1
|
Konuma T, Hamatani-Asakura M, Nagai E, Adachi E, Kato S, Isobe M, Monna-Oiwa M, Takahashi S, Yotsuyanagi H, Nannya Y. Cellular and humoral immunogenicity against SARS-CoV-2 vaccination or infection is associated with the memory phenotype of T- and B-lymphocytes in adult allogeneic hematopoietic cell transplant recipients. Int J Hematol 2024; 120:229-240. [PMID: 38842630 PMCID: PMC11284193 DOI: 10.1007/s12185-024-03802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
We conducted a cross-sectional study to evaluate cellular and humoral immunogenicity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination or infection and examine how lymphocyte subpopulations in peripheral blood correlate with cellular and humoral immunogenicity in adult allogeneic hematopoietic cell transplantation (HCT) recipients. The median period from SARS-CoV-2 vaccination or infection to sample collection was 110.5 days (range, 6-345 days). The median SARS-CoV-2 spike-specific antibody level was 1761 binding antibody units (BAU)/ml (range, 0 to > 11,360 BAU/ml). Enzyme-linked immunosorbent spot (ELISpot) assay of T cells stimulated with SARS-CoV-2 spike antigens showed that interferon-gamma (IFN-γ)-, interleukin-2 (IL-2)-, and IFN-γ + IL-2-producing T cells were present in 68.9%, 62.0%, and 56.8% of patients, respectively. The antibody level was significantly correlated with frequency of IL-2-producing T cells (P = 0.001) and IFN-γ + IL-2-producing T cells (P = 0.006) but not IFN-γ-producing T cells (P = 0.970). Absolute counts of CD8+ and CD4+ central memory T cells were higher in both IL-2- and IFN-γ + IL-2-producing cellular responders compared with non-responders. These data suggest that cellular and humoral immunogenicity against SARS-CoV-2 vaccination or infection is associated with the memory phenotype of T cells and B cells in adult allogeneic HCT recipients.
Collapse
Affiliation(s)
- Takaaki Konuma
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan.
| | - Megumi Hamatani-Asakura
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Etsuko Nagai
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiko Kato
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Masamichi Isobe
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Maki Monna-Oiwa
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases and Applied Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Nannya
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| |
Collapse
|
2
|
Kamboj M, Bohlke K, Baptiste DM, Dunleavy K, Fueger A, Jones L, Kelkar AH, Law LY, LeFebvre KB, Ljungman P, Miller ED, Meyer LA, Moore HN, Soares HP, Taplitz RA, Woldetsadik ES, Kohn EC. Vaccination of Adults With Cancer: ASCO Guideline. J Clin Oncol 2024; 42:1699-1721. [PMID: 38498792 PMCID: PMC11095883 DOI: 10.1200/jco.24.00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 03/20/2024] Open
Abstract
PURPOSE To guide the vaccination of adults with solid tumors or hematologic malignancies. METHODS A systematic literature review identified systematic reviews, randomized controlled trials (RCTs), and nonrandomized studies on the efficacy and safety of vaccines used by adults with cancer or their household contacts. This review builds on a 2013 guideline by the Infectious Disease Society of America. PubMed and the Cochrane Library were searched from January 1, 2013, to February 16, 2023. ASCO convened an Expert Panel to review the evidence and formulate recommendations. RESULTS A total of 102 publications were included in the systematic review: 24 systematic reviews, 14 RCTs, and 64 nonrandomized studies. The largest body of evidence addressed COVID-19 vaccines. RECOMMENDATIONS The goal of vaccination is to limit the severity of infection and prevent infection where feasible. Optimizing vaccination status should be considered a key element in the care of patients with cancer. This approach includes the documentation of vaccination status at the time of the first patient visit; timely provision of recommended vaccines; and appropriate revaccination after hematopoietic stem-cell transplantation, chimeric antigen receptor T-cell therapy, or B-cell-depleting therapy. Active interaction and coordination among healthcare providers, including primary care practitioners, pharmacists, and nursing team members, are needed. Vaccination of household contacts will enhance protection for patients with cancer. Some vaccination and revaccination plans for patients with cancer may be affected by the underlying immune status and the anticancer therapy received. As a result, vaccine strategies may differ from the vaccine recommendations for the general healthy adult population vaccine.Additional information is available at www.asco.org/supportive-care-guidelines.
