1
|
Lopes CM, de Jesus Monteiro CS, Duarte AP, dos Santos JL. Probiotics and Prebiotics for the Treatment of Irritable Bowel Syndrome-A Narrative Review. J Clin Med 2024; 13:6337. [PMID: 39518476 PMCID: PMC11546470 DOI: 10.3390/jcm13216337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Gastrointestinal functional disorders (GFDs), including irritable bowel syndrome (IBS), are imbalances in the gut-brain axis characterized by persistence of symptoms in the abdominal area. Probiotics are live microorganisms that provide benefits to the health of their hosts when administered in adequate amounts, while prebiotics are a substrate that is selectively used by host microorganisms. This narrative review aimed to evaluate the effectiveness of prebiotics and probiotics mostly in irritable bowel syndrome, particularly on issues such as the interaction between these products and the gut microbiota, the duration of supplementation and long-term effects, the definition of ideal dosages, and the regulation and quality control of these products. Methods: A bibliographic search was carried out in indexed databases and articles published within 10 years before the beginning of the study and publications in English language, which investigated the specific theme of the study were considered. Papers dealing with topics not covered by the research questions, or presenting errors related with the wrong population or the wrong methods, as well as experimental studies and case reviews were excluded. Fifty-five articles were selected, initially in isolation by the authors and, afterward, under consensus. Results: It was possible to observe the effectiveness mainly of probiotics, in improving specific symptoms of the respective disorder; however, the available data remain unclear due to limitations concerning samples and methods of the studies evaluated. Conclusions: Despite evidence suggestive of therapeutic efficacy, additional multicenter randomized controlled trials (RCTs) with better defined protocols are still necessary to fill in the gaps in this subject, define measures to ensure the safe administration of these products, and confirm their therapeutic potential.
Collapse
Affiliation(s)
- Carolina Marques Lopes
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (C.M.L.); (C.S.d.J.M.); (A.P.D.)
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
- Academic Clinical Center of Beiras, Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Cristina Sofia de Jesus Monteiro
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (C.M.L.); (C.S.d.J.M.); (A.P.D.)
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
- Academic Clinical Center of Beiras, Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
- UFBI—Pharmacovigilance Unit of Beira Interior, Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Ana Paula Duarte
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (C.M.L.); (C.S.d.J.M.); (A.P.D.)
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
- Academic Clinical Center of Beiras, Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
- UFBI—Pharmacovigilance Unit of Beira Interior, Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Jorge Luiz dos Santos
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (C.M.L.); (C.S.d.J.M.); (A.P.D.)
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
- Academic Clinical Center of Beiras, Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
- UFBI—Pharmacovigilance Unit of Beira Interior, Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
2
|
Bowles EF, Burleigh M, Mira A, Van Breda SGJ, Weitzberg E, Rosier BT. Nitrate: "the source makes the poison". Crit Rev Food Sci Nutr 2024:1-27. [PMID: 39213282 DOI: 10.1080/10408398.2024.2395488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Interest in the role of dietary nitrate in human health and disease has grown exponentially in recent years. However, consensus is yet to be reached as to whether consuming nitrate from various food sources is beneficial or harmful to health. Global authorities continue to recommend an acceptable daily intake (ADI) of nitrate of 3.7 mg/kg-bw/day due to concerns over its carcinogenicity. This is despite evidence showing that nitrate consumption from vegetable sources, exceeding the ADI, is associated with decreased cancer prevalence and improvements in cardiovascular, oral, metabolic and neurocognitive health. This review examines the paradox between dietary nitrate and health and disease and highlights the key role of the dietary source and food matrix in moderating this interaction. We present mechanistic and epidemiological evidence to support the notion that consuming vegetable-derived nitrate promotes a beneficial increase in nitric oxide generation and limits toxic N-nitroso compound formation seen with high intakes of nitrate added during food processing or present in contaminated water. We demonstrate the need for a more pragmatic approach to nitrate-related nutritional research and guidelines. Ultimately, we provide an overview of our knowledge in this field to facilitate the various therapeutic applications of dietary nitrate, whilst maintaining population safety.
