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsun Tai
- Department of Pharmacy, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Guan-Yuan Chen
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Forensic and Clinical Toxicology Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Lin Chen
- Division of Chest Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Chi Ku
- Division of Chest Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsung-Yu Pai
- Department of Pharmacy, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Chih Wu
- Department of Pharmacy, National Taiwan University Hospital, College of Medicine, National Taiwan University, 7 Chung Shan South Road, Taipei 100, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Xu J, Chen X, Zhang Q, Zhuang Z, Yuan Y, Duan L, Shi L, Zhu C, Li J, Lu J, Yu Y, Tang L. Population Pharmacokinetic/Pharmacodynamic Study of Linezolid in Hospital-Acquired Pneumonia Patients with Renal Insufficiency. Drug Des Devel Ther 2024; 18:5073-5086. [PMID: 39545249 PMCID: PMC11561734 DOI: 10.2147/dddt.s474470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Purpose The optimal treatment strategy in patients with hospital-acquired pneumonia (HAP) due to Gram-positive bacteria and renal insufficiency remains challenging. The objective of this study was to compare the outcomes of linezolid versus teicoplanin in HAP patients with renal insufficiency and to explore optimal dosage strategy for linezolid. Methods The retrospective study enrolled adult patients treated with intravenous linezolid or teicoplanin at Suzhou Municipal Hospital between July 2018 and August 2023. For the comparative pharmacodynamic study, effectiveness, safety and target attainment of trough concentration (Cmin) for teicoplanin versus linezolid treatment in HAP patients with document Gram-positive bacteria and renal insufficiency were compared. For the population pharmacokinetics (PPK) analyses, linezolid concentrations collected exclusively from HAP patients with renal insufficiency were used and the optimal dosage strategy was investigated using Monte Carlo simulations. Results Linezolid-treated patients had a higher bacterial eradication rate than teicoplanin-treated patients (88.5% vs 63.4%, P < 0.001). A higher proportion of patients in the linezolid group experienced at least one adverse reaction (42.0% vs 25.0%, P = 0.025). Significantly more supratherapeutic Cmin, less therapeutic Cmin were achieved in the linezolid group (adjusted P < 0.05). A total of 207 linezolid concentrations from 166 patients with renal insufficiency were available for the PPK analysis. Age and creatinine clearance (CrCL) were identified as significant covariates that influenced clearance. Simulations show that 300 mg q12h provide the optimal exposure in patients with a CrCL of 60 or 45 mL/min, and 200 mg q12h was recommended for patients with a CrCL of 30 or 15 mL/min. Conclusion Linezolid-treated patients with HAP and renal insufficiency had higher bacterial eradication rates, supratherapeutic exposure and adverse reactions than teicoplanin-treated patients. Linezolid dose reduction in patients with renal insufficiency improved the probability of achieving optimal exposure.
Collapse
Affiliation(s)
- Jinhui Xu
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, People’s Republic of China
| | - Xianglong Chen
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, People’s Republic of China
| | - Qian Zhang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, People’s Republic of China
| | - Zhiwei Zhuang
- Emergency Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, People’s Republic of China
| | - Yunlong Yuan
- Medical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, People’s Republic of China
| | - Lufen Duan
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, People’s Republic of China
| | - Lu Shi
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, People’s Republic of China
| | - Chenqi Zhu
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, People’s Republic of China
| | - JingJing Li
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, People’s Republic of China
| | - Jian Lu
- Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, People’s Republic of China
| | - Yanxia Yu
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, People’s Republic of China
| | - Lian Tang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, People’s Republic of China
- Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| |
Collapse
|
4
|
De Sutter PJ, Hermans E, De Cock P, Van Bocxlaer J, Gasthuys E, Vermeulen A. Penetration of Antibiotics into Subcutaneous and Intramuscular Interstitial Fluid: A Meta-Analysis of Microdialysis Studies in Adults. Clin Pharmacokinet 2024; 63:965-980. [PMID: 38955946 DOI: 10.1007/s40262-024-01394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVE The interstitial fluid of tissues is the effect site for antibiotics targeting extracellular pathogens. Microdialysis studies investigating these concentrations in muscle and subcutaneous tissue have reported notable variability in tissue penetration. This study aimed to comprehensively summarise the existing data on interstitial fluid penetration in these tissues and to identify potential factors influencing antibiotic distribution. METHODS A literature review was conducted, focusing on subcutaneous and intramuscular microdialysis studies of antibiotics in both adult healthy volunteers and patients. Random-effect meta-analyses were used to aggregate effect size estimates of tissue penetration. The primary parameter of interest was the unbound penetration ratio, which represents the ratio of the area under the concentration-time curve in interstitial fluid relative to the area under the concentration-time curve in plasma, using unbound concentrations. RESULTS In total, 52 reports were incorporated into this analysis. The unbound antibiotic exposure in the interstitial fluid of healthy volunteers was, on average, 22% lower than in plasma. The unbound penetration ratio values were higher after multiple dosing but did not significantly differ between muscle and subcutaneous tissue. Unbound penetration ratio values were lower for acids and bases compared with neutral antibiotics. Neither the molecular weight nor the logP of the antibiotics accounted for the variations in the unbound penetration ratio. Obesity was associated with lower interstitial fluid penetration. Conditions such as sepsis, tissue inflammation and tissue ischaemia were not significantly associated with altered interstitial fluid penetration. CONCLUSIONS This study highlights the variability and generally lower exposure of unbound antibiotics in the subcutaneous and intramuscular interstitial fluid compared with exposure in plasma. Future research should focus on understanding the therapeutic relevance of these differences and identify key covariates that may influence them.
Collapse
Affiliation(s)
- Pieter-Jan De Sutter
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Eline Hermans
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
- Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Pieter De Cock
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
- Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| | - Jan Van Bocxlaer
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Elke Gasthuys
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - An Vermeulen
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
5
|
van Os W, Pham AD, Eberl S, Minichmayr IK, van Hasselt JGC, Zeitlinger M. Integrative model-based comparison of target site-specific antimicrobial effects: A case study with ceftaroline and lefamulin. Int J Antimicrob Agents 2024; 63:107148. [PMID: 38508535 DOI: 10.1016/j.ijantimicag.2024.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/11/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE Predictions of antimicrobial effects typically rely on plasma-based pharmacokinetic-pharmacodynamic (PK-PD) targets, ignoring target-site concentrations and potential differences in tissue penetration between antibiotics. In this study, we applied PK-PD modelling to compare target site-specific effects of antibiotics by integrating clinical microdialysis data, in vitro time-kill curves, and antimicrobial susceptibility distributions. As a case study, we compared the effect of lefamulin and ceftaroline against methicillin-resistant Staphylococcus aureus (MRSA) at soft-tissue concentrations. METHODS A population PK model describing lefamulin concentrations in plasma, subcutaneous adipose and muscle tissue was developed. For ceftaroline, a similar previously reported PK model was adopted. In vitro time-kill experiments were performed with six MRSA isolates and a PD model was developed to describe bacterial growth and antimicrobial effects. The clinical PK and in vitro PD models were linked to compare antimicrobial effects of ceftaroline and lefamulin at the different target sites. RESULTS Considering minimum inhibitory concentration (MIC) distributions and standard dosages, ceftaroline showed superior anti-MRSA effects compared to lefamulin both at plasma and soft-tissue concentrations. Looking at the individual antibiotics, lefamulin effects were highest at soft-tissue concentrations, while ceftaroline effects were highest at plasma concentrations, emphasising the importance of considering target-site PK-PD in antibiotic treatment optimisation. CONCLUSION Given standard dosing regimens, ceftaroline appeared more effective than lefamulin against MRSA at soft-tissue concentrations. The PK-PD model-based approach applied in this study could be used to compare or explore the potential of antibiotics for specific indications or in populations with unique target-site PK.
