1
|
Hassane AMA, Obiedallah M, Karimi J, Khattab SMR, Hussein HR, Abo-Dahab Y, Eltoukhy A, Abo-Dahab NF, Abouelela ME. Unravelling fungal genome editing revolution: pathological and biotechnological application aspects. Arch Microbiol 2025; 207:150. [PMID: 40402294 DOI: 10.1007/s00203-025-04360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025]
Abstract
Fungi represent a broad and evolutionarily unique group within the eukaryotic domain, characterized by extensive ecological adaptability and metabolic versatility. Their inherent biological intricacy is evident in the diverse and dynamic relationships they establish with various hosts and environmental niches. Notably, fungi are integral to disease processes and a wide array of biotechnological innovations, highlighting their significance in medical, agricultural, and industrial domains. Recent advances in genetic engineering have revolutionized fungal research, with CRISPR/Cas emerging as the most potent and versatile genome editing platform. This technology enables precise manipulation of fungal genomes, from silencing efflux pump genes in Candida albicans (enhancing antifungal susceptibility) to targeting virulence-associated sirtuins in Aspergillus fumigatus (attenuating pathogenicity). Its applications span gene overexpression, multiplexed mutagenesis, and secondary metabolite induction, proving transformative for disease management and biotechnological innovation. CRISPR/Cas9's advantages-unmatched precision, cost-effectiveness, and therapeutic potential-are tempered by challenges like off-target effects, ethical dilemmas, and regulatory gaps. Integrating nanoparticle delivery systems and multi-omics approaches may overcome technical barriers, but responsible innovation requires addressing these limitations. CRISPR-driven fungal genome editing promises to redefine solutions for drug-resistant infections, sustainable bioproduction, and beyond as the field evolves. In conclusion, genome editing technologies have enhanced our capacity to dissect fungal biology and expanded fungi's practical applications across various scientific and industrial domains. Continued innovation in this field promises to unlock the vast potential of fungal systems further, enabling more profound understanding and transformative biotechnological progress.
Collapse
Affiliation(s)
- Abdallah M A Hassane
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Marwa Obiedallah
- Department of Botany and Microbiology, Faculty of Science, University of Sohag, Sohag, 82524, Egypt
| | - Javad Karimi
- Department of Biology, College of Science, Shiraz University, Shiraz, Iran
| | - Sadat M R Khattab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Hussein R Hussein
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Youssef Abo-Dahab
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco 1700 Fourth St, San Francisco, CA, USA
| | - Adel Eltoukhy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Nageh F Abo-Dahab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mohamed E Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
2
|
Sharma V, Das S, Spruijtenburg B, de Groot T, Meijer E, Kaur H, Rudramurthy SM, Ghosh A. Genotypic Diversity and Molecular Basis of Fluconazole Resistance in Candida parapsilosis Clinical Isolates Collected Over 7 Years in a Tertiary-Care Hospital in North India. Mycoses 2025; 68:e70062. [PMID: 40326573 DOI: 10.1111/myc.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND The recent rise in the global incidence of fluconazole resistance in C. parapsilosis has become a significant public health concern. Epidemiological studies suggest that fluconazole resistance in C. parapsilosis spreads through endemic clones. We, therefore, investigated the molecular epidemiology of fluconazole-resistant C. parapsilosis in our centre. METHODS C. parapsilosis isolates from 2016 through 2022 were investigated for antifungal susceptibility. Fluconazole-resistant isolates were analysed for ERG11 mutation using Sanger sequencing. Gene expression profiles of ERG11, CDR1 and MDR1 were assessed by real-time qPCR. The epidemiological relationship of resistant and susceptible isolates of C. parapsilosis was investigated using short tandem repeat typing. Additionally, biofilm production and cell wall ergosterol contents were also quantified and compared. RESULTS Among 572 C. parapsilosis isolates, 48 (8.4%) were resistant to fluconazole. Of 28 recoverable resistant isolates, 17.9% (5/28) were wild-type and 82.1% (23/28) harboured the following ERG11 mutations: Y132F (n = 3), K143R (n = 10) and K143R + R398I (10/28). Significant fold-changes were observed in ERG11 (p = 0.037) and MDR1 (p = 0.008) gene expressions in fluconazole resistant compared to susceptible isolates. Contrary to global reports, STR typing suggested a limited clonal transmission of resistant C. parapsilosis with multiple introductions of resistant isolates in our centre. On fluconazole exposure, ergosterol content significantly increased (p < 0.01) in resistant isolates, particularly in isolates harbouring ERG11K143R + R398I mutations. In contrast, fluconazole-susceptible isolates formed comparatively higher baseline biofilm (p < 0.05) than resistant isolates with ERG11K143R mutation. CONCLUSION The current study underscores the need for continuous molecular surveillance and tailored therapeutic options for effective management of fluconazole resistance in C. parapsilosis.
