1
|
Dissanayake G, Zergaw M, Elgendy M, Billey A, Saleem A, Zeeshan B, Nassar ST. Effectiveness of Pneumococcal Conjugate Vaccines Over Antibiotic-Resistant Acute Otitis Media in Children: A Systematic Review. Cureus 2024; 16:e67771. [PMID: 39323722 PMCID: PMC11422702 DOI: 10.7759/cureus.67771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/25/2024] [Indexed: 09/27/2024] Open
Abstract
One of the most prevalent childhood illnesses in the world, acute otitis media (AOM), is mainly brought on by Streptococcus pneumoniae, which has resulted in a significant increase in the use of antibiotics and the emergence of antibiotic-resistant (ABR) strains. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 criteria served as the foundation for this systematic review. We conduct a comprehensive literature search across five primary databases, including PubMed, PubMed Central, Cochrane, Science Direct, and Google Scholar, to identify eligible studies assessing the impact of pneumococcal conjugate vaccines (PCVs) on AOM incidence and ABR. Data on AOM rates, shifts in serotype distribution, and the prevalence of ABR pneumococcal strains in children under the age of 18 after PCV implementation are taken from all kinds of studies that assessed any pneumococcal conjugate vaccines (PCV 7, 10, and 13) as interventions. Eighteen records are identified as eligible for the final review. Other articles are excluded by assessing the title and abstract relevancy, applying inclusion criteria, and using critical appraisal tools. Implementing PCVs among children in the national immunization programs in most countries, particularly PCV13 has led to substantial decreases in ABR S. pneumoniae strains. However, serotype replacement has emerged as a challenge, with non-vaccine serotypes becoming more prevalent. Despite this, the overall burden of antibiotic resistance and AOM has decreased, underscoring the positive impact of PCVs on public health. PCVs effectively reduce the incidence of AOM and the prevalence of ABR S. pneumoniae in children. The vaccines play a crucial role in antibiotic stewardship by decreasing the need for broad-spectrum antibiotics. Continued surveillance and development of next-generation vaccines are essential to address serotype replacement and sustain the benefits of PCVs in combating antibiotic-resistant AOM.
Collapse
Affiliation(s)
- Gayanthi Dissanayake
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Meaza Zergaw
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohamed Elgendy
- Orthopaedics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Alvin Billey
- Pathology and Laboratory Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Asra Saleem
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bushra Zeeshan
- Dermatology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Dermatology, Allama Iqbal Medical College/Jinnah Hospital, Lahore, PAK
| | - Sondos T Nassar
- Medicine and Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
2
|
Zahid A, Wilson JC, Grice ID, Peak IR. Otitis media: recent advances in otitis media vaccine development and model systems. Front Microbiol 2024; 15:1345027. [PMID: 38328427 PMCID: PMC10847372 DOI: 10.3389/fmicb.2024.1345027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Otitis media is an inflammatory disorder of the middle ear caused by airways-associated bacterial or viral infections. It is one of the most common childhood infections as globally more than 80% of children are diagnosed with acute otitis media by 3 years of age and it is a common reason for doctor's visits, antibiotics prescriptions, and surgery among children. Otitis media is a multifactorial disease with various genetic, immunologic, infectious, and environmental factors predisposing children to develop ear infections. Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis are the most common culprits responsible for acute otitis media. Despite the massive global disease burden, the pathogenesis of otitis media is still unclear and requires extensive future research. Antibiotics are the preferred treatment to cure middle ear infections, however, the antimicrobial resistance rate of common middle ear pathogens has increased considerably over the years. At present, pneumococcal and influenza vaccines are administered as a preventive measure against otitis media, nevertheless, these vaccines are only beneficial in preventing carriage and/or disease caused by vaccine serotypes. Otitis media caused by non-vaccine serotype pneumococci, non-typeable H. influenza, and M. catarrhalis remain an important healthcare burden. The development of multi-species vaccines is an arduous process but is required to reduce the global burden of this disease. Many novel vaccines against S. pneumoniae, non-typeable H. influenza, and M. catarrhalis are in preclinical trials. It is anticipated that these vaccines will lower the disease burden and provide better protection against otitis media. To study disease pathology the rat, mouse, and chinchilla are commonly used to induce experimental acute otitis media to test new therapeutics, including antibiotics and vaccines. Each of these models has its advantages and disadvantages, yet there is still a need to develop an improved animal model providing a better correlated mechanistic understanding of human middle ear infections, thereby underpinning the development of more effective otitis media therapeutics. This review provides an updated summary of current vaccines against otitis media, various animal models of otitis media, their limitations, and some future insights in this field providing a springboard in the development of new animal models and novel vaccines for otitis media.