Collapse
Affiliation(s)
- Wisse van Os
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anh Duc Pham
- Division of Systems Pharmacology & Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Sabine Eberl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Iris K Minichmayr
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - J G Coen van Hasselt
- Division of Systems Pharmacology & Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Eleftheriotis G, Marangos M, Lagadinou M, Bhagani S, Assimakopoulos SF. Oral Antibiotics for Bacteremia and Infective Endocarditis: Current Evidence and Future Perspectives. Microorganisms 2023; 11:3004. [PMID: 38138148 PMCID: PMC10745436 DOI: 10.3390/microorganisms11123004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Bacteremia and endocarditis are two clinical syndromes that, for decades, were managed exclusively with parenteral antimicrobials, irrespective of a given patient's clinical condition, causative pathogen, or its antibiotic susceptibility profile. This clinical approach, however, was based on low-quality data and outdated expert opinions. When a patient's condition has improved, gastrointestinal absorption is not compromised, and an oral antibiotic regimen reaching adequate serum concentrations is available, a switch to oral antibacterials can be applied. Although available evidence has reduced the timing of the oral switch in bacteremia to three days/until clinical improvement, there are only scarce data regarding less than 10-day intravenous antibiotic therapy in endocarditis. Many standard or studied oral antimicrobial dosages are smaller than the approved doses for parenteral administration, which is a risk factor for treatment failure; in addition, the gastrointestinal barrier may affect drug bioavailability, especially when the causative pathogen has a minimum inhibitory concentration that is close to the susceptibility breakpoint. A considerable number of patients infected by such near-breakpoint strains may not be potential candidates for oral step-down therapy to non-highly bioavailable antibiotics like beta-lactams; different breakpoints should be determined for this setting. This review will focus on summarizing findings about pathogen-specific tailoring of oral step-down therapy for bacteremia and endocarditis, but will also present laboratory and clinical data about antibiotics such as beta-lactams, linezolid, and fosfomycin that should be studied more in order to elucidate their role and optimal dosage in this context.
Collapse
Affiliation(s)
- Gerasimos Eleftheriotis
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece; (G.E.); (M.M.); (M.L.)
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece; (G.E.); (M.M.); (M.L.)
| | - Maria Lagadinou
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece; (G.E.); (M.M.); (M.L.)
| | - Sanjay Bhagani
- Department of Infectious Diseases and HIV Medicine, Royal Free London NHS Foundation Trust, London NW3 2QG, UK;
| | - Stelios F. Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece; (G.E.); (M.M.); (M.L.)
| |
Collapse
|
7
|
Qin Y, Jiao Z, Ye YR, Shen Y, Chen Z, Chen YT, Li XY, Lv QZ. External evaluation of the predictive performance of published population pharmacokinetic models of linezolid in adult patients. J Glob Antimicrob Resist 2023; 35:347-353. [PMID: 37573945 DOI: 10.1016/j.jgar.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
OBJECTIVES Several linezolid population pharmacokinetic (popPK) models have been established to facilitate optimal therapy; however, their extrapolated predictive performance to other clinical sites is unknown. This study aimed to externally evaluate the predictive performance of published pharmacokinetic models of linezolid in adult patients. METHODS For the evaluation dataset, 150 samples were collected from 70 adult patients (72.9% of which were critically ill) treated with linezolid at our center. Twenty-five published popPK models were identified from PubMed and Embase. Model predictability was evaluated using prediction-based, simulation-based, and Bayesian forecasting-based approaches to assess model predictability. RESULTS Prediction-based diagnostics found that the prediction error within ±30% (F30) was less than 40% in all models, indicating unsatisfactory predictability. The simulation-based prediction- and variability-corrected visual predictive check and normalized prediction distribution error test indicated large discrepancies between the observations and simulations in most of the models. Bayesian forecasting with one or two prior observations significantly improved the models' predictive performance. CONCLUSION The published linezolid popPK models showed insufficient predictive ability. Therefore, their sole use is not recommended, and incorporating therapeutic drug monitoring of linezolid in clinical applications is necessary.
Collapse
Affiliation(s)
- Yan Qin
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Rong Ye
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shen
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Chen
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue-Ting Chen
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Yu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian-Zhou Lv
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Gatti M, Pea F. The expert clinical pharmacological advice program for tailoring on real-time antimicrobial therapies with emerging TDM candidates in special populations: how the ugly duckling turned into a swan. Expert Rev Clin Pharmacol 2023; 16:1035-1051. [PMID: 37874608 DOI: 10.1080/17512433.2023.2274984] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION The growing spread of infections caused by multidrug-resistant pathogens makes the need of tailoring antimicrobial therapies by means of a 'patient-centered' approach fundamental. In this scenario, therapeutic drug monitoring (TDM) of emerging antimicrobial candidates may be a valuable approach, but expert interpretation of TDM results should be granted for making them more clinically useful. The MD Clinical Pharmacologist may take over this task since this specialist may couple PK/PD expertise on drugs with a medical background and may provide expert interpretation of TDM results of antimicrobials for tailoring therapy on real-time in each single patient based on specific both drug/pathogen issues and patient issues. AREAS COVERED This article aims to highlight the main key-points and organizational aspects for implementing a successful TDM-based expert clinical pharmacological advice (ECPA) program for tailoring antimicrobial therapies on real-time in different hospitalized patient special populations. EXPERT OPINION TDM-based ECPA programs lead by the MD Clinical Pharmacologist may represent a way forward for maximizing clinical efficacy and for minimizing the risk of resistance developments and/or toxicity of antimicrobials. Stakeholders should be aware of the fact that this innovative approach may be cost-effective.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Marriott DJE, Cattaneo D. Why Product Information Should not be Set in Stone: Lessons from a Decade of Linezolid Therapeutic Drug Monitoring: An Opinion Paper. Ther Drug Monit 2023; 45:209-216. [PMID: 36920503 DOI: 10.1097/ftd.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Deborah J E Marriott
- Department of Clinical Microbiology and Infectious Diseases, St Vincent's Hospital, Sydney, Australia; and
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| |
Collapse
|
10
|
Meng L, Mui E, Ha DR, Stave C, Deresinski SC, Holubar M. Comprehensive guidance for antibiotic dosing in obese adults: 2022 update. Pharmacotherapy 2023; 43:226-246. [PMID: 36703246 DOI: 10.1002/phar.2769] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Drug dosing in obese patients continues to be challenging due to a lack of high-quality evidence to guide dosing recommendations. We first published guidance for antibiotic dosing in obese adults in 2017, in which we critically reviewed articles identified from a broad search strategy to develop dosing recommendations for 35 antimicrobials. In this updated narrative review, we searched Pubmed, Web of Science, and the Cochrane Library using Medical Subject Headings including anti-infectives, specific generic antimicrobial names, obese, pharmacokinetics, and others. We reviewed 393 articles, cross-referenced select cited references, and when applicable, referenced drug databases, package inserts, and clinical trial data to update dosing recommendations for 41 antimicrobials. Most included articles were pharmacokinetic studies, other less frequently included articles were clinical studies (mostly small, retrospective), case reports, and very rarely, guidelines. Pharmacokinetic changes are frequently reported, can be variable, and sometimes conflicting in this population, and do not always translate to a documented difference in clinical outcomes, yet are used to inform dosing strategies. Extended infusions, high doses, and therapeutic drug monitoring remain important strategies to optimize dosing in this population. Additional studies are needed to clinically validate proposed dosing strategies, clarify optimal body size descriptors, dosing weight scalars, and estimation method of renal function in obese patients.