Collapse
Affiliation(s)
- Mini Kamboj
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| | - Kari Bohlke
- American Society of Clinical Oncology, Alexandria, VA
| | | | - Kieron Dunleavy
- MedStar Georgetown University Hospital, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC
| | - Abbey Fueger
- The Leukemia and Lymphoma Society, Rye Brook, NY
| | - Lee Jones
- Fight Colorectal Cancer, Arlington, VA
| | - Amar H Kelkar
- Harvard Medical School, Dana Farber Cancer Institute, Boston, MA
| | | | | | - Per Ljungman
- Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Eric D Miller
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Larissa A Meyer
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Heloisa P Soares
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT
| | | | | | - Elise C Kohn
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, MD
| |
Collapse
|
3
|
Meejun T, Srisurapanont K, Manothummetha K, Thongkam A, Mejun N, Chuleerarux N, Sanguankeo A, Phongkhun K, Leksuwankun S, Thanakitcharu J, Lerttiendamrong B, Langsiri N, Torvorapanit P, Worasilchai N, Plongla R, Hirankarn N, Nematollahi S, Permpalung N, Moonla C, Kates OS. Attenuated immunogenicity of SARS-CoV-2 vaccines and risk factors in stem cell transplant recipients: a meta-analysis. Blood Adv 2023; 7:5624-5636. [PMID: 37389818 PMCID: PMC10514108 DOI: 10.1182/bloodadvances.2023010349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023] Open
Abstract
Immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is diminished in hematopoietic stem cell transplant (HSCT) recipients. To summarize current evidence and identify risk factors for attenuated responses, 5 electronic databases were searched since database inceptions through 12 January 2023 for studies reporting humoral and/or cellular immunogenicity of SARS-CoV-2 vaccination in the HSCT population. Using descriptive statistics and random-effects models, extracted numbers of responders and pooled odds ratios (pORs) with 95% confidence intervals (CIs) for risk factors of negative immune responses were analyzed (PROSPERO: CRD42021277109). From 61 studies with 5906 HSCT recipients, after 1, 2, and 3 doses of messenger RNA (mRNA) SARS-CoV-2 vaccines, the mean antispike antibody seropositivity rates (95% CI) were 38% (19-62), 81% (77-84), and 80% (75-84); neutralizing antibody seropositivity rates were 52% (40-64), 71% (54-83), and 78% (61-89); and cellular immune response rates were 52% (39-64), 66% (51-79), and 72% (52-86). After 2 vaccine doses, risk factors (pOR; 95% CI) associated with antispike seronegativity were male recipients (0.63; 0.49-0.83), recent rituximab exposure (0.09; 0.03-0.21), haploidentical allografts (0.46; 0.22-0.95), <24 months from HSCT (0.25; 0.07-0.89), lymphopenia (0.18; 0.13-0.24), hypogammaglobulinemia (0.23; 0.10-0.55), concomitant chemotherapy (0.48; 0.29-0.78) and immunosuppression (0.18; 0.13-0.25). Complete remission of underlying hematologic malignancy (2.55; 1.05-6.17) and myeloablative conditioning (1.72; 1.30-2.28) compared with reduced-intensity conditioning were associated with antispike seropositivity. Ongoing immunosuppression (0.31; 0.10-0.99) was associated with poor cellular immunogenicity. In conclusion, attenuated humoral and cellular immune responses to mRNA SARS-CoV-2 vaccination are associated with several risk factors among HSCT recipients. Optimizing individualized vaccination and developing alternative COVID-19 prevention strategies are warranted.
