1
|
Inamdar MA, Raghavendra U, Gudigar A, Chakole Y, Hegde A, Menon GR, Barua P, Palmer EE, Cheong KH, Chan WY, Ciaccio EJ, Acharya UR. A Review on Computer Aided Diagnosis of Acute Brain Stroke. SENSORS (BASEL, SWITZERLAND) 2021; 21:8507. [PMID: 34960599 PMCID: PMC8707263 DOI: 10.3390/s21248507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023]
Abstract
Amongst the most common causes of death globally, stroke is one of top three affecting over 100 million people worldwide annually. There are two classes of stroke, namely ischemic stroke (due to impairment of blood supply, accounting for ~70% of all strokes) and hemorrhagic stroke (due to bleeding), both of which can result, if untreated, in permanently damaged brain tissue. The discovery that the affected brain tissue (i.e., 'ischemic penumbra') can be salvaged from permanent damage and the bourgeoning growth in computer aided diagnosis has led to major advances in stroke management. Abiding to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines, we have surveyed a total of 177 research papers published between 2010 and 2021 to highlight the current status and challenges faced by computer aided diagnosis (CAD), machine learning (ML) and deep learning (DL) based techniques for CT and MRI as prime modalities for stroke detection and lesion region segmentation. This work concludes by showcasing the current requirement of this domain, the preferred modality, and prospective research areas.
Collapse
Affiliation(s)
- Mahesh Anil Inamdar
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Udupi Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (Y.C.)
| | - Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (Y.C.)
| | - Yashas Chakole
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (Y.C.)
| | - Ajay Hegde
- Department of Neurosurgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India; (A.H.); (G.R.M.)
| | - Girish R. Menon
- Department of Neurosurgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India; (A.H.); (G.R.M.)
| | - Prabal Barua
- School of Management & Enterprise, University of Southern Queensland, Toowoomba, QLD 4350, Australia;
- Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia
| | - Elizabeth Emma Palmer
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Kang Hao Cheong
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore;
| | - Wai Yee Chan
- Department of Biomedical Imaging, Research Imaging Centre, University of Malaya, Kuala Lumpur 59100, Malaysia;
| | - Edward J. Ciaccio
- Department of Medicine, Columbia University, New York, NY 10032, USA;
| | - U. Rajendra Acharya
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
- Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore 599491, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
2
|
Huang Q, Yu Y, Wen T, Zhang J, Yang Z, Zhang F, Zhang H. Segmentation of Brain MR Image Using Modified Student’s t-Mixture Model. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 2021. [DOI: 10.1166/jmihi.2021.3860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In conventional brain image analysis, it is a critical step to segment brain magnetic resonance (MR) image into three major tissues: Gray Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF). The main difficulties for segmenting brain MR image are partial volume effect, intensity
inhomogeneity and noise, which result in challenging segmentation task. In this paper, we propose a novel modified method based on the basis of the conventional Student’s t-Mixture Model (SMM), for segmentation of brain MR image and correction of bias field. The advantages of our model
are introduced as follows. First, we take account of the influence on the probabilities of the pixels in the adjacent region and take full advantage of the local spatial information and class information. Second, our modified SMM is derived from the traditional finite mixture model (FMM) by
adding the bias field correction model; the logarithmic likelihood function of traditional FMM is revised. Third, the noise and bias field can be easily extended to combine with the SMM model and EM algorithm. Last but not least, the exponential coefficients are employed to control the results
of segmentation details. As a result, our effective and highly accurate method exhibits high robustness on both simulated and real MR image segmentation, compared to the state-of-the-art algorithms.