Collapse
Affiliation(s)
- Lina Meng
- Department of Quality, Stanford Health Care, Stanford, California, USA.,Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA.,Stanford Antimicrobial Safety and Sustainability Program, Stanford, California, USA
| | - Emily Mui
- Department of Quality, Stanford Health Care, Stanford, California, USA.,Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA.,Stanford Antimicrobial Safety and Sustainability Program, Stanford, California, USA
| | - David R Ha
- Department of Quality, Stanford Health Care, Stanford, California, USA.,Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA.,Stanford Antimicrobial Safety and Sustainability Program, Stanford, California, USA
| | - Christopher Stave
- Lane Medical Library, Stanford University School of Medicine, Stanford, California, USA
| | - Stan C Deresinski
- Department of Quality, Stanford Health Care, Stanford, California, USA.,Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA.,Stanford Antimicrobial Safety and Sustainability Program, Stanford, California, USA
| | - Marisa Holubar
- Department of Quality, Stanford Health Care, Stanford, California, USA.,Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA.,Stanford Antimicrobial Safety and Sustainability Program, Stanford, California, USA
| |
Collapse
|
11
|
Heidari S, Khalili H. Linezolid pharmacokinetics: a systematic review for the best clinical practice. Eur J Clin Pharmacol 2023; 79:195-206. [PMID: 36565357 DOI: 10.1007/s00228-022-03446-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To summarize the pharmacokinetics of linezolid to optimize the dosing regimen in special populations. METHODS A literature search was performed in three largest medical databases, including Embase, Scopus, and PubMed. The main applied keywords were linezolid and pharmacokinetics. Of 3663 retrieved publications in the English language, 35 original research articles, clinical studies, and case reports about linezolid pharmacokinetics in different populations such as pregnant women, pediatrics, elderly subjects, obese people, individuals with organ dysfunction, and critically ill patients were included. RESULTS AND CONCLUSION: Dose adjustment is not currently recommended for linezolid in patients with mild to moderate renal or hepatic impairment, older adults, and pregnant women. Although dose adjustment is not recommended in patients with severe renal or hepatic impairment, it should be considered that these patients are more vulnerable to linezolid adverse effects and drug interactions. In pediatrics, reducing the linezolid dosing interval to 8 h is suggested. Despite the lack of sufficient information in obese individuals, dosing based on body weight or use of higher dose seems to be justifiable to prevent sub-therapeutic concentrations. Although dose adjustment of linezolid is not recommended in critically ill patients, administration of linezolid as continuous intravenous infusion is suggested in this population. Blood level monitoring should be considered in populations that are vulnerable to linezolid underexposure (such as critically ill patients with augmented renal clearance, pediatrics, overweight, and obese patients) or overexposure (such as elderly, patients with hepatic and renal impairment). To assess the efficacy and safety of linezolid, the area under the concentration-time curve over 24 h to minimum inhibitory concentration (AUC0-24 h/MIC) equal to 80-120, percentage of time above the MIC ≥ 85%, and serum trough concentration between 2 and 7 mg/L are suggested.
Collapse
Affiliation(s)
- Shima Heidari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Zhang T, Krekels EHJ, Smit C, Knibbe CAJ. Drug pharmacokinetics in the obese population: challenging common assumptions on predictors of obesity-related parameter changes. Expert Opin Drug Metab Toxicol 2022; 18:657-674. [PMID: 36217846 DOI: 10.1080/17425255.2022.2132931] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Obesity is associated with many physiological changes. We review available evidence regarding five commonly accepted assumptions to a priori predict the impact of obesity on drug pharmacokinetics (PK). AREAS COVERED The investigated assumptions are: 1) lean body weight is the preferred descriptor of clearance and dose adjustments; 2) volume of distribution increases for lipophilic, but not for hydrophilic drugs; 3) CYP-3A4 activity is suppressed and UGT activity is increased, implying decreased and increased dose requirements for substrates of these enzyme systems, respectively; 4) glomerular filtration rate is enhanced, necessitating higher doses for drugs cleared through glomerular filtration; 5) drug dosing information from obese adults can be extrapolated to obese adolescents. EXPERT OPINION Available literature contradicts, or at least limits the generalizability, of all five assumptions. Clinical studies should focus on quantifying the impact of duration and severity of obesity on drug PK in adults and adolescents, and also include oral bioavailability and pharmacodynamics in these studies. Physiologically-based PK approaches can be used to predict PK changes for individual drugs, but can also be used to define in general terms based on patient characteristics and drug properties, when certain assumptions can or cannot be expected to be systematically accurate.