Collapse
Affiliation(s)
- Tanaporn Meejun
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Kasama Manothummetha
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Achitpol Thongkam
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nuthchaya Mejun
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nipat Chuleerarux
- Department of Medicine, University of Miami/Jackson Memorial Hospital, Miami, FL
| | - Anawin Sanguankeo
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kasidis Phongkhun
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Surachai Leksuwankun
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | | | - Nattapong Langsiri
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattama Torvorapanit
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Rongpong Plongla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Saman Nematollahi
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ
| | - Nitipong Permpalung
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chatphatai Moonla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Olivia S. Kates
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
4
|
Henig I, Isenberg J, Yehudai-Ofir D, Leiba R, Ringelstein-Harlev S, Ram R, Avni B, Amit O, Grisariu S, Azoulay T, Slouzkey I, Zuckerman T. Third BNT162b2 mRNA SARS-CoV-2 Vaccine Dose Significantly Enhances Immunogenicity in Recipients of Allogeneic Hematopoietic Stem Cell Transplantation. Vaccines (Basel) 2023; 11:vaccines11040775. [PMID: 37112688 PMCID: PMC10145595 DOI: 10.3390/vaccines11040775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
COVID-19-related mortality among hematopoietic stem cell transplantation (HSCT) recipients in the pre-vaccine era ranged between 22 and 33%. The Pfizer/BioNTech BNT162b2 vaccine demonstrated significant immunogenicity and efficacy in the healthy population; however, its long-term effects on allogeneic HSCT recipients remained unclear. Our study longitudinally evaluated humoral and cellular responses to the BNT162b2 vaccine in adult allogeneic HSCT patients. A positive response was defined as antibody titers ≥ 150 AU/mL post-second vaccination. Among 77 included patients, 51 (66.2%) responded to vaccination. Response-associated factors were female gender, recent anti-CD20 therapy, and a longer interval between transplant and vaccination. Response rates reached 83.7% in patients vaccinated >12 months post-transplant. At 6 months post-second vaccination, antibody titers dropped, but were significantly increased with the booster dose. Moreover, 43% (6/14) of non-responders to the second vaccination acquired sufficient antibody titers after booster administration, resulting in an overall response rate of 79.5% for the entire cohort. The BNT162b2 vaccine was effective in allogeneic transplant recipients. Although antibody titers decreased with time, the third vaccination led to their significant elevation, with 93% of third-dose responders maintaining titers above 150 AU/mL at 3 months post-administration.
Collapse
|
5
|
Barkhordar M, Chahardouli B, Biglari A, Ahmadvand M, Bahri T, Alaeddini F, Sharifi Aliabadi L, Noorani SS, Bagheri Amiri F, Biglari M, Shemshadi MR, Ghavamzadeh A, Vaezi M. Three doses of a recombinant conjugated SARS-CoV-2 vaccine early after allogeneic hematopoietic stem cell transplantation: predicting indicators of a high serologic response-a prospective, single-arm study. Front Immunol 2023; 14:1169666. [PMID: 37153556 PMCID: PMC10154585 DOI: 10.3389/fimmu.2023.1169666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
Background Allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients must be vaccinated against SARS-CoV-2 as quickly as possible after transplantation. The difficulty in obtaining recommended SARS-CoV-2 vaccines for allo-HSCT recipients motivated us to utilize an accessible and affordable SARS-CoV-2 vaccine with a recombinant receptor-binding domain (RBD)-tetanus toxoid (TT)-conjugated platform shortly after allo-HSCT in the developing country of Iran. Methods This prospective, single-arm study aimed to investigate immunogenicity and its predictors following a three-dose SARS-CoV-2 RBD-TT-conjugated vaccine regimen administered at 4-week (± 1-week) intervals in patients within 3-12 months post allo-HSCT. An immune status ratio (ISR) was measured at baseline and 4 weeks (± 1 week) after each vaccine dose using a semiquantitative immunoassay. Using the median ISR as a cut-off point for immune response intensity, we performed a logistic regression analysis to determine the predictive impact of several baseline factors on the intensity of the serologic response following the third vaccination dose. Results Thirty-six allo-HSCT recipients, with a mean age of 42.42 years and a median time of 133 days between hematopoietic stem cell transplant (allo-HSCT) and the start of vaccination, were analyzed. Our findings, using the generalized estimating equation (GEE) model, indicated that, compared with the baseline ISR of 1.55 [95% confidence interval (CI) 0.94 to 2.17], the ISR increased significantly during the three-dose SARS-CoV-2 vaccination regimen. The ISR reached 2.32 (95% CI 1.84 to 2.79; p = 0.010) after the second dose and 3.87 (95% CI 3.25 to 4.48; p = 0.001) after the third dose of vaccine, reflecting 69.44% and 91.66% seropositivity, respectively. In a multivariate logistic regression analysis, the female sex of the donor [odds ratio (OR) 8.67; p = 0.028] and a higher level donor ISR at allo-HSCT (OR 3.56; p = 0.050) were the two positive predictors of strong immune response following the third vaccine dose. No serious adverse events (i.e., grades 3 and 4) were observed following the vaccination regimen. Conclusions We concluded that early vaccination of allo-HSCT recipients with a three-dose RBD-TT-conjugated SARS-CoV-2 vaccine is safe and could improve the early post-allo-HSCT immune response. We further believe that the pre-allo-HSCT SARS-CoV-2 immunization of donors may enhance post-allo-HSCT seroconversion in allo-HSCT recipients who receive the entire course of the SARS-CoV-2 vaccine during the first year after allo-HSCT.