Collapse
Affiliation(s)
- Ayesha Zahid
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jennifer C. Wilson
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - I. Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Ian R. Peak
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
3
|
Chang IF, Lin IF, Liu YC, Chou CC, Chang TH, Yen TY, Lu CY, Chang LY, Lai F, Huang LM. Outcomes of pediatric community-acquired pneumonia before and after national pneumococcal immunization in Taiwan. Pediatr Pulmonol 2023; 58:3246-3254. [PMID: 37642277 DOI: 10.1002/ppul.26651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE In Taiwan, the incidence of invasive pneumococcal disease (IPD) in children declined after the catch-up primary vaccination programs and the full national immunization program (NIP) with PCV13. The objective of the study was to investigate the clinical outcomes of pediatric community-acquired pneumonia (CAP) before and after the NIP. METHODS The study included patients aged 3 months to 17 years who were diagnosed with CAP and treated at the National Taiwan University Hospital between 2007 and 2019. Patients were assigned to three birth cohorts according to their birth years and vaccination eligibility: non-NIP, catch-up, and full NIP. We compared the rates of severe outcomes, including case fatality and pathogens. RESULTS A total of 6557 patients who met the CAP criteria were enrolled during the study period. The case-fatality rate decreased from 3.2% (94/2984) in the non-NIP cohort to 0.3% (7/2176) in the catch-up cohort and 0.8% (11/1397) in the full NIP cohort (p < 0.001). Furthermore, there was a significant decrease in invasive ventilation from the non-NIP (17.9%) to both catch-up (6.8%) and full NIP cohorts (9.1%). The rate of IPD declined from the non-NIP cohort to the catch-up cohort (1.8% vs. 0.6%, p < 0.001) and from the catch-up to the full NIP cohort (0.6% vs. 0.07%, p = 0.014). In contrast, the rates of infections with other pathogens increased after NIP. CONCLUSION The introduction of PCV13 showed significant reduction in case-fatality and IPD rates. The increasing rates of other pathogens warrant further surveillance for their clinical significance.