Collapse
Affiliation(s)
- Tan Zhang
- Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elke H J Krekels
- Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Cornelis Smit
- Department of Clinical Pharmacy, Antonius Hospital Sneek, The Netherlands
| | - Catherijne A J Knibbe
- Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Department of Clinical Pharmacy, St. Antonius Hospital Nieuwegein, The Netherlands
| |
Collapse
|
13
|
Abstract
In recent years, many studies on population pharmacokinetics of linezolid have been conducted. This comprehensive review aimed to summarize population pharmacokinetic models of linezolid, by focusing on dosage optimization to maximize the probability of attaining a certain pharmacokinetic-pharmacodynamic parameter in special populations. We searched the PubMed and EMBASE databases for population pharmacokinetic analyses of linezolid using a parametric non-linear mixed-effect approach, including both observational and prospective trials. Of the 32 studies, 26 were performed in adults, four in children, and one in both adults and children. High between-subject variability was determined in the majority of the models, which was in line with the variability of linezolid concentrations previously detected in observational studies. Some studies found that patients with renal impairment, hepatic failure, advanced age, or low body weight had higher exposure and adverse reactions rates. In contrast, lower concentrations and therapeutic failure were associated with obese patients, young patients, and patients who had undergone renal replacement techniques. In critically ill patients, the inter-individual and intra-individual variability was even greater, suggesting that this population is at an even higher risk of underexposure and overexposure. Therapeutic drug monitoring may be warranted in a large proportion of patients given that the Monte Carlo simulations demonstrated that the one-size-fits-all labeled dosing of 600 mg every 12 h could lead to toxicity or therapeutic failure for high values of the minimum inhibitory concentration of the target pathogen. Further research on covariates, including renal function, hepatic function, and drug–drug interactions related to P-glycoprotein could help to explain variability and improve linezolid dosing regimens.
Collapse
|
14
|
High-Dosage Fosfomycin Results in Adequate Plasma and Target-Site Exposure in Morbidly Obese and Nonobese Nonhyperfiltration Patients. Antimicrob Agents Chemother 2022; 66:e0230221. [PMID: 35603536 DOI: 10.1128/aac.02302-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objectives of this study were the identification in (morbidly) obese and nonobese patients of (i) the most appropriate body size descriptor for fosfomycin dose adjustments and (ii) adequacy of the currently employed dosing regimens. Plasma and target site (interstitial fluid of subcutaneous adipose tissue) concentrations after fosfomycin administration (8 g) to 30 surgery patients (15 obese/15 nonobese) were obtained from a prospective clinical trial. After characterization of plasma and microdialysis-derived target site pharmacokinetics via population analysis, short-term infusions of fosfomycin 3 to 4 times daily were simulated. The adequacy of therapy was assessed by probability of pharmacokinetic/pharmacodynamic target attainment (PTA) analysis based on the unbound drug-related targets of an %fT>MIC (the fraction of time that unbound fosfomycin concentrations exceed the MIC during 24 h) of 70 and an fAUC0-24h/MIC (the area under the concentration-time curve from 0 to 24 h for the unbound fraction of fosfomycin relative to the MIC) of 40.8 to 83.3. Lean body weight, fat mass, and creatinine clearance calculated via adjusted body weight (ABW) (CLCRCG_ABW) of all patients (body mass index [BMI] = 20.1 to 52.0 kg/m2) explained a considerable proportion of between-patient pharmacokinetic variability (up to 31.0% relative reduction). The steady-state unbound target site/plasma concentration ratio was 26.3% lower in (morbidly) obese than nonobese patients. For infections with fosfomycin-susceptible pathogens (MIC ≤ 16 mg/L), intermittent "high-dosage" intravenous (i.v.) fosfomycin (8 g, three times daily) was sufficient to treat patients with a CLCRCG_ABW of <130 mL/min, irrespective of the pharmacokinetic/pharmacodynamic indices considered. For infections by Pseudomonas aeruginosa with a MIC of 32 mg/L, when the index fAUC0-24h/MIC is applied, fosfomycin might represent a promising treatment option in obese and nonobese patients, especially in combination therapy to complement β-lactams, in which carbapenem-resistant P. aeruginosa is critical. In conclusion, fosfomycin showed excellent target site penetration in obese and nonobese patients. Dosing should be guided by renal function rather than obesity status. (This study has been registered in the EU Clinical Trials Register under EudraCT no. 2012-004383-22.).
Collapse
|
15
|
Qin Y, Zhang LL, Ye YR, Chen YT, Jiao Z. Parametric Population Pharmacokinetics of Linezolid: A Systematic Review. Br J Clin Pharmacol 2022; 88:4043-4066. [PMID: 35484096 DOI: 10.1111/bcp.15368] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Linezolid is often used for infections caused by drug-resistant Gram-positive bacteria. Recent studies suggest that large between-subject variability (BSV) and within-subject variability could alter drug pharmacokinetics (PK) during linezolid therapy due to pathophysiological changes. OBJECTIVE This review synthesized information on linezolid population PK studies and summarized the significant covariates that influence linezolid PK. METHODS A literature search was performed using PubMed, Web of Science, and Embase from their inception to 30 September 2021. Published studies were included if they contained data analyzing linezolid PK parameters in humans using a population approach with a nonlinear mixed-effects model. RESULTS Twenty-five studies conducted in adults and five in pediatrics were included. One- and two-compartment models were the commonly used structural models for linezolid. Body size (weight, lean body weight, and body surface area), creatinine clearance (CLcr), and age significantly influenced linezolid PK. The median clearance (CL) values (ranges) in infants [0.128 L/h/kg (0.121-0.135)] and children [0.107 L/h/kg (0.088-0.151)] were higher than in adults [0.098 L/h/kg (0.044-0.237)]. For patients with severe renal impairment (CLcr ≤ 30 mL/min), the CL was 37.2% (15.2-55.3%) lower than in patients with normal renal function. CONCLUSION The optimal linezolid dosage should be adjusted based on the patient's body size, renal function, and age. More studies are needed to explore the exact mechanism of linezolid elimination and evaluate the PK characteristics in pediatric patients.
Collapse
Affiliation(s)
- Yan Qin
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Li Zhang
- Department of Pharmacy and Purchasing Management, the 900th Hospital of PLA joint logistics support force, Fuzhou, China
| | - Yan-Rong Ye
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue-Ting Chen
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Linezolid Administration to Critically Ill Patients: Intermittent or Continuous Infusion? A Systematic Literature Search and Review. Antibiotics (Basel) 2022; 11:antibiotics11040436. [PMID: 35453188 PMCID: PMC9025826 DOI: 10.3390/antibiotics11040436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
A judicious antibiotic therapy is one of the challenges in the therapy of critically ill patients with sepsis and septic shock. The pathophysiological changes in these patients significantly alter the antibiotic pharmacokinetics (PK) and pharmacodynamics (PD) with important consequences in reaching the therapeutic targets or the risk of side effects. The use of linezolid, an oxazolidinone antibiotic, in intensive care is such an example. The optimization of its therapeutic effects, administration in intermittent (II) or continuous infusion (CI) is gaining increased interest. In a systematic review of the main databases, we propose a detailed analysis of the main PK/PD determinants, their relationship with the clinical therapeutic response and the occurrence of adverse effects following II or CI of linezolid to different classes of critically ill patients or in Monte Carlo simulations.