Collapse
Affiliation(s)
- Qiang Huang
- School of Information Engineering, Nanjing Audit University, 211815, China
| | - Yinglei Yu
- Jiangsu Academy of Safety Science and Technology, 210042, China
| | - Tian Wen
- Jiangsu Provincial Center for Disease Control and Prevention, NHC Key Laboratory of Enteric Pathogenic Microbiology, Nanjing, Jiangsu Province, 210009, China
| | - Jianwei Zhang
- School of Mathematics and Statistics, Nanjing University of Information Science and Technology, 210044, China
| | - Zhangjing Yang
- School of Information Engineering, Nanjing Audit University, 211815, China
| | - Fanlong Zhang
- School of Information Engineering, Nanjing Audit University, 211815, China
| | - Hui Zhang
- School of Information Engineering, Nanjing Audit University, 211815, China
| |
Collapse
|
3
|
A Survey on Computer-Aided Diagnosis of Brain Disorders through MRI Based on Machine Learning and Data Mining Methodologies with an Emphasis on Alzheimer Disease Diagnosis and the Contribution of the Multimodal Fusion. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Computer-aided diagnostic (CAD) systems use machine learning methods that provide a synergistic effect between the neuroradiologist and the computer, enabling an efficient and rapid diagnosis of the patient’s condition. As part of the early diagnosis of Alzheimer’s disease (AD), which is a major public health problem, the CAD system provides a neuropsychological assessment that helps mitigate its effects. The use of data fusion techniques by CAD systems has proven to be useful, they allow for the merging of information relating to the brain and its tissues from MRI, with that of other types of modalities. This multimodal fusion refines the quality of brain images by reducing redundancy and randomness, which contributes to improving the clinical reliability of the diagnosis compared to the use of a single modality. The purpose of this article is first to determine the main steps of the CAD system for brain magnetic resonance imaging (MRI). Then to bring together some research work related to the diagnosis of brain disorders, emphasizing AD. Thus the most used methods in the stages of classification and brain regions segmentation are described, highlighting their advantages and disadvantages. Secondly, on the basis of the raised problem, we propose a solution within the framework of multimodal fusion. In this context, based on quantitative measurement parameters, a performance study of multimodal CAD systems is proposed by comparing their effectiveness with those exploiting a single MRI modality. In this case, advances in information fusion techniques in medical imagery are accentuated, highlighting their advantages and disadvantages. The contribution of multimodal fusion and the interest of hybrid models are finally addressed, as well as the main scientific assertions made, in the field of brain disease diagnosis.
Collapse
|
4
|
Rajendra Acharya U, Meiburger KM, Faust O, En Wei Koh J, Lih Oh S, Ciaccio EJ, Subudhi A, Jahmunah V, Sabut S. Automatic detection of ischemic stroke using higher order spectra features in brain MRI images. COGN SYST RES 2019. [DOI: 10.1016/j.cogsys.2019.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Automated approach for detection of ischemic stroke using Delaunay Triangulation in brain MRI images. Comput Biol Med 2018; 103:116-129. [PMID: 30359807 DOI: 10.1016/j.compbiomed.2018.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/08/2018] [Accepted: 10/14/2018] [Indexed: 11/22/2022]
Abstract
It is difficult to develop an accurate algorithm to detect the stroke lesions using magnetic resonance imaging (MRI) images due to variation in different lesion sizes, variation in morphological structure, and similarity in intensity of lesion with normal brain in three types of stroke, namely partial anterior circulation syndrome (PACS), lacunar syndrome (LACS) and total anterior circulation stroke (TACS). In this paper, we have integrated the advantages of Delaunay triangulation (DT) and fractional order Darwinian particle swarm optimization (FODPSO), called DT-FODPSO technique for automatic segmentation of the structure of the stroke lesion. The approach was validated on 192 MRI images obtained from different stroke subjects. Statistical and morphological features were extracted and classified according to the Oxfordshire community stroke project (OCSP) using support vector machine (SVM) and random forest (RF) classifiers. The method effectively detected the stroke lesions and achieved promising results with an average sensitivity of 0.93, accuracy of 0.95, JI of 0.89 and Dice similarity index of 0.93 using RF classifier. These promising results indicates the DT based optimized approach is efficient in detecting ischemic stroke and it can aid the neuro-radiologists to validate their routine screening.
Collapse
|
7
|
Water Detection in Urban Areas from GF-3. SENSORS 2018; 18:s18041299. [PMID: 29690643 PMCID: PMC5948576 DOI: 10.3390/s18041299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 11/17/2022]
Abstract
The rapid and accurate detection of urban water is critical for urban management, river detection, and flood disaster assessment. This study is devoted to detecting water by GaoFen-3 (GF-3) Synthetic Aperture Radar (SAR) images with high spatial resolution. There have been no effective solutions that discriminate water and building shadows using a single SAR image in previous research. Inspired by the principle that every shadow has a corresponding building nearby, a new method is proposed in this study, whereby building shadows are removed depending on the correspondence of buildings and their shadows. The proposed method is demonstrated effective and efficient by experimental results on six GF-3 SAR images. The Receiver Operating Characteristic (ROC) curves of the water detection results indicate that the proposed method increases the Probability of Detection (PD) to 98.36% and decreases the Probability of False Alarm (PFA) to 1.91% compared with the thresholding method, where, at the same PFA level, the maximum PD of the thresholding method is 72.62% in all testing samples. The proposed method is capable of removing building shadows and detecting water with high precision in urban areas, which presents the great potential of high-spatial-resolution GF-3 images in terms of water resource management.
Collapse
|