Collapse
Affiliation(s)
- Maryam Barkhordar
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Vaezi, ; Maryam Barkhordar,
| | - Bahram Chahardouli
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Biglari
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tanaz Bahri
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Alaeddini
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyla Sharifi Aliabadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seied Saeid Noorani
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Bagheri Amiri
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Biglari
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Shemshadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Cancer & Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Vaezi, ; Maryam Barkhordar,
| |
Collapse
|
6
|
Mori Y, Uchida N, Harada T, Katayama Y, Wake A, Iwasaki H, Eto T, Morishige S, Fujisaki T, Ito Y, Kamimura T, Takahashi T, Imamura Y, Tanimoto K, Ishitsuka K, Sugita J, Kawano N, Tanimoto K, Yoshimoto G, Choi I, Hidaka T, Ogawa R, Takamatsu Y, Miyamoto T, Akashi K, Nagafuji K. Predictors of impaired antibody response after SARS-CoV-2 mRNA vaccination in hematopoietic cell transplant recipients: A Japanese multicenter observational study. Am J Hematol 2023; 98:102-111. [PMID: 36260658 PMCID: PMC9874814 DOI: 10.1002/ajh.26769] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 02/04/2023]
Abstract
HCT recipients reportedly have a high mortality rate after developing COVID-19. SARS-CoV-2 vaccination is generally useful to prevent COVID-19. However, its safety and efficacy among HCT recipients remain elusive. This large-scale prospective observational study including 543 HCT recipients with 37-months interval from transplant demonstrated high safety profiles of mRNA vaccine: only 0.9% of patients avoided the second dose due to adverse event or GVHD aggravation following the first dose. Regarding the efficacy, serological response with a clinically relevant titer (≥250 BAU/mL) was obtained in 397 (73.1%) patients. We classified the remaining 146 patients as impaired responders and compared the clinical and immunological parameters between two groups. In allogeneic HCT recipients, multivariable analysis revealed the risk factors for impaired serological response as follows: age (≥60, 1 points), HLA-mismatched donor (1 points), use of systemic steroids (1 points), absolute lymphocyte counts (<1000/μL, 1 points), absolute B-cell counts (<100/μL, 1 points), and serum IgG level (<500 mg/dL, 2 points). Notably, the incidence of impaired serological response increased along with the risk scores: patients with 0, 1-3, and 4-7 points were 3.9%, 21.8%, and 74.6%, respectively. In autologous HCT recipients, a shorter interval from transplant to vaccination was the only risk factor for impaired serological response. Our findings indicate that two doses of SARS-CoV-2 vaccine are safe but insufficient for a part of HCT recipients with higher risk scores. To improve this situation, we should consider additional treatment options, including booster vaccination and prophylactic neutralizing antibodies during the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Yasuo Mori
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical ScienceFukuokaJapan
| | | | - Takuya Harada
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical ScienceFukuokaJapan
| | - Yuta Katayama
- Department of HematologyHiroshima Red Cross Hospital and Atomic‐Bomb Survivors HospitalHiroshimaJapan
| | - Atsushi Wake
- Department of HematologyToranomon Hospital KajigayaKawasakiJapan
| | - Hiromi Iwasaki
- Departments of HematologyNational Hospital Organization, Kyushu Medical CenterFukuokaJapan
| | - Tetsuya Eto
- Department of HematologyHamanomachi HospitalFukuokaJapan
| | - Satoshi Morishige
- Division of Hematology and Oncology, Department of MedicineKurume University School of MedicineKurumeJapan
| | - Tomoaki Fujisaki
- Department of Internal MedicineMatsuyama Red Cross HospitalMatsuyamaJapan
| | - Yoshikiyo Ito