Collapse
|
17
|
Population pharmacokinetics and toxicodynamics of continuously infused linezolid in critically-ill patients. Int J Antimicrob Agents 2022; 59:106572. [DOI: 10.1016/j.ijantimicag.2022.106572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 11/23/2022]
|
18
|
Busse D, Simon P, Schmitt L, Petroff D, Dorn C, Dietrich A, Zeitlinger M, Huisinga W, Michelet R, Wrigge H, Kloft C. Comparative Plasma and Interstitial Tissue Fluid Pharmacokinetics of Meropenem Demonstrate the Need for Increasing Dose and Infusion Duration in Obese and Non-obese Patients. Clin Pharmacokinet 2021; 61:655-672. [PMID: 34894344 PMCID: PMC9095536 DOI: 10.1007/s40262-021-01070-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVES A quantitative evaluation of the PK of meropenem, a broad-spectrum β-lactam antibiotic, in plasma and interstitial space fluid (ISF) of subcutaneous adipose tissue of obese patients is lacking as of date. The objective of this study was the characterisation of meropenem population pharmacokinetics in plasma and ISF in obese and non-obese patients for identification of adequate dosing regimens via Monte-Carlo simulations. METHODS We obtained plasma and microdialysate concentrations after administration of meropenem 1000 mg to 15 obese and 15 non-obese surgery patients from a prospective clinical trial. After characterizing plasma- and microdialysis-derived ISF pharmacokinetics via population pharmacokinetic analysis, we simulated thrice-daily (TID) meropenem short-term (0.5 h), prolonged (3.0 h), and continuous infusions. Adequacy of therapy was assessed by the probability of pharmacokinetic/pharmacodynamic (PK/PD) target attainment (PTA) analysis based on time unbound concentrations exceeded minimum inhibitory concentrations (MIC) on treatment day 1 (%fT > MIC) and the sum of PTA weighted by relative frequency of MIC values for infections by pathogens commonly treated with meropenem. To avoid interstitial tissue fluid concentrations below MIC for the entire dosing interval during continuous infusions, a more conservative PK/PD index was selected (%fT > 4 × MIC). RESULTS Adjusted body weight (ABW) and calculated creatinine clearance (CLCRCG_ABW) of all patients (body mass index [BMI] = 20.5-81.5 kg/m2) explained a considerable proportion of the between-patient pharmacokinetic variability (15.1-31.0% relative reduction). The ISF:plasma ratio of %fT > MIC was relatively similar for MIC ≤ 2 mg/L but decreased for MIC = 8 mg/L over ABW = 60-120 kg (0.50-0.20). Steady-state concentrations were 2.68 times (95% confidence interval [CI] = 2.11-3.37) higher in plasma than in ISF, supporting PK/PD targets related to four times the MIC during continuous infusions to avoid suspected ISF concentrations constantly below the MIC. A 3000 mg/24 h continuous infusion was sufficient at MIC = 2 mg/L for patients with CLCRCG_ABW ≤ 100 mL/min and ABW < 90 kg, whereas 2000 mg TID prolonged infusions were adequate for those with CLCRCG_ABW ≤ 100 mL/min and ABW > 90 kg. For MIC = 2 mg/L and %fT> MIC = 95, PTA was adequate in patients over the entire investigated range of body mass and renal function using a 6000 mg continuous infusion. A prolonged infusion of meropenem 2000 mg TID was sufficient for MIC ≤ 8 mg/L and all investigated ABW and CLCRCG_ABW when employing the PK/PD target %fT > MIC = 40. Short-term infusions of 1000 mg TID were sufficient for CLCRCG_ABW ≤ 130 mL/min and distributions of MIC values for Escherichia coli, Citrobacter freundii, and Klebsiella pneumoniae but not for Pseudomonas aeruginosa. CONCLUSIONS This analysis indicated a need for higher doses (≥ 2000 mg) and prolonged infusions (≥ 3 h) for obese and non-obese patients at MIC ≥ 2 mg/L. Higher PTA was achieved with prolonged infusions in obese patients and with continuous infusions in non-obese patients. TRIAL REGISTRATION EudraCT: 2012-004383-22.
Collapse
Affiliation(s)
- David Busse
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169, Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin, Germany
| | - Philipp Simon
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Lisa Schmitt
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169, Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin, Germany
| | - David Petroff
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Clinical Trial Centre Leipzig, University of Leipzig, Leipzig, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Arne Dietrich
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169, Berlin, Germany
| | - Hermann Wrigge
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital Halle, Halle, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169, Berlin, Germany.
| |
Collapse
|
19
|
van Os W, Zeitlinger M. Predicting Antimicrobial Activity at the Target Site: Pharmacokinetic/Pharmacodynamic Indices versus Time-Kill Approaches. Antibiotics (Basel) 2021; 10:antibiotics10121485. [PMID: 34943697 PMCID: PMC8698708 DOI: 10.3390/antibiotics10121485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Antibiotic dosing strategies are generally based on systemic drug concentrations. However, drug concentrations at the infection site drive antimicrobial effect, and efficacy predictions and dosing strategies should be based on these concentrations. We set out to review different translational pharmacokinetic-pharmacodynamic (PK/PD) approaches from a target site perspective. The most common approach involves calculating the probability of attaining animal-derived PK/PD index targets, which link PK parameters to antimicrobial susceptibility measures. This approach is time efficient but ignores some aspects of the shape of the PK profile and inter-species differences in drug clearance and distribution, and provides no information on the PD time-course. Time–kill curves, in contrast, depict bacterial response over time. In vitro dynamic time–kill setups allow for the evaluation of bacterial response to clinical PK profiles, but are not representative of the infection site environment. The translational value of in vivo time–kill experiments, conversely, is limited from a PK perspective. Computational PK/PD models, especially when developed using both in vitro and in vivo data and coupled to target site PK models, can bridge translational gaps in both PK and PD. Ultimately, clinical PK and experimental and computational tools should be combined to tailor antibiotic treatment strategies to the site of infection.
Collapse
|
20
|
Busse D, Simon P, Petroff D, Dorn C, Schmitt L, Bindellini D, Kratzer A, Dietrich A, Zeitlinger M, Huisinga W, Michelet R, Wrigge H, Kloft C. Similar Piperacillin/Tazobactam Target Attainment in Obese versus Nonobese Patients despite Differences in Interstitial Tissue Fluid Pharmacokinetics. Pharmaceutics 2021; 13:1380. [PMID: 34575456 PMCID: PMC8464843 DOI: 10.3390/pharmaceutics13091380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Precision dosing of piperacillin/tazobactam in obese patients is compromised by sparse information on target-site exposure. We aimed to evaluate the appropriateness of current and alternative piperacillin/tazobactam dosages in obese and nonobese patients. Based on a prospective, controlled clinical trial in 30 surgery patients (15 obese/15 nonobese; 0.5-h infusion of 4 g/0.5 g piperacillin/tazobactam), piperacillin pharmacokinetics were characterized in plasma and at target-site (interstitial fluid of subcutaneous adipose tissue) via population analysis. Thereafter, multiple 3-4-times daily piperacillin/tazobactam short-term/prolonged (recommended by EUCAST) and continuous infusions were evaluated by simulation. Adequacy of therapy was assessed by probability of pharmacokinetic/pharmacodynamic target-attainment (PTA ≥ 90%) based on time unbound piperacillin concentrations exceed the minimum inhibitory concentration (MIC) during 24 h (%fT>MIC). Lower piperacillin target-site maximum concentrations in obese versus nonobese patients were explained by the impact of lean (approximately two thirds) and fat body mass (approximately one third) on volume of distribution. Simulated steady-state concentrations were 1.43-times, 95%CI = (1.27; 1.61), higher in plasma versus target-site, supporting targets of %fT>2×MIC instead of %fT>4×MIC during continuous infusion to avoid target-site concentrations constantly below MIC. In all obesity and renally impairment/hyperfiltration stages, at MIC = 16 mg/L, adequate PTA required prolonged (thrice-daily 4 g/0.5 g over 3.0 h at %fT>MIC = 50) or continuous infusions (24 g/3 g over 24 h following loading dose at %fT>MIC = 98) of piperacillin/tazobactam.