Collapse
Affiliation(s)
- Vrinda Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Sourav Das
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Bram Spruijtenburg
- Centre of Expertise for Mycology, Radboud University Medical Centre-CWZ, Nijmegen, the Netherlands
| | - Theun de Groot
- Centre of Expertise for Mycology, Radboud University Medical Centre-CWZ, Nijmegen, the Netherlands
| | - Eelco Meijer
- Centre of Expertise for Mycology, Radboud University Medical Centre-CWZ, Nijmegen, the Netherlands
| | - Harsimran Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Anup Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
3
|
Sui X, Han X, Wang X, Wan J, Wen M, Zhao D, Zheng Y, Zhang C, Xu C, Wang Y. 2-Nonanol produced by Bacillus velezensis EM-1: a new biocontrol agent against tobacco brown spot. Front Microbiol 2025; 16:1582372. [PMID: 40371117 PMCID: PMC12075116 DOI: 10.3389/fmicb.2025.1582372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Tobacco brown spot disease, caused by Alternaria alternata, poses a significant threat to crop production. Traditional control methods, particularly chemical fungicides, have raised concerns about environmental impact and resistance. Although our previous research has shown that volatile compounds produced by Bacillus velezensis EM-1 can effectively suppress A. alternata, the specific antifungal compounds and their mechanisms remain unclear. In this study, exposure to the volatiles from strain EM-1 significantly inhibited the mycelial growth and spore germination of A. alternata, with 2-nonanol identified as the most potent antifungal compound. Fumigation experiments revealed that 2-nonanol exhibited strong dose-dependent toxicity, with an EC50 of 0.1055 μL/cm3 and a minimum inhibitory concentration of 0.2166 μL/cm3. In vivo experiments on tobacco leaves confirmed that 2-nonanol effectively reduced tobacco brown spot disease incidence and slowed lesion expansion. Transcriptome analysis indicated that 2-nonanol downregulated the expression of genes encoding D-glucose synthesis in carbon metabolism, which limited energy acquisition by A. alternata. Moreover, the expression of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), was markedly suppressed by 2-nonanol, thereby exacerbating cellular damage induced by oxidative stress. These findings suggest that 2-nonanol holds potential as a biocontrol agent for managing tobacco brown spot disease, underscoring the promising role of volatile organic compounds (VOCs) in the development of environmentally friendly biocontrol products.