Collapse
Affiliation(s)
- I-Fan Chang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - I-Fan Lin
- Department of Pediatrics, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Yun-Chung Liu
- Department of Pediatrics, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Chia-Ching Chou
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Tu-Hsuan Chang
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ting-Yu Yen
- Department of Pediatrics, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Chun-Yi Lu
- Department of Pediatrics, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Luan-Yin Chang
- Department of Pediatrics, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Feipei Lai
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Liu J, Lin J, Chen L. Heat shock protein 40 of Streptococcus pneumoniae induces immune response of human dendritic cells via TLR4-dependent p38 MAPK and JNK signaling pathways. Immun Inflamm Dis 2022; 10:e735. [PMID: 36444618 PMCID: PMC9695094 DOI: 10.1002/iid3.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Heat shock protein 40 (HSP40) is a vaccine adjuvant candidate for Streptococcus pneumoniae. The mechanism by which HSP40 activates the human dendritic cells (DCs) is unclear. METHODS DCs were isolated from human peripheral blood and their markers (HLA-DR, CD86, CD83, and CD80) were detected by flow cytometry. The messenger RNA (mRNA) and secretion levels of inflammary cytokines were measured after DCs were stimulated with recombinant HSP40 (rHSP40). Short hairpin RNAs were used to knock down toll-like receptor 2 (TLR2) and TLR4. The TLR2- or TLR4-deficient DCs were treated with lipopolysaccharides, rHSP40, or peptidoglycan, and then the secretion levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were measured. Moreover, the secretion levels of TNF-α and IL-6 were measured after DCs were treated with mitogen-activated protein kinase (MAPK) inhibitors including SB203580, SP600125, and U0126. In addition, the phosphorylation levels of p38 MAPK and Jun N-terminal kinase (JNK) in DC cells were determined using western blot analysis after treatment with rHSP40 for different times. RESULTS DCs were successfully isolated and cultured. rHSP40 treatment significantly increased cytokine levels in a concentration-dependent manner. TLR4 deficiency, but not TLR2 deficiency, significantly suppressed the rHSP40-induced secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). SB203580 and SP600125 significantly inhibited the rHSP40-induced secretion of TNF-α and IL-6. rHSP40 significantly enhanced the phosphorylation of p38 MAPK and JNK. CONCLUSION HPS40 stimulates the immune response of DCs via the p38 MAPK and JNK signaling pathways, which depend on TLR4.
Collapse
Affiliation(s)
- Jing‐jing Liu
- Clinical LaboratoryXiamen Children's HospitalXiamenChina
| | - Jian‐cheng Lin
- Clinical LaboratoryXiamen Children's HospitalXiamenChina
| | - Li‐na Chen
- Clinical LaboratoryXiamen Children's HospitalXiamenChina
| |
Collapse
|
5
|
Zhao N, Ren H, Deng J, Du Y, Li Q, Zhou P, Zhou H, Jiang X, Qin T. Genotypic and Phenotypic Characteristics of Moraxella catarrhalis from Patients and Healthy Asymptomatic Participants among Preschool Children. Pathogens 2022; 11:pathogens11090984. [PMID: 36145417 PMCID: PMC9503219 DOI: 10.3390/pathogens11090984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: M. catarrhalis can ascend into the middle ear, where it is a prevalent causative agent of otitis media in children, or enter the lower respiratory tract, where it is associated with community-acquired pneumonia (CAP). In this study, we aimed to provide an overview of the prevalence of M. catarrhalis in preschool children. (2) Methods: M. catarrhalis strains were isolated from samples. All isolates were characterized in terms of serotypes (STs), virulence genes, multilocus sequence type, and antibiotic susceptibility. (3) Results: The percentages of strains expressing lipooligosaccharides (LOSs), serotype A, B, C, or unknown were 67.61%, 15.71%, 4.28%, and 12.38%, respectively. Among the strains, 185 (88.10%) carried ompB2, 207 (98.57%) carried ompE, and 151 (71.90%) carried ompCD. The most frequently identified STs were ST449 (n = 13), ST64 (n = 11), and ST215 (n = 10). The resistance rates to the antibiotics cefuroxime, azithromycin, and erythromycin were 43.33%, 28.10%, and 39.05%, respectively. (4) Conclusions: High prevalence of some-specific ST types and high rates of antibiotic resistance indicate the necessity for an increased vigilance of resistant strains, a rational use of antibiotics in preschool children, and most importantly, the surveillance of healthy asymptomatic participants preschool children with M. catarrhalis. Our findings provide a platform for the development of novel M. catarrhalis vaccines.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102211, China
| | - Hongyu Ren
- Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102211, China
| | - Jianping Deng
- Zigong Center for Disease Control and Prevention, Control and Prevention of Zigong City, Zigong 643002, China
| | - Yinju Du
- Disease Control and Prevention of Liaocheng City, Liaocheng 252001, China