Collapse
Affiliation(s)
- E F Bowles
- Department of Human Nutrition, School of Medicine, University of Glasgow, Glasgow, UK
| | - M Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - A Mira
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| | - S G J Van Breda
- Department of Toxicogenomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - E Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - B T Rosier
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| |
Collapse
|
3
|
Gunn D, Yeldho C, Hoad C, Menys A, Gowland P, Marciani L, Spiller R. Mechanisms underlying the laxative effect of lactulose: A randomized placebo-controlled trial showing increased small bowel water and motility unaltered by the 5-HT 3 receptor antagonist, ondansetron. Neurogastroenterol Motil 2024; 36:e14754. [PMID: 38316636 DOI: 10.1111/nmo.14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Lactulose is a laxative which accelerates transit and softens stool. Our aim was to investigate its mechanism of action and use this model of diarrhea to investigate the anti-diarrheal actions of ondansetron. METHODS A double-blind, randomized, placebo-controlled crossover study of the effect of ondansetron 8 mg in 16 healthy volunteers. Serial MRI scans were performed fasted and 6 h after a meal. Participants then received lactulose 13.6 g twice daily and study drug for a further 36 h. On Day 3, they had further serial MRI scans for 4 h. Measurements included small bowel water content (SBWC), colonic volume, colonic gas, small bowel motility, whole gut transit, and ascending colon relaxation time (T1AC), a measure of colonic water content. KEY RESULTS Lactulose increased area under the curve (AUC) of SBWC from 0 to 240 min, mean difference 14.2 L · min (95% CI 4.1, 24.3), p = 0.009, and substantially increased small bowel motility after 4 h (mean (95% CI) 523 (457-646) a.u. to 852 (771-1178) a.u., p = 0.007). There were no changes in T1AC after 36 h treatment. Ondansetron did not significantly alter SBWC, small bowel motility, transit, colonic volumes, colonic gas nor T1AC, with or without lactulose. CONCLUSION & INFERENCES Lactulose increases SBWC and stimulates small bowel motility; however, unexpectedly it did not significantly alter colonic water content, suggesting its laxative effect is not osmotic but due to stimulation of motility. Ondansetron's lack of effect on intestinal water suggests its anti-diarrheal effect is not due to inhibition of secretion but more likely altered colonic motility.
Collapse
Affiliation(s)
- D Gunn
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
- Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
| | - C Yeldho
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
- Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
| | - C Hoad
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - A Menys
- Division of Medicine, Centre for Medical Imaging, University College London, London, UK
| | - P Gowland
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - L Marciani
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
- Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
| | - R Spiller
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
- Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Jia K, Shen J. Transcriptome-wide association studies associated with Crohn's disease: challenges and perspectives. Cell Biosci 2024; 14:29. [PMID: 38403629 PMCID: PMC10895848 DOI: 10.1186/s13578-024-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024] Open
Abstract
Crohn's disease (CD) is regarded as a lifelong progressive disease affecting all segments of the intestinal tract and multiple organs. Based on genome-wide association studies (GWAS) and gene expression data, transcriptome-wide association studies (TWAS) can help identify susceptibility genes associated with pathogenesis and disease behavior. In this review, we overview seven reported TWASs of CD, summarize their study designs, and discuss the key methods and steps used in TWAS, which affect the prioritization of susceptibility genes. This article summarized the screening of tissue-specific susceptibility genes for CD, and discussed the reported potential pathological mechanisms of overlapping susceptibility genes related to CD in a certain tissue type. We observed that ileal lipid-related metabolism and colonic extracellular vesicles may be involved in the pathogenesis of CD by performing GO pathway enrichment analysis for susceptibility genes. We further pointed the low reproducibility of TWAS associated with CD and discussed the reasons for these issues, strategies for solving them. In the future, more TWAS are needed to be designed into large-scale, unified cohorts, unified analysis pipelines, and fully classified databases of expression trait loci.
Collapse
Affiliation(s)
- Keyu Jia
- Laboratory of Medicine, Baoshan Branch, Ren Ji Hospital, School of Medicine, Nephrology department, Shanghai Jiao Tong University, 1058 Huanzhen Northroad, Shanghai, 200444, China
| | - Jun Shen
- Laboratory of Medicine, Baoshan Branch, Ren Ji Hospital, School of Medicine, Nephrology department, Shanghai Jiao Tong University, 1058 Huanzhen Northroad, Shanghai, 200444, China.
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Research Center, Ren Ji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China.
- NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Vejlgaard M, Maibom SL, Joensen UN, Moser C, Røder A. Microbial Trends in Infection-related Readmissions Following Radical Cystectomy for Bladder Cancer. Urology 2024; 183:134-140. [PMID: 37742848 DOI: 10.1016/j.urology.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVE To report microbial pathogens detected at infection-related readmissions, including their susceptibility to antimicrobials. MATERIALS AND METHODS A retrospective review of 785 patients who underwent radical cystectomy for bladder cancer at a tertiary center in Denmark between 2009 and 2019. All patients received prophylactic cefuroxime preoperatively and pivmecillinam at stent- or catheter removal. Data were collected through the national medical records and microbiology database. The primary outcome was readmission rate and pathogens detected at infection-related readmissions. Univariable and multivariable regression analyses were carried out to identify risk factors of readmission. RESULTS Within 90days of surgery, 225 (29%) patients experienced at least one infection-related readmission. The most common pathogen identified was Enterococcus spp (24% of all positive samples). In blood cultures, the most dominant species were Escherichia coli (29%) and Staphylococcus spp (26%). Due to the heterogeneity in microbial species identified, more than one-third of the bacteria where mecillinam was tested showed resistance. Most isolates were susceptible to piperacillin+tazobactam. Orthotopic neobladder and continent cutaneous reservoir were associated with the highest risk of infection-related readmission compared to ileal conduit (odds ratios 2.78 [95%CI 1.66;4.65] and 3.08 [95%CI 1.58;5.98], respectively). Patients with diabetes had an increased risk of infection-related readmission compared to patients without diabetes (odds ratio 1.67 [95%CI 1.02;2.73]). CONCLUSION Nearly one-third of all patients experienced at least one postoperative infection-related readmission with a wide range of microbial etiologies. Generalizability of our results is uncertain, but the data can be used to plan interventional trials of antibiotic prophylaxis.
Collapse
Affiliation(s)
- Maja Vejlgaard
- Department of Urology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | - Sophia L Maibom
- Department of Urology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ulla N Joensen
- Department of Urology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Røder
- Department of Urology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Berndl F, Frerichmann J, Berndl T. Prevention and management of urinary tract infections after cystectomy. Curr Opin Urol 2023; 33:200-205. [PMID: 36861762 DOI: 10.1097/mou.0000000000001085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
PURPOSE OF REVIEW To give an overview of the most relevant recent literature about urinary tract infections (UTI) after radical cystectomy and to discuss them in the context of new individualized therapy approaches and possible preventive measures. RECENT FINDINGS UTI following radical cystectomy is a common complication associated with significant morbidity and readmission risk. Recent literature focuses on the identification of risk factors and the optimization of management. The risk factors most commonly associated with increased risk for UTI were perioperative blood transfusions and orthotopic neobladder (ONB). Furthermore, the effect of perioperative antibiotic regimens on rates of postoperative infections has been studied, but no consistent significant changes in UTI rates have yet been identified. Guidelines should be based on urologic studies and, wherever appropriate, should be uniform in design to encourage more frequent adherence. Furthermore, understanding the pathomechanisms leading to the development of UTI after radical cystectomy needs to be more central to discussions. SUMMARY Uniform definition of UTI, characteristics of bacterial pathogens involved, and type and duration of antibiotics used and identification of clinical risk factors must be the focus of well designed prospective studies to enable reduction of the most common complication after radical cystectomy.
Collapse
|
7
|
Di Rosa C, Altomare A, Terrigno V, Carbone F, Tack J, Cicala M, Guarino MPL. Constipation-Predominant Irritable Bowel Syndrome (IBS-C): Effects of Different Nutritional Patterns on Intestinal Dysbiosis and Symptoms. Nutrients 2023; 15:1647. [PMID: 37049488 PMCID: PMC10096616 DOI: 10.3390/nu15071647] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder characterized by abdominal pain associated with defecation or a change in bowel habits. The pathogenesis of IBS is not completely clear, but it is known to be multifactorial and complex. Endogenous and exogenous factors such as abnormal GI motility, low-grade inflammation, increased epithelial permeability and visceral hypersensitivity, but diet and psychosocial aspects are also recognized as important actors. Furthermore, the interaction between diet and gut microbiota has gained interest as a potential contributor to the pathophysiology of IBS. To date, there is no specific diet for IBS with constipation (IBS-C); however, many studies show that fiber intake, especially soluble fiber such as inulin, could have a positive effect on symptoms. This review aims to evaluate the effects of some nutritional components such as fibers but also functional foods, prebiotics, probiotics and symbiotics on symptoms and microbiota in IBS-C subjects.
Collapse
Affiliation(s)
- Claudia Di Rosa
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy; (C.D.R.); (V.T.)
| | - Annamaria Altomare
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy; (M.C.); (M.P.L.G.)
- Operative Research Unit of Gastroenterology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200-00128 Roma, Italy
| | - Vittoria Terrigno
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy; (C.D.R.); (V.T.)
| | - Florencia Carbone
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium; (F.C.); (J.T.)
| | - Jan Tack
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium; (F.C.); (J.T.)
| | - Michele Cicala
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy; (M.C.); (M.P.L.G.)