Collapse
Affiliation(s)
- Xiaona Sui
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiaobin Han
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Xianbo Wang
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Jun Wan
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Mingxia Wen
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Donglin Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yanfen Zheng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Chengsheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Chuantao Xu
- Luzhou Branch of Sichuan Tobacco Company, Luzhou, China
| | - Youqiang Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
4
|
Torres-Cano A, de Armentia C, Roldán A, López-Peralta E, Manosalva J, Merino-Amador P, González-Romo F, Puig-Asensio M, Ardanuy C, Martín-Gómez MT, Romero-Herrero D, Pérez-Ayala A, López-Lomba M, Durán-Valle MT, Sánchez-Romero I, Muñoz-Algarra M, Roiz-Mesones MP, Lara-Plaza I, Ruíz Pérez de Pipaón M, Megías-Lobón G, Mantecón-Vallejo MÁ, Alcázar-Fuoli L, Megías D, Zaragoza O. Resistance to Azoles in Candida parapsilosis Isolates from Spain Is Associated with an Impairment in Filamentation and Biofilm Formation. J Fungi (Basel) 2025; 11:299. [PMID: 40278120 PMCID: PMC12028211 DOI: 10.3390/jof11040299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/26/2025] Open
Abstract
In recent years, there has been an increase in the incidence of fluconazole-non-susceptible (FNS) Candida parapsilosis. The reasons why these strains are able to colonize hospitals remain unknown. It is also unclear whether these strains exhibit resistance to the disinfectants used in hospitals, facilitating their spread. For these reasons, in this work, we aimed to investigate whether fluconazole resistance was associated with virulence traits and the resistance of these strains to common hospital disinfectants. The general conclusion of the study was that more than 95% of the FNS strains, regardless of the resistance mutation they carried, had filamentation problems, whereas around 75% of the susceptible strains formed pseudohyphae and were capable of filamentation. This 95% of the FNS strains did not form pseudohyphae, did not invade agar, and did not form biofilms, while the susceptible strains exhibited the opposite behaviour. Through microfluidics experiments, we observed that both the susceptible and FNS strains were capable of adhering to a plastic surface under dynamic conditions, but the FNS strains formed unstable aggregates that did not remain attached to the surface, confirming the filamentation defect of these strains. In the second part of the study, we observed that FNS strains are susceptible to clinical disinfectants, although they presented a slight resistance to some of them, such as chlorhexidine, compared to susceptible isolates. In this work, we address important aspects to understand the dissemination of FNS strains in clinical outbreaks.
Collapse
Affiliation(s)
- Alba Torres-Cano
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km2, 28220 Majadahonda, Madrid, Spain; (A.T.-C.)
| | - Cristina de Armentia
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km2, 28220 Majadahonda, Madrid, Spain; (A.T.-C.)
| | - Alejandra Roldán
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km2, 28220 Majadahonda, Madrid, Spain; (A.T.-C.)
| | - Elena López-Peralta
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km2, 28220 Majadahonda, Madrid, Spain; (A.T.-C.)
| | - Juliana Manosalva
- Advanced Optical Microscopy Unit, Central Core Units, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Paloma Merino-Amador
- Microbiology Department, University Hospital Clínico San Carlos, 28040 Madrid, Spain
- Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Department of Medicine, Complutense University, School of Medicine, 28040 Madrid, Spain
| | - Fernando González-Romo
- Microbiology Department, University Hospital Clínico San Carlos, 28040 Madrid, Spain
- Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Department of Medicine, Complutense University, School of Medicine, 28040 Madrid, Spain
| | - Mireia Puig-Asensio
- Department of Infectious Diseases, Bellvitge University Hospital, 08097 Barcelona, Cataluña, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 Barcelona, Cataluña, Spain
- Biomedical Research Networking Centre in Infectious Diseases (CIBERINFEC, CB21/13/00009), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Ardanuy
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 Barcelona, Cataluña, Spain
- Microbiology Department, Bellvitge University Hospital, 08907 Barcelona, Cataluña, Spain
- Biomedical Research Networking Centre in Infectious Diseases in Respiratory Diseases (CIBERES CB06/06/0037), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Teresa Martín-Gómez
- Department of Microbiology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Cataluña, Spain
| | - Daniel Romero-Herrero
- Department of Microbiology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Cataluña, Spain
| | - Ana Pérez-Ayala
- Microbiology Unit, University Hospital 12 de Octubre, 28041 Madrid, Spain
- Research Institute from Hospital 12 de Octubre i + 12, 28041 Madrid, Spain
| | - Marta López-Lomba