- Department of HematologyImamura General HospitalKagoshimaJapan
| | | | | | | | - Kazushi Tanimoto
- Department of Hematology, Clinical Immunology, and Infectious DiseasesEhime University Graduate School of MedicineEhimeJapan
| | - Kenji Ishitsuka
- Department of Hematology and RheumatologyKagoshima University HospitalKagoshimaJapan
| | - Junichi Sugita
- Department of HematologyHokkaido University HospitalSapporoJapan
| | - Noriaki Kawano
- Department of Internal MedicineMiyazaki Prefectural Miyazaki HospitalMiyazakiJapan
| | - Kazuki Tanimoto
- Department of HematologyFukuoka Red Cross HospitalFukuokaJapan
| | - Goichi Yoshimoto
- Department of HematologySaga‐Ken Medical Center KoseikanSagaJapan
| | - Ilseung Choi
- Department of HematologyNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Tomonori Hidaka
- Department of Gastroenterology and Hematology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Ryosuke Ogawa
- Department of Hematology and OncologyJCHO Kyushu HospitalFukuokaJapan
| | - Yasushi Takamatsu
- Division of Medical Oncology, Hematology and Infectious Diseases, Faculty of MedicineFukuoka UniversityFukuokaJapan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical ScienceFukuokaJapan,Division of Hematology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Koichi Akashi
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical ScienceFukuokaJapan
| | - Koji Nagafuji
- Division of Hematology and Oncology, Department of MedicineKurume University School of MedicineKurumeJapan
| |
Collapse
|
7
|
Uaprasert N, Pitakkitnukun P, Tangcheewinsirikul N, Chiasakul T, Rojnuckarin P. Immunogenicity and risks associated with impaired immune responses following SARS-CoV-2 vaccination and booster in hematologic malignancy patients: an updated meta-analysis. Blood Cancer J 2022; 12:173. [PMID: 36550105 PMCID: PMC9780106 DOI: 10.1038/s41408-022-00776-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Patients with hematologic malignancies (HM) have demonstrated impaired immune responses following SARS-CoV-2 vaccination. Factors associated with poor immunogenicity remain largely undetermined. A literature search was conducted using PubMed, EMBASE, Cochrane, and medRxiv databases to identify studies that reported humoral or cellular immune responses (CIR) following complete SARS-CoV-2 vaccination. The primary aim was to estimate the seroconversion rate (SR) following complete SARS-CoV-2 vaccination across various subtypes of HM diseases and treatments. The secondary aims were to determine the rates of development of neutralizing antibodies (NAb) and CIR following complete vaccination and SR following booster doses. A total of 170 studies were included for qualitative and quantitative analysis of primary and secondary outcomes. A meta-analysis of 150 studies including 20,922 HM patients revealed a pooled SR following SARS-CoV-2 vaccination of 67.7% (95% confidence interval [CI], 64.8-70.4%; I2 = 94%). Meta-regression analysis showed that patients with lymphoid malignancies, but not myeloid malignancies, had lower seroconversion rates than those with solid cancers (R2 = 0.52, P < 0.0001). Patients receiving chimeric antigen receptor T-cells (CART), B-cell targeted therapies or JAK inhibitors were associated with poor seroconversion (R2 = 0.39, P < 0.0001). The pooled NAb and CIR rates were 52.8% (95% CI; 45.8-59.7%, I2 = 87%) and 66.6% (95% CI, 57.1-74.9%; I2 = 86%), respectively. Approximately 20.9% (95% CI, 11.4-35.1%, I2 = 90%) of HM patients failed to elicit humoral and cellular immunity. Among non-seroconverted patients after primary vaccination, only 40.5% (95% CI, 33.0-48.4%; I2 = 87%) mounted seroconversion after the booster. In conclusion, HM patients, especially those with lymphoid malignancies and/or receiving CART, B-cell targeted therapies, or JAK inhibitors, showed poor SR after SARS-CoV-2 vaccination. A minority of patients attained seroconversion after booster vaccination. Strategies to improve immune response in these severely immunosuppressed patients are needed.
