1
|
Bombiński P, Szatkowski P, Sobieski B, Kwieciński T, Płotka S, Adamek M, Banasiuk M, Furmanek MI, Biecek P. Underestimation of lung regions on chest X-ray segmentation masks assessed by comparison with total lung volume evaluated on computed tomography. Radiography (Lond) 2025; 31:102930. [PMID: 40174327 DOI: 10.1016/j.radi.2025.102930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025]
Abstract
INTRODUCTION The lung regions on chest X-ray segmentation masks created according to the current gold standard method for AI-driven applications are underestimated. This can be evaluated by comparison with computed tomography. METHODS This retrospective study included data from non-contrast chest low-dose CT examinations of 55 individuals without pulmonary pathology. Synthetic X-ray images were generated by projecting a 3D CT examination onto a 2D image plane. Two experienced radiologists manually created two types of lung masks: 3D lung masks from CT examinations (ground truth for further calculations) and 2D lung masks from synthetic X-ray images (according to the current gold standard method: following the contours of other anatomical structures). Overlapping and non-overlapping lung regions covered by both types of masks were analyzed. Volume of the overlapping regions was compared with total lung volume, and volume fractions of non-overlapping lung regions in relation to the total lung volume were calculated. The performance results between the two radiologists were compared. RESULTS Significant differences were observed between lung regions covered by CT and synthetic X-ray masks. The mean volume fractions of the lung regions not covered by synthetic X-ray masks for the right lung, the left lung, and both lungs were 22.8 %, 32.9 %, and 27.3 %, respectively, for Radiologist 1 and 22.7 %, 32.9 %, and 27.3 %, respectively, for Radiologist 2. There was excellent spatial agreement between the masks created by the two radiologists. CONCLUSIONS Lung X-ray masks created according to the current gold standard method significantly underestimate lung regions and do not cover substantial portions of the lungs. IMPLICATIONS FOR PRACTICE Standard lung masks fail to encompass the whole range of the lungs and significantly restrict the field of analysis in AI-driven applications, which may lead to false conclusions and diagnoses.
Collapse
Affiliation(s)
- P Bombiński
- Department of Pediatric Radiology, Medical University of Warsaw, Pediatric Clinical Hospital, 63A Żwirki i Wigury St, Warsaw 02-091, Poland; upmedic, 2/11 Sądowa St, 20-027 Lublin, Poland.
| | - P Szatkowski
- 2nd Department of Clinical Radiology, Medical University of Warsaw, Central Clinical Hospital, 1A Banacha St, Warsaw 02-097, Poland.
| | - B Sobieski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 75 Koszykowa St, Warsaw 00-661, Poland; MI2.ai, Warsaw University of Technology, 75 Koszykowa St, Warsaw 00-661, Poland.
| | - T Kwieciński
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 75 Koszykowa St, Warsaw 00-661, Poland; MI2.ai, Warsaw University of Technology, 75 Koszykowa St, Warsaw 00-661, Poland.
| | - S Płotka
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 75 Koszykowa St, Warsaw 00-661, Poland; MI2.ai, Warsaw University of Technology, 75 Koszykowa St, Warsaw 00-661, Poland; Informatics Institute, University of Amsterdam, Science Park 900, 1098 XH Amsterdam, the Netherlands; Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | - M Adamek
- Department of Thoracic Surgery, Medical University of Silesia, 35 Ceglana St, 40-514 Katowice, Poland; Department of Thoracic Surgery, Medical University of Gdańsk, 17 Smoluchowskiego St, 80-214 Gdańsk, Poland.
| | - M Banasiuk
- Department of Pediatric Gastroenterology and Nutrition, Medical University of Warsaw, Pediatric Clinical Hospital, 63A Żwirki i Wigury, Warsaw 02-091, Poland.
| | - M I Furmanek
- Department of Pediatric Radiology, Medical University of Warsaw, Pediatric Clinical Hospital, 63A Żwirki i Wigury St, Warsaw 02-091, Poland.
| | - P Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 75 Koszykowa St, Warsaw 00-661, Poland; MI2.ai, Warsaw University of Technology, 75 Koszykowa St, Warsaw 00-661, Poland; Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, 1A Banacha St, Warsaw 02-097, Poland.