- Microbiology and Parasitology Department, Móstoles University Hospital, 28935 Madrid, Spain
| | | | - Isabel Sánchez-Romero
- Microbiology Department, Puerta de Hierro University Hospital, 28222 Majadahonda, Madrid, Spain
| | - María Muñoz-Algarra
- Microbiology Department, Puerta de Hierro University Hospital, 28222 Majadahonda, Madrid, Spain
| | - María Pía Roiz-Mesones
- Microbiology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Cantabria, Spain
- Valdecilla Research Instituto (Instituto de Investigación Valdecilla, IDIVAL), 39008 Santander, Cantabria, Spain
- Biomedical Research Networking Centre in Infectious Diseases CIBERINFEC (CB21/13/00068), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Lara-Plaza
- Microbiology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Cantabria, Spain
| | - Maite Ruíz Pérez de Pipaón
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, 41013 Seville, Andalucía, Spain
- Biomedical Research Networking Centre in Infectious Diseases CIBERINFEC (CB21/13/00006), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Clinical and Molecular Microbiology Group, Instituto de Biomedicina de Sevilla, HUVR/CSIC/Sevilla University, 41013 Seville, Andalucía, Spain
| | - Gregoria Megías-Lobón
- Department of Clinical Microbiology, Burgos University Hospital, 09006 Burgos, Castilla y León, Spain
| | | | - Laura Alcázar-Fuoli
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km2, 28220 Majadahonda, Madrid, Spain; (A.T.-C.)
- Biomedical Research Networking Centre in Infectious Diseases CIBERINFEC (CB21/13/00105), 28029 Madrid, Spain
| | - Diego Megías
- Advanced Optical Microscopy Unit, Central Core Units, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km2, 28220 Majadahonda, Madrid, Spain; (A.T.-C.)
- Biomedical Research Networking Centre in Infectious Diseases CIBERINFEC (CB21/13/00105), 28029 Madrid, Spain
| |
Collapse
|
5
|
Morschhäuser J. Adaptation of Candida albicans to specific host environments by gain-of-function mutations in transcription factors. PLoS Pathog 2024; 20:e1012643. [PMID: 39495716 PMCID: PMC11534201 DOI: 10.1371/journal.ppat.1012643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
The yeast Candida albicans is usually a harmless member of the normal microbiota in healthy persons but is also a major fungal pathogen that can colonize and infect almost every human tissue. A successful adaptation to environmental changes encountered in different host niches requires an appropriate regulation of gene expression. The zinc cluster transcription factors are the largest family of transcriptional regulators in C. albicans and are involved in the control of virtually all aspects of its biology. Under certain circumstances, mutations in these transcription factors that alter their activity and the expression of their target genes confer a selective advantage, which results in the emergence of phenotypically altered variants that are better adapted to new environmental challenges. This review describes how gain-of-function mutations in different zinc cluster transcription factors enable C. albicans to overcome antifungal therapy and to successfully establish itself in specific host niches.
Collapse
Affiliation(s)
- Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Trevijano-Contador N, López-Peralta E, López-López J, Roldán A, de Armentia C, Zaragoza Ó. High-Resolution Melting Assay to Detect the Mutations That Cause the Y132F and G458S Substitutions at the ERG11 Gene Involved in Azole Resistance in Candida parapsilosis. Mycoses 2024; 67:e13811. [PMID: 39487103 DOI: 10.1111/myc.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Candida parapsilosis is a pathogenic yeast that has reduced susceptibility to echinocandins and ranks as the second or third leading cause of candidaemia, depending on the geographical region. This yeast often causes nosocomial infections, which are frequently detected as outbreaks. In recent years, resistance to azoles in C. parapsilosis has increased globally, primarily due to the accumulation of mutations in the ERG11 gene. OBJECTIVES In this study, we have developed an assay based on real-time PCR and high-resolution melting (HRM) curve analysis to detect two of the most prevalent mutations at ERG11 that confer resistance to fluconazole (Y132F and G458S). METHODS We designed allele-specific oligonucleotides that selectively bind to either the wild type or mutated sequences and optimised the conditions to ensure amplification of the specific allele, followed by detection via high-resolution melting (HRM) analysis. RESULTS The designed oligonucleotides to detect the Erg11Y132F and Erg11G458S mutations produced specific amplification of either WT or mutated alleles. We conducted a duplex real-time PCR combining oligonucleotides for the wild-type sequences in one mix, and oligonucleotides for the mutated alleles in another. Following this, we performed an analysis of the HRM curve to identify the amplified allele in each case. This technique was blindly evaluated on a set of 114 C. parapsilosis isolates, all of which were unequivocally identified using our approach. CONCLUSION This technique offers a new method for the early detection of azole resistance mechanism in C. parapsilosis.