Collapse
Affiliation(s)
- David Busse
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (D.B.); (L.S.); (D.B.); (R.M.)
- Graduate Research Training Program PharMetrX, 12169 Berlin, Germany
| | - Philipp Simon
- Department of Anesthesiology, Intensive Care, University of Leipzig Medical Centre, 04103 Leipzig, Germany; (P.S.); (A.D.)
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, 04103 Leipzig, Germany; (D.P.); (H.W.)
| | - David Petroff
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, 04103 Leipzig, Germany; (D.P.); (H.W.)
- Clinical Trial Centre Leipzig, University of Leipzig, 04109 Leipzig, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, 93053 Regensburg, Germany;
| | - Lisa Schmitt
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (D.B.); (L.S.); (D.B.); (R.M.)
- Graduate Research Training Program PharMetrX, 12169 Berlin, Germany
| | - Davide Bindellini
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (D.B.); (L.S.); (D.B.); (R.M.)
- Graduate Research Training Program PharMetrX, 12169 Berlin, Germany
| | - Alexander Kratzer
- Hospital Pharmacy, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Arne Dietrich
- Department of Anesthesiology, Intensive Care, University of Leipzig Medical Centre, 04103 Leipzig, Germany; (P.S.); (A.D.)
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, University Medical University of Vienna, 1090 Vienna, Austria;
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, 14469 Potsdam, Germany;
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (D.B.); (L.S.); (D.B.); (R.M.)
| | - Hermann Wrigge
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, 04103 Leipzig, Germany; (D.P.); (H.W.)
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital Halle, 06112 Halle, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (D.B.); (L.S.); (D.B.); (R.M.)
| |
Collapse
|
21
|
Waack U, Joshi A, Jang SH, Reynolds KS. Variations in pharmacokinetic-pharmacodynamic target values across MICs and their potential impact on determination of susceptibility test interpretive criteria. J Antimicrob Chemother 2021; 76:2884-2889. [PMID: 34347077 DOI: 10.1093/jac/dkab282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/09/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND An antibacterial drug's susceptibility test interpretive criteria (STIC) are determined by integrating clinical, microbiological and pharmacokinetic-pharmacodynamic (PK-PD) data. PTA analysis plays a pivotal or supportive role in STIC determination and is heavily dependent on the PK-PD target values determined from animal PK-PD studies. Therefore, variations in PK-PD target values may impact STIC determination. Factors contributing to variation in the PK-PD target values include the number of and MICs for bacterial isolates used in animal PK-PD studies. OBJECTIVES To analyse the relationship between PK-PD target values and MICs, describe the variations in PK-PD target values of isolates and evaluate whether the proposed/target STICs were within the ranges of the MICs for isolates used in animal PK-PD studies. METHODS A database was compiled for this research by screening animal PK-PD study reports submitted to the FDA from 10 new drug applications (NDAs). RESULTS A relationship evaluation between PK-PD target values and MICs for tested isolates for seven drugs (that used AUC/MIC ratio as the PK-PD index) showed that, generally, the AUC/MIC values decreased with an increase in MIC. These target values were highly variable, with the percentage coefficient of variation ranging between 1% and 132% for isolates having the same MIC. For 16/27 (59%) drug/bacteria combinations from all 10 drugs, the proposed/target STICs were higher than the highest MIC for bacteria isolates evaluated, while 6/27 (22.5%) were lower. CONCLUSIONS This research suggests that careful considerations related to selection of bacterial isolates for animal PK-PD studies could strengthen the STIC determination process.
Collapse
Affiliation(s)
- Ursula Waack
- U.S. Food and Drug Administration, Office of New Drugs, Office of Infectious Disease, Silver Spring, MD, USA.,Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA
| | - Abhay Joshi
- U.S. Food and Drug Administration, Office of Translational Sciences, Office of Clinical Pharmacology, Silver Spring, MD, USA
| | - Seong H Jang
- U.S. Food and Drug Administration, Office of Translational Sciences, Office of Clinical Pharmacology, Silver Spring, MD, USA
| | - Kellie S Reynolds
- U.S. Food and Drug Administration, Office of Translational Sciences, Office of Clinical Pharmacology, Silver Spring, MD, USA
| |
Collapse
|
22
|
Pai MP. Antimicrobial Dosing in Specific Populations and Novel Clinical Methodologies: Obesity. Clin Pharmacol Ther 2021; 109:942-951. [PMID: 33523485 PMCID: PMC8855475 DOI: 10.1002/cpt.2181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/16/2021] [Indexed: 12/17/2022]
Abstract
Obesity and its related comorbidities can negatively influence the outcomes of certain infectious diseases. Specific dosing recommendations are often lacking in the product label for patients with obesity that leads to unclear guidance in practice. Higher rates of therapeutic failure have been reported with some fixed dose antibiotics and pragmatic approaches to dose modification are limited for orally administered agents. For i.v. antimicrobials dosed on weight, alternate body size descriptors (ABSDs) have been used to reduce the risk of overdosing. These ABSDs are mathematical transformations of height and weight that represent fat-free weight and follow the same principles as body surface area (BSA)-based dosing of cancer chemotherapy. However, ABSDs are rarely studied in pivotal phase III studies and so can risk the underdosing of antimicrobials in patients with obesity when incorrectly applied in the real-world setting. Specific case examples are presented to highlight these risks. Although general principles may be considered by clinicians, a universal approach to dose modification in obesity is unlikely. Studies that can better distinguish human body phenotypes may help reduce our reliance on height and weight to define dosing. Simple and complex technologies exist to quantify individual body composition that could improve upon our current approach. Early evidence suggests that body composition parameters repurposed from medical imaging data may improve upon height and weight as covariates of drug clearance and distribution. Clinical trials that can integrate human body phenotyping may help us identify new approaches to optimal dose selection of antimicrobials in patients with obesity.