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Control and Prevention of Zigong City, Zigong 643002, China
| | - Pu Zhou
- Disease Control and Prevention of Liaocheng City, Liaocheng 252001, China
| | - Haijian Zhou
- Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102211, China
| | - Xiangkun Jiang
- Disease Control and Prevention of Liaocheng City, Liaocheng 252001, China
| | - Tian Qin
- Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102211, China
- Correspondence: ; Tel.: +86-10-58900783
| |
Collapse
|
6
|
Tikhomirova A, Zilm PS, Trappetti C, Paton JC, Kidd SP. The central role of arginine in Haemophilus influenzae survival in a polymicrobial environment with Streptococcus pneumoniae and Moraxella catarrhalis. PLoS One 2022; 17:e0271912. [PMID: 35877653 PMCID: PMC9312370 DOI: 10.1371/journal.pone.0271912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis are bacterial species which frequently co-colonise the nasopharynx, but can also transit to the middle ear to cause otitis media. Chronic otitis media is often associated with a polymicrobial infection by these bacteria. However, despite being present in polymicrobial infections, the molecular interactions between these bacterial species remain poorly understood. We have previously reported competitive interactions driven by pH and growth phase between H. influenzae and S. pneumoniae. In this study, we have revealed competitive interactions between the three otopathogens, which resulted in reduction of H. influenzae viability in co-culture with S. pneumoniae and in triple-species culture. Transcriptomic analysis by mRNA sequencing identified a central role of arginine in mediating these interactions. Arginine supplementation was able to increase H. influenzae survival in a dual-species environment with S. pneumoniae, and in a triple-species environment. Arginine was used by H. influenzae for ATP production, and levels of ATP generated in dual- and triple-species co-culture at early stages of growth were significantly higher than the combined ATP levels of single-species cultures. These results indicate a central role for arginine-mediated ATP production by H. influenzae in the polymicrobial community.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Peter S. Zilm
- Department of Oral Microbiology, School of Dentistry, University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia
| | - Claudia Trappetti
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - James C. Paton
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Stephen P. Kidd
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
- Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
7
|
Distribution and Drug Resistance of Bacterial Pathogens Associated with Lower Respiratory Tract Infection in Children and the Effect of COVID-19 on the Distribution of Pathogens. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:1181283. [PMID: 35368516 PMCID: PMC8965734 DOI: 10.1155/2022/1181283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
Abstract
By studying the distribution and drug resistance of bacterial pathogens associated with lower respiratory tract infection (LRTI) in children in Chengdu and the effect of the COVID-19 on the distribution of pathogens and by analyzing the epidemic trend and drug resistance changes of the main pathogens of LRTI, this research is supposed to provide a useful basis for the prevention of LRTI in children and the rational use of drugs in clinical practice. Hospitalized children clinically diagnosed with LRTI in Chengdu Women and Children's Central Hospital from 2011 to 2020 were selected as the study subjects. The pathogens of LRTI in children and the distribution of pathogens in different ages, genders, seasons, years, and departments and before and after the pandemic situation of COVID-19 were counted. The drug resistance distribution of the top six pathogens with the highest infection rate in the past three years and the trend of drug resistance in the past decade were analyzed. A total of 26,469 pathogens were isolated. Among them, 6240 strains (23.6%) were Gram-positive bacteria, 20152 strains (76.1%) were Gram-negative bacteria, and 73 strains (0.3%) were fungi. Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, and Staphylococcus aureus were highly isolated in the group of infants aged 0-1 (P < 0.01), Moraxella catarrhalis and Streptococcus pneumoniae were highly isolated in children aged 1–6 (P < 0.01), and Haemophilus influenzae was highly isolated in children over 1 (P < 0.01). The isolation rates of Enterobacteriaceae, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Staphylococcus aureus, and Candida albicans in the lower respiratory tract of 0-1 year-old male infants were higher than those of female infants (p < 0.05). Haemophilus influenzae was highly isolated in spring and summer, and Moraxella catarrhalis was highly isolated in autumn and winter, while the infection of Streptococcus pneumoniae was mainly concentrated in winter. This difference was statistically significant (P < 0.01). Affected by the COVID-19 pandemic, the isolation rates of Haemophilus influenzae and Streptococcus pneumoniae were significantly lower than