Collapse
Affiliation(s)
- Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena López-Peralta
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge López-López
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Roldán
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina de Armentia
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Óscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Pham D, Sivalingam V, Tang HM, Montgomery JM, Chen SCA, Halliday CL. Molecular Diagnostics for Invasive Fungal Diseases: Current and Future Approaches. J Fungi (Basel) 2024; 10:447. [PMID: 39057332 PMCID: PMC11278267 DOI: 10.3390/jof10070447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive fungal diseases (IFDs) comprise a growing healthcare burden, especially given the expanding population of immunocompromised hosts. Early diagnosis of IFDs is required to optimise therapy with antifungals, especially in the setting of rising rates of antifungal resistance. Molecular techniques including nucleic acid amplification tests and whole genome sequencing have potential to offer utility in overcoming limitations with traditional phenotypic testing. However, standardisation of methodology and interpretations of these assays is an ongoing undertaking. The utility of targeted Aspergillus detection has been well-defined, with progress in investigations into the role of targeted assays for Candida, Pneumocystis, Cryptococcus, the Mucorales and endemic mycoses. Likewise, whilst broad-range polymerase chain reaction assays have been in use for some time, pathology stewardship and optimising diagnostic yield is a continuing exercise. As costs decrease, there is also now increased access and experience with whole genome sequencing, including metagenomic sequencing, which offers unparalleled resolution especially in the investigations of potential outbreaks. However, their role in routine diagnostic use remains uncommon and standardisation of techniques and workflow are required for wider implementation.
Collapse
Affiliation(s)
- David Pham
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Varsha Sivalingam
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Helen M. Tang
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - James M. Montgomery
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| |
Collapse
|
8
|
Hartuis S, Ourliac-Garnier I, Robert E, Albassier M, Duchesne L, Beaufils C, Kuhn J, Le Pape P, Morio F. Precise genome editing underlines the distinct contributions of mutations in ERG11, ERG3, MRR1, and TAC1 genes to antifungal resistance in Candida parapsilosis. Antimicrob Agents Chemother 2024; 68:e0002224. [PMID: 38624217 PMCID: PMC11620491 DOI: 10.1128/aac.00022-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Candida parapsilosis has recently emerged as a major threat due to the worldwide emergence of fluconazole-resistant strains causing clonal outbreaks in hospitals and poses a therapeutic challenge due to the limited antifungal armamentarium. Here, we used precise genome editing using CRISPR-Cas9 to gain further insights into the contribution of mutations in ERG11, ERG3, MRR1, and TAC1 genes and the influence of allelic dosage to antifungal resistance in C. parapsilosis. Seven of the most common amino acid substitutions previously reported in fluconazole-resistant clinical isolates (including Y132F in ERG11) were engineered in two fluconazole-susceptible C. parapsilosis lineages (ATCC 22019 and STZ5). Each mutant was then challenged in vitro against a large array of antifungals, with a focus on azoles. Any possible change in virulence was also assessed in a Galleria mellonella model. We successfully generated a total of 19 different mutants, using CRISPR-Cas9. Except for R398I (ERG11), all remaining amino acid substitutions conferred reduced susceptibility to fluconazole. However, the impact on fluconazole in vitro susceptibility varied greatly according to the engineered mutation, the stronger impact being noted for G583R acting as a gain-of-function mutation in MRR1. Cross-resistance with newer azoles, non-medical azoles, but also non-azole antifungals such as flucytosine, was occasionally noted. Posaconazole and isavuconazole remained the most active in vitro. Except for G583R, no fitness cost was associated with the acquisition of fluconazole resistance. We highlight the distinct contributions of amino acid substitutions in ERG11, ERG3, MRR1, and TAC1 genes to antifungal resistance in C. parapsilosis.