- Operative Research Unit of Gastroenterology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200-00128 Roma, Italy
| | - Michele Pier Luca Guarino
- Research Unit of Gastroenterology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy; (M.C.); (M.P.L.G.)
- Operative Research Unit of Gastroenterology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200-00128 Roma, Italy
| |
Collapse
|
8
|
Deyaert S, Moens F, Pirovano W, van den Bogert B, Klaassens ES, Marzorati M, Van de Wiele T, Kleerebezem M, Van den Abbeele P. Development of a reproducible small intestinal microbiota model and its integration into the SHIME®-system, a dynamic in vitro gut model. Front Microbiol 2023; 13:1054061. [PMID: 37008301 PMCID: PMC10063983 DOI: 10.3389/fmicb.2022.1054061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/14/2022] [Indexed: 03/19/2023] Open
Abstract
The human gastrointestinal tract consists of different regions, each characterized by a distinct physiology, anatomy, and microbial community. While the colonic microbiota has received a lot of attention in recent research projects, little is known about the small intestinal microbiota and its interactions with ingested compounds, primarily due to the inaccessibility of this region in vivo. This study therefore aimed to develop and validate a dynamic, long-term simulation of the ileal microbiota using the SHIME®-technology. Essential parameters were identified and optimized from a screening experiment testing different inoculation strategies, nutritional media, and environmental parameters over an 18-day period. Subjecting a synthetic bacterial consortium to the selected conditions resulted in a stable microbiota that was representative in terms of abundance [8.81 ± 0.12 log (cells/ml)], composition and function. Indeed, the observed community mainly consisted of the genera Streptococcus, Veillonella, Enterococcus, Lactobacillus, and Clostridium (qPCR and 16S rRNA gene targeted Illumina sequencing), while nutrient administration boosted lactate production followed by cross-feeding interactions towards acetate and propionate. Furthermore, similarly as in vivo, bile salts were only partially deconjugated and only marginally converted into secondary bile salts. After confirming reproducibility of the small intestinal microbiota model, it was integrated into the established M-SHIME® where it further increased the compositional relevance of the colonic community. This long-term in vitro model provides a representative simulation of the ileal bacterial community, facilitating research of the ileum microbiota dynamics and activity when, for example, supplemented with microbial or diet components. Furthermore, integration of this present in vitro simulation increases the biological relevance of the current M-SHIME® technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Massimo Marzorati
- ProDigest BV, Gent, Belgium
- Center of Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- *Correspondence: Massimo Marzorati,
| | - Tom Van de Wiele
- ProDigest BV, Gent, Belgium
- Center of Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Michiel Kleerebezem
- Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
9
|
Ruigrok RAAA, Weersma RK, Vich Vila A. The emerging role of the small intestinal microbiota in human health and disease. Gut Microbes 2023; 15:2201155. [PMID: 37074215 PMCID: PMC10120449 DOI: 10.1080/19490976.2023.2201155] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
The human gut microbiota continues to demonstrate its importance in human health and disease, largely owing to the countless number of studies investigating the fecal microbiota. Underrepresented in these studies, however, is the role played by microbial communities found in the small intestine, which, given the essential function of the small intestine in nutrient absorption, host metabolism, and immunity, is likely highly relevant. This review provides an overview of the methods used to study the microbiota composition and dynamics along different sections of the small intestine. Furthermore, it explores the role of the microbiota in facilitating the small intestine in its physiological functions and discusses how disruption of the microbial equilibrium can influence disease development. The evidence suggests that the small intestinal microbiota is an important regulator of human health and its characterization has the potential to greatly advance gut microbiome research and the development of novel disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Renate A. A. A. Ruigrok
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Tan R, Jin M, Shao Y, Yin J, Li H, Chen T, Shi D, Zhou S, Li J, Yang D. High-sugar, high-fat, and high-protein diets promote antibiotic resistance gene spreading in the mouse intestinal microbiota. Gut Microbes 2022; 14:2022442. [PMID: 35030982 PMCID: PMC8765071 DOI: 10.1080/19490976.2021.2022442] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diet can not only provide nutrition for intestinal microbiota, it can also remodel them. However, is unclear whether and how diet affects the spread of antibiotic resistance genes (ARGs) in the intestinal microbiota. Therefore, we employed selected high-sugar, high-fat, high-protein, and normal diets to explore the effect. The results showed that high-sugar, high-fat, and high-protein diets promoted the amplification and transfer of exogenous ARGs among intestinal microbiota, and up-regulated the expression of trfAp and trbBp while significantly altered the intestinal microbiota and its metabolites. Inflammation-related products were strongly correlated with the spread of ARGs, suggesting the intestinal microenvironment after diet remodeling might be conducive to the spreading of ARGs. This may be attributed to changes in bacterial membrane permeability, the SOS response, and bacterial composition and diversity caused by diet-induced inflammation. In addition, acceptor bacteria (zygotes) screened by flow cytometry were mostly Proteobacteria, Firmicutes and Actinobacteria, and most were derived from dominant intestinal bacteria remodeled by diet, indicating that the transfer of ARGs was closely linked to diet, and had some selectivity. Metagenomic results showed that the gut resistance genome could be affected not only by diet, but by exogenous antibiotic resistant bacteria (ARB). Many ARG markers coincided with bacterial markers in diet groups. Therefore, dominant bacteria in different diets are important hosts of ARGs in specific dietary environments, but the many pathogenic bacteria present may cause serious harm to human health.