those before the pandemic, and the isolation rate of Moraxella catarrhalis was significantly higher. The difference was statistically significant (P < 0.01). The proportion of isolated negative bacteria in NICU and PICU was higher than that in positive bacteria, and the infection rates of Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, and Acinetobacter baumannii were higher than those in other departments. The differences were statistically significant (P < 0.01). The results of drug sensitivity test showed that the drug resistance of Haemophilus influenzae and Moraxella catarrhalis was mainly concentrated in Ampicillin, First- and Second-generation cephalosporins, and Cotrimoxazole, with stable sensitivity to Third-generation cephalosporins, while the drug resistance of Streptococcus pneumoniae was concentrated in Macrolides, Sulfonamides, and Tetracyclines, with stable sensitivity to Penicillin. Staphylococcus aureus is highly resistant to penicillins and macrolides and susceptible to vancomycin. Enterobacteriaceae resistance is concentrated in cephalosporins, with a low rate of carbapenem resistance. From 2018 to 2020, 1557 strains of Staphylococcus aureus were isolated, of which 416 strains were MRSA, accounting for 27% of the isolates; 1064 strains of Escherichia coli were isolated, of which 423 strains were ESBL and 23 strains were CRE, accounting for 40% and 2% of the isolates, respectively; and 1400 strains of Klebsiella pneumoniae were isolated, of which 385 strains were ESBL and 402 strains were CRE, accounting for 28% and 29% of the isolates, respectively. Since 2011, the resistance of Escherichia coli and Klebsiella pneumoniae to Third-generation cephalosporins has increased, peaking in 2017, and has decreased after 2018, years after which carbapenem resistance has increased significantly, corresponding to an increase in the detection rate of Carbapenem-resistant Enterobacteriaceae CRE. Findings from this study revealed that there are significant differences in community-associated infectious pathogens before and after the COVID-19 pandemic, and there are significant age differences, seasonal epidemic trends, and high departmental correlation of pathogens related to lower respiratory tract disease infection in children. There was a significant gender difference in the isolation rate of pathogens associated with LRTI in infants under one year. Vaccination, implementation of isolation measures and social distance, strengthening of personal protective measures, aseptic operation of invasive medical treatment, hand hygiene, and environmental disinfection are beneficial to reducing community-associated pathogen infection, opportunistic pathogen infection, and an increase in resistant bacteria. The strengthening of bacterial culture of lower respiratory tract samples by pediatricians is conducive to the diagnosis of respiratory tract infections caused by different pathogens, contributing to the selection of effective drugs for treatment according to drug susceptibility results, which is important for the rational use of antibiotics and curbing bacterial resistance.
Collapse
|
8
|
Prevalence of Moraxella Catarrhalis as a Nasal Flora among Healthy Kindergarten Children in Bhaktapur, Nepal. Interdiscip Perspect Infect Dis 2022; 2022:3989781. [PMID: 35378873 PMCID: PMC8976674 DOI: 10.1155/2022/3989781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/12/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Moraxella catarrhalis causes mild to severe disease in all age groups, mainly in children. This study investigates the prevalence of M. catarrhalis, its cocolonization with other common nasal flora, and associated risk factors in kindergarten children in Bhaktapur. Method A cross-sectional study was conducted among 136 healthy school-going children from four kindergartens of Bhaktapur Municipality. Nasal swabs were examined for identification and isolation of M. catarrhalis and its antibiotic susceptibility pattern. Additionally, further analysis was performed for cocolonization and associated risk factors. Results Out of 136 students, M. catarrhalis was detected in 80 (58.8%) children. Using bivariate and multivariate analysis, the associated risk factors with significantly high carriage rates were age group of 3–4 years, classroom occupancy with 15–30 children, and antibiotic consumption within 6 months, with a p value of ≤0.05 in each of the cases. Multiple logistic regression analysis of bacterial coexistence depicted M. catarrhalis to be positively associated with Streptococcus pneumoniae and Haemophilus influenzae and negatively associated with Staphylococcus aureus. Furthermore, the highest double colonization occurred among M. catarrhalis and S. aureus and the highest triple colonization occurred among M. catarrhalis, S. aureus, and S. pneumoniae. The antibiogram pattern showed the target organisms to be highly resistant to amoxycillin/clavulanate (18.8%) and most sensitive to chloramphenicol (100%). Conclusion This study shows a high prevalence of M. catarrhalis in healthy kindergarten children and is positively associated with other nasal isolates like S. pneumoniae and H. influenzae.