Collapse
Affiliation(s)
- Noppacharn Uaprasert
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
| | - Palada Pitakkitnukun
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nuanrat Tangcheewinsirikul
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Thita Chiasakul
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
8
|
Safety and Immunogenicity After a Three-Dose SARS-CoV-2 Vaccine Schedule in Allogeneic Stem Cell Transplant Recipients. Transplant Cell Ther 2022; 28:706.e1-706.e10. [PMID: 35914727 PMCID: PMC9334861 DOI: 10.1016/j.jtct.2022.07.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023]
Abstract
In allogeneic stem cell transplant (Allo-SCT) recipients, the cell-mediated and humoral immunogenicity of the 3-dose SARS-CoV-2 vaccination schedule has not been investigated in prospective studies. In a prospective cohort, we recruited 122 Allo-SCT recipients since August 2021, when Ontario began offering a 3-dose vaccine schedule for Allo-SCT recipients. We determined humoral and cell-mediated immunity and adverse effects of the 3-dose SARS-COV-2 vaccination schedule in Allo-SCT recipients. In immunogenicity analysis (n = 95), the median (interquartile range [IQR]) antibody titer against the receptor-binding domain (RBD) of the spike (S) protein after the third dose (10,358.0 U/mL [IQR = 673.9-31,753.0]) was significantly higher than that after the first (10.2 U/mL [IQR = 0.6-37.0]) and the second doses (125.6 U/mL [IQR = 2.8-1251.0]) (P < .0001). The haploidentical donor status was an independent risk factor (adjusted odds ratio = 7.67, 95% confidence interval [CI], 1.86-31.60) for suboptimal antibody response (anti-RBD < 100 U/mL). S-specific CD4+ and CD8+ T-cell responses were measured in a subset of Allo-SCT recipients (n = 20) by flow cytometry. Most developed antigen-specific CD4+ (55%-80%) and CD8+ T-cells (80%) after 2 doses of vaccine. Frequencies of CD4+ polyfunctional (P = .020) and IL-2 monofunctional (P = .013) T-cells significantly increased after the third dose. Twenty-three episodes (23/301 doses [7.6%]) of new-onset or worsening pre-existing graft-versus-host disease (GVHD) occurred, including 4 episodes after the third dose. We observed 4 relapses (3.27%). Seven patients developed SARS-CoV-2 infection despite vaccination, although none required hospitalization. In conclusion, the 3-dose SARS-CoV-2 vaccine schedule provided immunity associated with a low risk of GVHD and other adverse effects. This prospective cohort showed that the third dose of SARS-CoV-2 vaccine in allogeneic stem cell transplant recipients promoted better humoral and cellar immune responses than after the initial series without increasing the risk of GVHD or severe adverse effects.
Collapse
|
9
|
Chaekal OK, Gomez-Arteaga A, Chen Z, Soave R, Shore T, Mayer S, Phillips A, Hsu JM, Drelick A, Kodiyanplakkal RPL, Plate M, Satlin MJ, van Besien K. Predictors of Covid-19 Vaccination Response After In-Vivo T-Cell-Depleted Stem Cell Transplantation. Transplant Cell Ther 2022; 28:618.e1-618.e10. [PMID: 35724850 PMCID: PMC9213029 DOI: 10.1016/j.jtct.2022.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023]
Abstract
Covid-19 vaccination is recommended in allogeneic transplant recipients, but many questions remain regarding its efficacy. Here we studied serologic responses in 145 patients who had undergone allogeneic transplantation using in vivo T-cell depletion. Median age was 57 (range 21-79) at transplantation and 61 (range 24-80) at vaccination. Sixty-nine percent were Caucasian. One third each received transplants from HLA-identical related (MRD), adult unrelated (MUD), or haploidentical-cord blood donors. Graft-versus-host disease (GVHD) prophylaxis involved in-vivo T-cell depletion using alemtuzumab for MRD or MUD transplants and anti-thymocyte globulin for haplo-cord transplants. Patients were vaccinated between January 2021 and January 2022, an average of 31 months (range 3-111 months) after transplantation. Sixty-one percent received the BNT162b2 (bioNtech/Pfizer) vaccine, 34% received mRNA-1273 (Moderna), and 5% received JNJ-78436735 (Johnson & Johnson). After the initial vaccinations (2 doses for BNT162b2 and mRNA-1273, 1 dose for JNJ-7843673), 124 of the 145 (85%) patients had a detectable SARS-CoV-2 spike protein (S) antibody, and 21 (15%) did not respond. Ninety-nine (68%) had high-level responses (≥100 binding antibody units [BAU]/mL)m and 25 (17%) had a low-level response (<100 BAU/mL). In multivariable analysis, lymphocyte count less than 1 × 109/ mL, having chronic GVHD, and being vaccinated in the first year after transplantation emerged as independent predictors for poor response. Neither donor source nor prior exposure to rituximab was predictive of antibody response. SARS-CoV-2 vaccination induced generally high response rates in recipients of allogeneic transplants including recipients of umbilical cord blood transplants and after in-vivo T cell depletion. Responses are less robust in those vaccinated in the first year after transplantation, those with low lymphocyte counts, and those with chronic GVHD.