| |
Collapse
|
2
|
Takaki T, Matsuoka R, Fujita Y, Murakami S. Development and clinical evaluation of an AI-assisted respiratory state classification system for chest X-rays: A BMI-Specific approach. Comput Biol Med 2025; 188:109854. [PMID: 39955880 DOI: 10.1016/j.compbiomed.2025.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/15/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
PURPOSE In this study, we aimed to develop and clinically evaluate an artificial intelligence (AI)-assisted support system for determining inhalation and exhalation states on chest X-ray images, focusing on the specific challenge of respiratory state determination. METHODS We developed a body mass index (BMI)-specific approach for respiratory state classification in chest X-rays using separate models for normal and obesity groups. Feature extraction was performed using four pre-trained networks (EfficientNet B0, GoogleNet, Xception, and VGG16) combined with Naive Bayes classification. A database of 3200 chest X-ray images from 1600 patients, labeled for respiratory states using temporal subtraction techniques, was utilized. The system's clinical utility was assessed through an observational study involving eight radiological technologists with varying experience levels. RESULTS The approach combining EfficientNet B0 late-layer with Naive Bayes classification and GoogleNet's end-to-end model demonstrated the highest performance. The support system significantly improved the area under the curve from 0.728 to 0.796 in the normal BMI group and from 0.752 to 0.817 in the obesity group (p < 0.05), showing particular effectiveness in classifying exhalation states in obese patients. CONCLUSION The developed AI-assisted support system enhances radiological technologists' ability to determine respiratory states across varying levels of experience, particularly in challenging cases involving obese patients. This system contributes to improving image quality assessment and workflow efficiency by potentially reducing unnecessary re-imaging.
Collapse
Affiliation(s)
- Takeshi Takaki
- Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University, 1-1-1 Chikushigaoka, Minami-ku, Fukuoka, 815-8510, Japan.
| | - Ryo Matsuoka
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, 808-0135, Japan.
| | - Yuki Fujita
- Department of Radiology, Hospital of University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| | - Seiichi Murakami
- Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University, 1-1-1 Chikushigaoka, Minami-ku, Fukuoka, 815-8510, Japan.
| |
Collapse
|
3
|
Oltu B, Güney S, Yuksel SE, Dengiz B. Automated classification of chest X-rays: a deep learning approach with attention mechanisms. BMC Med Imaging 2025; 25:71. [PMID: 40038588 DOI: 10.1186/s12880-025-01604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Pulmonary diseases such as COVID-19 and pneumonia, are life-threatening conditions, that require prompt and accurate diagnosis for effective treatment. Chest X-ray (CXR) has become the most common alternative method for detecting pulmonary diseases such as COVID-19, pneumonia, and lung opacity due to their availability, cost-effectiveness, and ability to facilitate comparative analysis. However, the interpretation of CXRs is a challenging task. METHODS This study presents an automated deep learning (DL) model that outperforms multiple state-of-the-art methods in diagnosing COVID-19, Lung Opacity, and Viral Pneumonia. Using a dataset of 21,165 CXRs, the proposed framework introduces a seamless combination of the Vision Transformer (ViT) for capturing long-range dependencies, DenseNet201 for powerful feature extraction, and global average pooling (GAP) for retaining critical spatial details. This combination results in a robust classification system, achieving remarkable accuracy. RESULTS The proposed methodology delivers outstanding results across all categories: achieving 99.4% accuracy and an F1-score of 98.43% for COVID-19, 96.45% accuracy and an F1-score of 93.64% for Lung Opacity, 99.63% accuracy and an F1-score of 97.05% for Viral Pneumonia, and 95.97% accuracy with an F1-score of 95.87% for Normal subjects. CONCLUSION The proposed framework achieves a remarkable overall accuracy of 97.87%, surpassing several state-of-the-art methods with reproducible and objective outcomes. To ensure robustness and minimize variability in train-test splits, our study employs five-fold cross-validation, providing reliable and consistent performance evaluation. For transparency and to facilitate future comparisons, the specific training and testing splits have been made publicly accessible. Furthermore, Grad-CAM-based visualizations are integrated to enhance the interpretability of the model, offering valuable insights into its decision-making process. This innovative framework not only boosts classification accuracy but also sets a new benchmark in CXR-based disease diagnosis.