Collapse
|
9
|
Paudel G, Amatya N, Saud B, Wagle S, Shrestha V, Adhikari B. Nasal colonization by potential bacterial pathogens in healthy kindergarten children of Nepal: a prevalence study. Germs 2022; 12:86-98. [PMID: 35601953 PMCID: PMC9113680 DOI: 10.18683/germs.2022.1309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 09/29/2023]
Abstract
INTRODUCTION In low- and middle-income countries including Nepal, respiratory tract infection (RTI) is considered as one of the most prominent public health problems in children. Multiple carriage of respiratory pathogens is common in children, especially in preschoolers as they are easily transmitted through close contact and poor hygienic condition. Thus, this research is based on the study of prevalence, co-existence, associated factors and antibiogram of nasal isolates among healthy preschoolers. METHODS The study was conducted in four randomly selected kindergarten schools (two government run and two private run) of Bhaktapur Municipality. Out of a total 140 students, 136 eligible participants of age group 2-5 years old were involved in the study. Nasal swab was collected for the isolation of five target isolates (Staphylococcus aureus, Streptococcus pneumoniae, Moraxella catarrhalis, Haemophilus influenzae and Haemophilus parainfluenzae) and their antibiotic resistance determination. RESULTS Of 136 participants involved, 128 (94.5%) were positive for carriage of at least one of the target bacteria. The most common isolate was M. catarrhalis 62.5% (80/128) followed by S. aureus 43.0% (55/128). There was a significant difference in bacterial carriage with respect to type of school (p value<0.05, OR=0.50, CI=0.20-0.90). Regarding bacterial co-existence, the most common co-existence was of S. aureus and M. catarrhalis & S. pneumoniae and M. catarrhalis 48.8%. Multiple logistic regression analysis showed that S. aureus was negatively associated with S. pneumoniae, M. catarrhalis and H. influenzae and S. pneumoniae was positively associated with M. catarrhalis and H. influenzae. Multidrug resistance was seen in 63 isolates (29.4%). CONCLUSIONS Nepalese kindergarten children are at a high risk of respiratory tract infection by multidrug resistant bacteria.