Collapse
Affiliation(s)
- Manjunath P. Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Busse D, Schaeftlein A, Solms A, Ilia L, Michelet R, Zeitlinger M, Huisinga W, Kloft C. Which Analysis Approach Is Adequate to Leverage Clinical Microdialysis Data? A Quantitative Comparison to Investigate Exposure and Reponse Exemplified by Levofloxacin. Pharm Res 2021; 38:381-395. [PMID: 33723793 PMCID: PMC7994214 DOI: 10.1007/s11095-021-02994-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/05/2020] [Indexed: 01/22/2023]
Abstract
Purpose Systematic comparison of analysis methods of clinical microdialysis data for impact on target-site drug exposure and response. Methods 39 individuals received a 500 mg levofloxacin short-term infusion followed by 24-h dense sampling in plasma and microdialysate collection in interstitial space fluid (ISF). ISF concentrations were leveraged using non-compartmental (NCA) and compartmental analysis (CA) via (ii) relative recovery correction at midpoint of the collection interval (midpoint-NCA, midpoint-CA) and (ii) dialysate-based integrals of time (integral-CA). Exposure and adequacy of community-acquired pneumonia (CAP) therapy via pharmacokinetic/pharmacodynamic target-attainment (PTA) analysis were compared between approaches. Results Individual AUCISF estimates strongly varied for midpoint-NCA and midpoint-CA (≥52.3%CV) versus integral-CA (≤32.9%CV) owing to separation of variability in PK parameters (midpoint-CA = 46.5%–143%CVPK, integral-CA = 26.4%–72.6%CVPK) from recovery-related variability only in integral-CA (41.0%–50.3%CVrecovery). This also led to increased variability of AUCplasma for midpoint-CA (56.0%CV) versus midpoint-NCA and integral-CA (≤33.0%CV), and inaccuracy of predictive model performance of midpoint-CA in plasma (visual predictive check). PTA analysis translated into 33% of evaluated patient cases being at risk of incorrectly rejecting recommended dosing regimens at CAP-related epidemiological cut-off values. Conclusions Integral-CA proved most appropriate to characterise clinical pharmacokinetics- and microdialysis-related variability. Employing this knowledge will improve the understanding of drug target-site PK for therapeutic decision-making. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-021-02994-1.
Collapse
Affiliation(s)
- David Busse
- Institute of Pharmacy, Department of Clinical Pharmacy and Biochemistry, Freie Universitaet Berlin, Berlin, Germany.,Graduate Research Training program PharMetrX, Berlin/Potsdam, Germany
| | | | - Alexander Solms
- Institute of Mathematics, University of Potsdam, Potsdam, Germany.,Clinical Pharmacometrics, Bayer AG, Berlin, Germany
| | - Luis Ilia
- Institute of Pharmacy, Department of Clinical Pharmacy and Biochemistry, Freie Universitaet Berlin, Berlin, Germany
| | - Robin Michelet
- Institute of Pharmacy, Department of Clinical Pharmacy and Biochemistry, Freie Universitaet Berlin, Berlin, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Charlotte Kloft
- Institute of Pharmacy, Department of Clinical Pharmacy and Biochemistry, Freie Universitaet Berlin, Berlin, Germany.
| |
Collapse
|
24
|
Simon P, Petroff D, Busse D, Heyne J, Girrbach F, Dietrich A, Kratzer A, Zeitlinger M, Kloft C, Kees F, Wrigge H, Dorn C. Meropenem Plasma and Interstitial Soft Tissue Concentrations in Obese and Nonobese Patients-A Controlled Clinical Trial. Antibiotics (Basel) 2020; 9:antibiotics9120931. [PMID: 33371322 PMCID: PMC7767385 DOI: 10.3390/antibiotics9120931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND This controlled clinical study aimed to investigate the impact of obesity on plasma and tissue pharmacokinetics of meropenem. METHODS Obese (body mass index (BMI) ≥ 35 kg/m2) and age-/sex-matched nonobese (18.5 kg/m2 ≥ BMI ≤ 30 kg/m2) surgical patients received a short-term infusion of 1000-mg meropenem. Concentrations were determined via high performance liquid chromatography-ultraviolet (HPLC-UV) in the plasma and microdialysate from the interstitial fluid (ISF) of subcutaneous tissue up to eight h after dosing. An analysis was performed in the plasma and ISF by noncompartmental methods. RESULTS The maximum plasma concentrations in 15 obese (BMI 49 ± 11 kg/m2) and 15 nonobese (BMI 24 ± 2 kg/m2) patients were 54.0 vs. 63.9 mg/L (95% CI for difference: -18.3 to -3.5). The volume of distribution was 22.4 vs. 17.6 L, (2.6-9.1), but the clearance was comparable (12.5 vs. 11.1 L/h, -1.4 to 3.1), leading to a longer half-life (1.52 vs. 1.31 h, 0.05-0.37) and fairly similar area under the curve (AUC)8h (78.7 vs. 89.2 mg*h/L, -21.4 to 8.6). In the ISF, the maximum concentrations differed significantly (12.6 vs. 18.6 L, -16.8 to -0.8) but not the AUC8h (28.5 vs. 42.0 mg*h/L, -33.9 to 5.4). Time above the MIC (T > MIC) in the plasma and ISF did not differ significantly for MICs of 0.25-8 mg/L. CONCLUSIONS In morbidly obese patients, meropenem has lower maximum concentrations and higher volumes of distribution. However, due to the slightly longer half-life, obesity has no influence on the T > MIC, so dose adjustments for obesity seem unnecessary.
Collapse
Affiliation(s)
- Philipp Simon
- Department of Anaesthesiology and Intensive Care Medicine, University of Leipzig Medical Centre, 04103 Leipzig, Germany; (J.H.); (F.G.); (H.W.)
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, 04103 Leipzig, Germany; (D.P.); (A.D.)
- Correspondence: ; Tel.: +49-341-97-17700
| | - David Petroff
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, 04103 Leipzig, Germany; (D.P.); (A.D.)
- Clinical Trial Centre Leipzig, University of Leipzig, 04107 Leipzig, Germany
| | - David Busse
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (D.B.); (C.K.)
- Graduate Research Training Program PharMetrX, 12169 Berlin, Germany
| | - Jana Heyne
- Department of Anaesthesiology and Intensive Care Medicine, University of Leipzig Medical Centre, 04103 Leipzig, Germany; (J.H.); (F.G.); (H.W.)
| | - Felix Girrbach
- Department of Anaesthesiology and Intensive Care Medicine, University of Leipzig Medical Centre, 04103 Leipzig, Germany; (J.H.); (F.G.); (H.W.)
| | - Arne Dietrich
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, 04103 Leipzig, Germany; (D.P.); (A.D.)
- Department of Surgery, University of Leipzig Medical Centre, 04103 Leipzig, Germany
| | - Alexander Kratzer
- Institute of Pharmacy, University of Regensburg, 93053 Regensburg, Germany; (A.K.); (C.D.)