Collapse
Affiliation(s)
- Burcu Oltu
- Department of Biomedical Engineering, Baskent University, Etimesgut, Ankara, 06790, Türkiye.
| | - Selda Güney
- Department of Electrical and Electronics Engineering, Baskent University, Etimesgut, Ankara, 06790, Türkiye
| | - Seniha Esen Yuksel
- Department of Electrical and Electronics Engineering, Hacettepe University, Beytepe, Ankara, 06800, Türkiye
| | - Berna Dengiz
- Department of Industrial Engineering, Baskent University, Etimesgut, Ankara, 06790, Türkiye
| |
Collapse
|
4
|
Yuan H, Hong C, Tran NTA, Xu X, Liu N. Leveraging anatomical constraints with uncertainty for pneumothorax segmentation. HEALTH CARE SCIENCE 2024; 3:456-474. [PMID: 39735285 PMCID: PMC11671217 DOI: 10.1002/hcs2.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 12/31/2024]
Abstract
Background Pneumothorax is a medical emergency caused by the abnormal accumulation of air in the pleural space-the potential space between the lungs and chest wall. On 2D chest radiographs, pneumothorax occurs within the thoracic cavity and outside of the mediastinum, and we refer to this area as "lung + space." While deep learning (DL) has increasingly been utilized to segment pneumothorax lesions in chest radiographs, many existing DL models employ an end-to-end approach. These models directly map chest radiographs to clinician-annotated lesion areas, often neglecting the vital domain knowledge that pneumothorax is inherently location-sensitive. Methods We propose a novel approach that incorporates the lung + space as a constraint during DL model training for pneumothorax segmentation on 2D chest radiographs. To circumvent the need for additional annotations and to prevent potential label leakage on the target task, our method utilizes external datasets and an auxiliary task of lung segmentation. This approach generates a specific constraint of lung + space for each chest radiograph. Furthermore, we have incorporated a discriminator to eliminate unreliable constraints caused by the domain shift between the auxiliary and target datasets. Results Our results demonstrated considerable improvements, with average performance gains of 4.6%, 3.6%, and 3.3% regarding intersection over union, dice similarity coefficient, and Hausdorff distance. These results were consistent across six baseline models built on three architectures (U-Net, LinkNet, or PSPNet) and two backbones (VGG-11 or MobileOne-S0). We further conducted an ablation study to evaluate the contribution of each component in the proposed method and undertook several robustness studies on hyper-parameter selection to validate the stability of our method. Conclusions The integration of domain knowledge in DL models for medical applications has often been underemphasized. Our research underscores the significance of incorporating medical domain knowledge about the location-specific nature of pneumothorax to enhance DL-based lesion segmentation and further bolster clinicians' trust in DL tools. Beyond pneumothorax, our approach is promising for other thoracic conditions that possess location-relevant characteristics.
Collapse
Affiliation(s)
- Han Yuan
- Centre for Quantitative Medicine, Duke‐NUS Medical SchoolSingapore
| | - Chuan Hong
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNorth CarolinaUSA
| | | | - Xinxing Xu
- Institute of High Performance Computing, Agency for Science, Technology and ResearchSingapore
| | - Nan Liu
- Centre for Quantitative Medicine, Duke‐NUS Medical SchoolSingapore
- Programme in Health Services and Systems Research, Duke‐NUS Medical SchoolSingapore
- Institute of Data ScienceNational University of SingaporeSingapore
| |
Collapse
|
5
|
Patharia P, Sethy PK, Nanthaamornphong A. Advancements and Challenges in the Image-Based Diagnosis of Lung and Colon Cancer: A Comprehensive Review. Cancer Inform 2024; 23:11769351241290608. [PMID: 39483315 PMCID: PMC11526153 DOI: 10.1177/11769351241290608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
Image-based diagnosis has become a crucial tool in the identification and management of various cancers, particularly lung and colon cancer. This review delves into the latest advancements and ongoing challenges in the field, with a focus on deep learning, machine learning, and image processing techniques applied to X-rays, CT scans, and histopathological images. Significant progress has been made in imaging technologies like computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), which, when combined with machine learning and artificial intelligence (AI) methodologies, have greatly enhanced the accuracy of cancer detection and characterization. These advances have enabled early detection, more precise tumor localization, personalized treatment plans, and overall improved patient outcomes. However, despite these improvements, challenges persist. Variability in image interpretation, the lack of standardized diagnostic protocols, unequal access to advanced imaging technologies, and concerns over data privacy and security within AI-based systems remain major obstacles. Furthermore, integrating imaging data with broader clinical information is crucial to achieving a more comprehensive approach to cancer diagnosis and treatment. This review provides valuable insights into the recent developments and challenges in image-based diagnosis for lung and colon cancers, underscoring both the remarkable progress and the hurdles that still need to be overcome to optimize cancer care.