Collapse
Affiliation(s)
- Govinda Paudel
- MSc, Assistant Prof, Department of Medical Laboratory Technology, Janamaitri Foundation Institute of Health Sciences (JFIHS), GPO Box 8322, Kathmandu, Nepal
| | - Neetu Amatya
- BSc, Clinical Laboratory Instructor, Department of Medical Laboratory Technology, Janamaitri Foundation Institute of Health Sciences (JFIHS), GPO Box 8322, Kathmandu, Nepal
| | - Bhuvan Saud
- MSc, Associate Professor, Department of Medical Laboratory Technology, Janamaitri Foundation Institute of Health Sciences (JFIHS), GPO Box 8322, Kathmandu, Nepal
| | - Sunita Wagle
- MSc, Laboratory Technician, Dhading Hospital Dhading, Government of Nepal. GPO box 4512, Dhading, Nepal
| | - Vikram Shrestha
- MSc, Assistant Professor, Department of Medical Laboratory Technology, Janamaitri Foundation Institute of Health Sciences (JFIHS), GPO Box 8322, Kathmandu, Nepal
| | - Bibhav Adhikari
- MM, Lecturer, College of Management, Little Angels’ College of Higher Studies, GPO Box 8322, Hattiban, Lalitpur, Nepal
| |
Collapse
|
10
|
Janoušková M, Straw ML, Su YC, Riesbeck K. Gene Expression Regulation in Airway Pathogens: Importance for Otitis Media. Front Cell Infect Microbiol 2022; 12:826018. [PMID: 35252035 PMCID: PMC8895709 DOI: 10.3389/fcimb.2022.826018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Otitis media (OM) is an inflammatory disorder in the middle ear. It is mainly caused by viruses or bacteria associated with the airways. Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are the three main pathogens in infection-related OM, especially in younger children. In this review, we will focus upon the multifaceted gene regulation mechanisms that are well-orchestrated in S. pneumoniae, H. influenzae, and M. catarrhalis during the course of infection in the middle ear either in experimental OM or in clinical settings. The sophisticated findings from the past 10 years on how the othopathogens govern their virulence phenotypes for survival and host adaptation via phase variation- and quorum sensing-dependent gene regulation, will be systematically discussed. Comprehensive understanding of gene expression regulation mechanisms employed by pathogens during the onset of OM may provide new insights for the design of a new generation of antimicrobial agents in the fight against bacterial pathogens while combating the serious emergence of antimicrobial resistance.
Collapse
|
11
|
Thofte O, Bettoni S, Su YC, Thegerström J, Jonsson S, Mattsson E, Sandblad L, Martí S, Garmendia J, Blom AM, Riesbeck K. Nontypeable Haemophilus influenzae P5 Binds Human C4b-Binding Protein, Promoting Serum Resistance. THE JOURNAL OF IMMUNOLOGY 2021; 207:1566-1577. [PMID: 34433620 PMCID: PMC8428749 DOI: 10.4049/jimmunol.2100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
Exposure of P5 at the surface of NTHi positively correlates with C4BP binding. C4BP bound to the bacterial surface retains its complement inhibitory capacity. C4BP binding to P5 is important for NTHi serum resistance.
Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative human pathogen that causes infections mainly in the upper and lower respiratory tract. The bacterium is associated with bronchitis and exacerbations in patients suffering from chronic obstructive pulmonary disease and frequently causes acute otitis media in preschool children. We have previously demonstrated that the binding of C4b binding protein (C4BP) is important for NTHi complement evasion. In this study, we identified outer membrane protein 5 (P5) of NTHi as a novel ligand of C4BP. Importantly, we observed significantly lower C4BP binding and decreased serum resistance in P5-deficient NTHi mutants. Surface expression of recombinant P5 on Escherichia coli conferred C4BP binding and consequently increased serum resistance. Moreover, P5 expression was positively correlated with C4BP binding in a series of clinical isolates. We revealed higher levels of P5 surface expression and consequently more C4BP binding in isolates from the lower respiratory tract of chronic obstructive pulmonary disease patients and tonsil specimens compared with isolates from the upper respiratory tract and the bloodstream (invasive strains). Our results highlight P5 as an important protein for protecting NTHi against complement-mediated killing.
Collapse
Affiliation(s)
- Oskar Thofte
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Serena Bettoni
- Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Sandra Jonsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Emma Mattsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Linda Sandblad
- Department of Molecular Biology, Umeå University, Umea, Sweden
| | - Sara Martí
- Microbiology Department, Research Network for Respiratory Diseases, Bellvitge Institute for Biomedical Research, Bellvitge University Hospital, Barcelona, Spain; and
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Mutilva, Spain
| | - Anna M Blom
- Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden;
| |
Collapse
|