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (D.B.); (C.K.)
| | - Frieder Kees
- Department of Pharmacology, University of Regensburg, 93053 Regensburg, Germany;
| | - Hermann Wrigge
- Department of Anaesthesiology and Intensive Care Medicine, University of Leipzig Medical Centre, 04103 Leipzig, Germany; (J.H.); (F.G.); (H.W.)
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, 04103 Leipzig, Germany; (D.P.); (A.D.)
- Department of Anaesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital Halle, 06112 Halle, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, 93053 Regensburg, Germany; (A.K.); (C.D.)
| |
Collapse
|
25
|
Quantification of microdialysis related variability in humans: Clinical trial design recommendations. Eur J Pharm Sci 2020; 157:105607. [PMID: 33141034 DOI: 10.1016/j.ejps.2020.105607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Target-site concentrations obtained via the catheter-based minimally invasive microdialysis technique often exhibit high variability. Catheter calibration is commonly performed via retrodialysis, in which a transformation factor, termed relative recovery (RR), is determined. Leveraging RR values from a rich data set of a very large clinical microdialysis study, promised to contribute critical insight into the origin of the reportedly high target-site variability. The present work aimed (i) to quantify and explain variability in RR associated with the patient (including non-obese vs. obese) and the catheter, and (ii) to derive recommendations on the design of future clinical microdialysis studies. METHODS A prospective, age- and sex-matched parallel group, single-centre trial in non-obese and obese patients (BMI=18.7-86.9 kg/m2) was performed. 1-3 RR values were obtained in the interstitial fluid of the subcutaneous fat tissue in one catheter per upper arm of 120 patients via the retrodialysis method (nRR=1008) for a panel of drugs (linezolid, meropenem, tigecycline, cefazolin, fosfomycin, piperacillin and acetaminophen). A linear mixed-effects model was developed to quantify the different types of variability in RR and to explore the association between RR and patient body size descriptors. RESULTS Estimated RR was highest for acetaminophen (69.7%, 95%CI=65.0% to 74.3%) and lowest for piperacillin (40.4%, 95%CI=34.6% to 46.0%). The linear mixed-effects modelling analysis showed that variability associated with the patient (σ=15.9%) was the largest contributor (46.7%) to overall variability, whereas the contribution of variability linked to the catheter (σ=5.55%) was ~1/6 (16.8%). The relative contribution of residual unexplained variability (σ=12.0%, including intracatheter variability) was ~1/3 (36.4%). The limits of agreement of repeated RR determinations in a single catheter ranged from 0.694-1.64-fold (linezolid) to 0.510-3.02-fold (cefazolin). Calculated fat mass affected RR, explaining the observed lower RR in obese (ΔRRmean= -29.7% relative reduction) versus non-obese patients (p<0.001); yet only 15.8% of interindividual variability was explained by this effect. No difference in RR was found between catheters implanted into the left or right arm (p=0.732). CONCLUSIONS Three recommendations for clinical microdialysis trial design were derived: 1) High interindividual variability underscored the necessity of measuring individual RR per patient. 2) The low relative contribution of intercatheter variability to overall variability indicated that measuring RR with a single catheter per patient is sufficient for reliable catheter calibration. 3) The wide limits of agreement from multiple RR in the same catheter implied an uncertainty of a factor of two in target-site drug concentration estimation necessitating to perform catheter calibration (retrodialysis sampling) multiple times per patient. To allow routine clinical use of microdialysis, research efforts should aim at further understanding and minimising the method-related variability. Optimised study designs in clinical trials will ultimately yield more informative microdialysis data and increase our understanding of this valuable sampling technique to derive target-site drug exposure.
Collapse
|
26
|
Couet W. Antibiotic PK/PD modelling: a memorial tribute to Alan Forrest. Clin Microbiol Infect 2020; 26:1121-1122. [DOI: 10.1016/j.cmi.2020.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
|
27
|
Simon P. [Anti-infective treatment in obesity-"just double it?"]. Anaesthesist 2020; 69:588-592. [PMID: 32488536 DOI: 10.1007/s00101-020-00800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adaequate antibiotic therapy is crucial for successful anti-infective therapy. In addition to the choice of the right antibiotic and the duration of therapy, the dose also plays a decisive role. Obesity has an influence on the pharmacokinetics of antibiotics, which can lead to underdosing if previous weight-independent dosing regimes are used. It is therefore necessary to carry out systematic measurements of concentrations in obese patients. Since pharmacokinetic differences between plasma and the interstitial fluid of different target tissues have been observed for different antibiotics, the measurement is also necessary in the target tissue. The technique of microdialysis is best suited for this purpose as it allows concentrations to be measured continuously in the target tissue.
Collapse
Affiliation(s)
- P Simon
- Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Leipzig AöR, Leipzig, Deutschland.
| |
Collapse
|
28
|
Linezolid Concentrations in Plasma and Subcutaneous Tissue are Reduced in Obese Patients, Resulting in a Higher Risk of Underdosing in Critically Ill Patients: A Controlled Clinical Pharmacokinetic Study. J Clin Med 2020; 9:jcm9041067. [PMID: 32283731 PMCID: PMC7230366 DOI: 10.3390/jcm9041067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 01/11/2023] Open
Abstract
Background: Linezolid is used for the treatment of soft tissue infections in critically ill patients. However, data for characterizing the pharmacokinetics (PK) and assessing whether effective concentrations are reached at the target site are lacking. We hypothesized that current dosing regimens do not lead to effective concentrations in the plasma and interstitial fluid (ISF) of subcutaneous tissue in obese patients. Methods: As a controlled clinical model, critically ill obese and non-obese patients undergoing intra-abdominal surgery received 600 mg linezolid as a single infusion. Concentrations in the plasma and microdialysate from the ISF of subcutaneous tissue were determined up to 8 h after dosing. Pharmacokinetic analysis was performed by non-compartmental methods. As a therapeutic target, we used fAUC/MIC > 80. Results: Fifteen obese (BMI: 48.7 ± 11.2 kg/m2) and 15 non-obese (23.9 ± 2.1 kg/m2) patients were analyzed. AUC0–8 in ISF decreased by −1.69 mg*h/L (95% CI: −2.59 to −0.79, p < 0.001) for every 10 kg increase in weight. PK in obese patients were characterized by lower maximal plasma concentrations (median 3.8 vs. 8.3 mg/L, p < 0.001) and a higher volume of distribution (41.0 vs. 30.8 L, p < 0.001), and the therapeutic target was not reached for MIC ≥ 1 mg/L in ISF and ≥ 2 mg/L in plasma. Conclusions: Increasing the weight led to a decrease of linezolid concentrations in the plasma and subcutaneous tissue. The current dosing regimen does not seem to produce sufficient concentrations to kill bacteria with MIC ≥ 2 mg/L, especially as empirical antimicrobial therapy in critically ill obese patients.
Collapse
|