Collapse
Affiliation(s)
- Ok-Kyong Chaekal
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York; Department of Medicine, Division of Hematology/Oncology, Cell Therapy Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Alexandra Gomez-Arteaga
- Department of Medicine, Division of Hematology/Oncology, Cell Therapy Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Sciences, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Rosemary Soave
- Division of Infectious Diseases, Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Tsiporah Shore
- Department of Medicine, Division of Hematology/Oncology, Cell Therapy Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Sebastian Mayer
- Department of Medicine, Division of Hematology/Oncology, Cell Therapy Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Adrienne Phillips
- Department of Medicine, Division of Hematology/Oncology, Cell Therapy Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Jing Mei Hsu
- Department of Medicine, Division of Hematology/Oncology, Cell Therapy Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Alexander Drelick
- Division of Infectious Diseases, Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Rosy Priya L Kodiyanplakkal
- Division of Infectious Diseases, Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Markus Plate
- Division of Infectious Diseases, Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Michael J Satlin
- Division of Infectious Diseases, Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Koen van Besien
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York; Department of Medicine, Division of Hematology/Oncology, Cell Therapy Program, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York.
| |
Collapse
|
10
|
Bergamaschi C, Pagoni M, Rosati M, Angel M, Tzannou I, Vlachou M, Darmani I, Ullah A, Bear J, Devasundaram S, Burns R, Baltadakis I, Gigantes S, Dimopoulos MA, Pavlakis GN, Terpos E, Felber BK. Reduced Antibodies and Innate Cytokine Changes in SARS-CoV-2 BNT162b2 mRNA Vaccinated Transplant Patients With Hematological Malignancies. Front Immunol 2022; 13:899972. [PMID: 35693807 PMCID: PMC9174567 DOI: 10.3389/fimmu.2022.899972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/28/2022] [Indexed: 12/29/2022] Open
Abstract
Immunocompromised individuals including patients with hematological malignancies constitute a population at high risk of developing severe disease upon SARS-CoV-2 infection. Protection afforded by vaccination is frequently low and the biology leading to altered vaccine efficacy is not fully understood. A patient cohort who had received bone marrow transplantation or CAR-T cells was studied following a 2-dose BNT162b2 mRNA vaccination and compared to healthy vaccine recipients. Anti-Spike antibody and systemic innate responses were compared in the two vaccine cohorts. The patients had significantly lower SARS-CoV-2 Spike antibodies to the Wuhan strain, with proportional lower cross-recognition of Beta, Delta, and Omicron Spike-RBD proteins. Both cohorts neutralized the wildtype WA1 and Delta but not Omicron. Vaccination elicited an innate cytokine signature featuring IFN-γ, IL-15 and IP-10/CXCL10, but most patients showed a diminished systemic cytokine response. In patients who failed to develop antibodies, the innate systemic response was dominated by IL-8 and MIP-1α with significant attenuation in the IFN-γ, IL-15 and IP-10/CXCL10 signature response. Changes in IFN-γ and IP-10/CXCL10 at priming vaccination and IFN-γ, IL-15, IL-7 and IL-10 upon booster vaccination correlated with the Spike antibody magnitude and were predictive of successful antibody development. Overall, the patients showed heterogeneous adaptive and innate responses with lower humoral and reduced innate cytokine responses to vaccination compared to naïve vaccine recipients. The pattern of responses described offer novel prognostic approaches for potentiating the effectiveness of COVID-19 vaccination in transplant patients with hematological malignancies.