Collapse
Affiliation(s)
- Rong Tan
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| | - Yifan Shao
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Haibei Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,CONTACT Junwen Li Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| |
Collapse
|
11
|
Abstract
AbstractDescriptions of the small intestinal microbiota are deficient and conflicting. We aimed to get a reliable description of the jejunal bacterial microbiota by investigating samples from two separate jejunal segments collected from the luminal mucosa during surgery. Sixty patients with morbid obesity selected for elective gastric bypass surgery were included in this survey. Samples collected by rubbing a swab against the mucosa of proximal and mid jejunal segments were characterized both quantitatively and qualitatively using a combination of microbial culture, a universal quantitative PCR and 16S deep sequencing. Within the inherent limitations of partial 16S sequencing, bacteria were assigned to the species level. By microbial culture, 53 patients (88.3%) had an estimated bacterial density of < 1600 cfu/ml in both segments whereof 31 (51.7%) were culture negative in both segments corresponding to a bacterial density below 160 cfu/ml. By quantitative PCR, 46 patients (76.7%) had less than 104 bacterial genomes/ml in both segments. The most abundant and frequently identified species by 16S deep sequencing were associated with the oral cavity, most often from the Streptococcus mitis group, the Streptococcus sanguinis group, Granulicatella adiacens/para-adiacens, the Schaalia odontolytica complex and Gemella haemolysans/taiwanensis. In general, few bacterial species were identified per sample and there was a low consistency both between the two investigated segments in each patient and between patients. The jejunal mucosa of fasting obese patients contains relatively few microorganisms and a core microbiota could not be established. The identified microbes are likely representatives of a transient microbiota and there is a high degree of overlap between the most frequently identified species in the jejunum and the recently described ileum core microbiota.
Collapse
|
12
|
Fidelle M, Yonekura S, Picard M, Cogdill A, Hollebecque A, Roberti MP, Zitvogel L. Resolving the Paradox of Colon Cancer Through the Integration of Genetics, Immunology, and the Microbiota. Front Immunol 2020; 11:600886. [PMID: 33381121 PMCID: PMC7768083 DOI: 10.3389/fimmu.2020.600886] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
While colorectal cancers (CRC) are paradigmatic tumors invaded by effector memory lymphocytes, the mechanisms accounting for the relative resistance of MSI negative CRC to immunogenic cell death mediated by oxaliplatin and immune checkpoint inhibitors has remained an open conundrum. Here, we propose the viewpoint where its microenvironmental contexture could be explained -at least in part- by macroenvironmental cues constituted by the complex interplay between the epithelial barrier, its microbial ecosystem, and the local immune system. Taken together this dynamic ménage-à-trois offers novel coordinated actors of the humoral and cellular immune responses actionable to restore sensitivity to immune checkpoint inhibition. Solving this paradox involves breaking tolerance to crypt stem cells by inducing the immunogenic apoptosis of ileal cells in the context of an ileal microbiome shifted towards immunogenic bacteria using cytotoxicants. This manoeuver results in the elicitation of a productive Tfh and B cell dialogue in mesenteric lymph nodes culminating in tumor-specific memory CD8+ T cell responses sparing the normal epithelium.
Collapse
Affiliation(s)
- Marine Fidelle
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France
- Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Satoru Yonekura
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France
- Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Marion Picard
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France
- Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Unit Biology and Genetics of the Bacterial Cell Wall, Institut Pasteur, Paris, France
| | - Alexandria Cogdill
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
- Department of Genomic Medicine, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Antoine Hollebecque
- Gustave Roussy, Villejuif, France
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Maria Paula Roberti
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France
- Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France
- Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Villejuif, France
| |
Collapse
|