Collapse
Affiliation(s)
- Sophie Hartuis
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | | | - Estelle Robert
- Nantes Université, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Marjorie Albassier
- Nantes Université, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Léa Duchesne
- Department Public Health, Nantes Université, CHU Nantes, Nantes, France
| | - Clara Beaufils
- Nantes Université, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Joséphine Kuhn
- Nantes Université, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Patrice Le Pape
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Florent Morio
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| |
Collapse
|
9
|
Bergin S, Doorley LA, Rybak JM, Wolfe KH, Butler G, Cuomo CA, Rogers PD. Analysis of clinical Candida parapsilosis isolates reveals copy number variation in key fluconazole resistance genes. Antimicrob Agents Chemother 2024; 68:e0161923. [PMID: 38712935 PMCID: PMC11620501 DOI: 10.1128/aac.01619-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
We used whole-genome sequencing to analyze a collection of 35 fluconazole-resistant and 7 susceptible Candida parapsilosis isolates together with coverage analysis and GWAS techniques to identify new mechanisms of fluconazole resistance. Phylogenetic analysis shows that although the collection is diverse, two persistent clinical lineages were identified. We identified copy number variation (CNV) of two genes, ERG11 and CDR1B, in resistant isolates. Two strains have a CNV at the ERG11 locus; the entire ORF is amplified in one, and only the promoter region is amplified in the other. We show that the annotated telomeric gene CDR1B is actually an artifactual in silico fusion of two highly similar neighboring CDR genes due to an assembly error in the C. parapsilosis CDC317 reference genome. We report highly variable copy numbers of the CDR1B region across the collection. Several strains have increased the expansion of the two genes into a tandem array of new chimeric genes. Other strains have experienced a deletion between the two genes creating a single gene with a reciprocal chimerism. We find translocations, duplications, and gene conversion across the CDR gene family in the C. parapsilosis species complex, showing that it is a highly dynamic family.
Collapse
Affiliation(s)
- Sean Bergin
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Laura A. Doorley
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeffrey M. Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kenneth H. Wolfe
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Molecular Microbiology and Immunology Department, Brown University, Providence, Rhode Island, USA
| | - P. David Rogers
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
10
|
Bergin S, Doorley LA, Rybak JM, Wolfe KH, Butler G, Cuomo CA, Rogers PD. Analysis of clinical Candida parapsilosis isolates reveals copy number variation in key fluconazole resistance genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571446. [PMID: 38168157 PMCID: PMC10760152 DOI: 10.1101/2023.12.13.571446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We used whole-genome sequencing to analyse a collection of 35 fluconazole resistant and 7 susceptible Candida parapsilosis isolates together with coverage analysis and GWAS techniques to identify new mechanisms of fluconazole resistance. Phylogenetic analysis shows that although the collection is diverse, two probable outbreak groups were identified. We identified copy number variation of two genes, ERG11 and CDR1B, in resistant isolates. Two strains have a CNV at the ERG11 locus; the entire ORF is amplified in one, and only the promoter region is amplified in the other. We show the annotated telomeric gene CDR1B is actually an artefactual in silico fusion of two highly similar neighbouring CDR genes due to an assembly error in the C. parapsilosis CDC317 reference genome. We report highly variable copy numbers of the CDR1B region across the collection. Several strains have increased expansion of the two genes into a tandem array of new chimeric genes. Other strains have experienced a deletion between the two genes creating a single gene with a reciprocal chimerism. We find translocations, duplications, and gene conversion across the CDR gene family in the C. parapsilosis species complex, showing that it is a highly dynamic family.
Collapse
Affiliation(s)
- Sean Bergin
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Laura A Doorley
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey M Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kenneth H Wolfe
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI, USA
| | - P David Rogers
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|