Collapse
Affiliation(s)
- Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Maria Pagoni
- Department of Hematology & Lymphomas and Bone Marrow Transplantation Unit, Evangelismos General Hospital, Athens, Greece
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Matthew Angel
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.,Center for Cancer Research Collaborative Bioinformatics Resource, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ifigeneia Tzannou
- Department of Hematology & Lymphomas and Bone Marrow Transplantation Unit, Evangelismos General Hospital, Athens, Greece
| | | | - Ismini Darmani
- Department of Hematology & Lymphomas and Bone Marrow Transplantation Unit, Evangelismos General Hospital, Athens, Greece
| | - Amirah Ullah
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Santhi Devasundaram
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Ioannis Baltadakis
- Department of Hematology & Lymphomas and Bone Marrow Transplantation Unit, Evangelismos General Hospital, Athens, Greece
| | - Stavros Gigantes
- Department of Hematology & Lymphomas and Bone Marrow Transplantation Unit, Evangelismos General Hospital, Athens, Greece
| | | | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
11
|
Fendler A, de Vries EGE, GeurtsvanKessel CH, Haanen JB, Wörmann B, Turajlic S, von Lilienfeld-Toal M. COVID-19 vaccines in patients with cancer: immunogenicity, efficacy and safety. Nat Rev Clin Oncol 2022; 19:385-401. [PMID: 35277694 PMCID: PMC8916486 DOI: 10.1038/s41571-022-00610-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Patients with cancer have a higher risk of severe coronavirus disease (COVID-19) and associated mortality than the general population. Owing to this increased risk, patients with cancer have been prioritized for COVID-19 vaccination globally, for both primary and booster vaccinations. However, given that these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, and the extent of humoral and cellular immune responses in these patients, as well as the risks of vaccine-related adverse events. In this Review, we summarize the current knowledge generated in studies conducted since COVID-19 vaccines first became available. We also highlight critical points that might affect vaccine efficacy in patients with cancer in the future.
Collapse
Affiliation(s)
- Annika Fendler
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | | | - John B Haanen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Bernhard Wörmann
- Division of Hematology, Oncology and Tumour Immunology, Department of Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Marie von Lilienfeld-Toal
- Department of Haematology and Medical Oncology, University Hospital Jena, Jena, Germany.
- Research Group Infections in Haematology/Oncology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.
| |
Collapse
|
12
|
Effectiveness, immunogenicity, and safety of COVID-19 vaccines for individuals with hematological malignancies: a systematic review. Blood Cancer J 2022; 12:86. [PMID: 35641489 PMCID: PMC9152308 DOI: 10.1038/s41408-022-00684-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 12/28/2022] Open
Abstract
The efficacy of SARS-CoV-2 vaccination in patients with hematological malignancies (HM) appears limited due to disease and treatment-associated immune impairment. We conducted a systematic review of prospective studies published from 10/12/2021 onwards in medical databases to assess clinical efficacy parameters, humoral and cellular immunogenicity and adverse events (AE) following two doses of COVID-19 approved vaccines. In 57 eligible studies reporting 7393 patients, clinical outcomes were rarely reported and rates of SARS-CoV-2 infection (range 0–11.9%), symptomatic disease (0–2.7%), hospital admission (0–2.8%), or death (0–0.5%) were low. Seroconversion rates ranged from 38.1–99.1% across studies with the highest response rate in myeloproliferative diseases and the lowest in patients with chronic lymphocytic leukemia. Patients with B-cell depleting treatment had lower seroconversion rates as compared to other targeted treatments or chemotherapy. The vaccine-induced T-cell response was rarely and heterogeneously reported (26.5–85.9%). Similarly, AEs were rarely reported (0–50.9% ≥1 AE, 0–7.5% ≥1 serious AE). In conclusion, HM patients present impaired humoral and cellular immune response to COVID-19 vaccination with disease and treatment specific response patterns. In light of the ongoing pandemic with the easing of mitigation strategies, new approaches to avert severe infection are urgently needed for this vulnerable patient population that responds poorly to current COVID-19 vaccine regimens.
Collapse
|
13
|
Tozinameran. REACTIONS WEEKLY 2022. [PMCID: PMC9073477 DOI: 10.1007/s40278-022-14877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|