Collapse
Affiliation(s)
- Pragati Patharia
- Department of Electronics and Communication Engineering, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Prabira Kumar Sethy
- Department of Electronics and Communication Engineering, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
- Department of Electronics, Sambalpur University, Burla, Odisha, India
| | | |
Collapse
|
6
|
Kantipudi K, Gu J, Bui V, Yu H, Jaeger S, Yaniv Z. Automated Pulmonary Tuberculosis Severity Assessment on Chest X-rays. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2173-2185. [PMID: 38587769 PMCID: PMC11522209 DOI: 10.1007/s10278-024-01052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 04/09/2024]
Abstract
According to the 2022 World Health Organization's Global Tuberculosis (TB) report, an estimated 10.6 million people fell ill with TB, and 1.6 million died from the disease in 2021. In addition, 2021 saw a reversal of a decades-long trend of declining TB infections and deaths, with an estimated increase of 4.5% in the number of people who fell ill with TB compared to 2020, and an estimated yearly increase of 450,000 cases of drug resistant TB. Estimating the severity of pulmonary TB using frontal chest X-rays (CXR) can enable better resource allocation in resource constrained settings and monitoring of treatment response, enabling prompt treatment modifications if disease severity does not decrease over time. The Timika score is a clinically used TB severity score based on a CXR reading. This work proposes and evaluates three deep learning-based approaches for predicting the Timika score with varying levels of explainability. The first approach uses two deep learning-based models, one to explicitly detect lesion regions using YOLOV5n and another to predict the presence of cavitation using DenseNet121, which are then utilized in score calculation. The second approach uses a DenseNet121-based regression model to directly predict the affected lung percentage and another to predict cavitation presence using a DenseNet121-based classification model. Finally, the third approach directly predicts the Timika score using a DenseNet121-based regression model. The best performance is achieved by the second approach with a mean absolute error of 13-14% and a Pearson correlation of 0.7-0.84 using three held-out datasets for evaluating generalization.
Collapse
Affiliation(s)
- Karthik Kantipudi
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, 20892, MD, USA.
| | - Jingwen Gu
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, 20892, MD, USA
| | - Vy Bui
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, 20894, MD, USA
| | - Hang Yu
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, 20894, MD, USA
| | - Stefan Jaeger
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, 20894, MD, USA
| | - Ziv Yaniv
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, 20892, MD, USA.
| |
Collapse
|
7
|
Yuan H, Hong C, Jiang PT, Zhao G, Tran NTA, Xu X, Yan YY, Liu N. Clinical domain knowledge-derived template improves post hoc AI explanations in pneumothorax classification. J Biomed Inform 2024; 156:104673. [PMID: 38862083 DOI: 10.1016/j.jbi.2024.104673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Pneumothorax is an acute thoracic disease caused by abnormal air collection between the lungs and chest wall. Recently, artificial intelligence (AI), especially deep learning (DL), has been increasingly employed for automating the diagnostic process of pneumothorax. To address the opaqueness often associated with DL models, explainable artificial intelligence (XAI) methods have been introduced to outline regions related to pneumothorax. However, these explanations sometimes diverge from actual lesion areas, highlighting the need for further improvement. METHOD We propose a template-guided approach to incorporate the clinical knowledge of pneumothorax into model explanations generated by XAI methods, thereby enhancing the quality of the explanations. Utilizing one lesion delineation created by radiologists, our approach first generates a template that represents potential areas of pneumothorax occurrence. This template is then superimposed on model explanations to filter out extraneous explanations that fall outside the template's boundaries. To validate its efficacy, we carried out a comparative analysis of three XAI methods (Saliency Map, Grad-CAM, and Integrated Gradients) with and without our template guidance when explaining two DL models (VGG-19 and ResNet-50) in two real-world datasets (SIIM-ACR and ChestX-Det). RESULTS The proposed approach consistently improved baseline XAI methods across twelve benchmark scenarios built on three XAI methods, two DL models, and two datasets. The average incremental percentages, calculated by the performance improvements over the baseline performance, were 97.8% in Intersection over Union (IoU) and 94.1% in Dice Similarity Coefficient (DSC) when comparing model explanations and ground-truth lesion areas. We further visualized baseline and template-guided model explanations on radiographs to showcase the performance of our approach. CONCLUSIONS In the context of pneumothorax diagnoses, we proposed a template-guided approach for improving model explanations. Our approach not only aligns model explanations more closely with clinical insights but also exhibits extensibility to other thoracic diseases. We anticipate that our template guidance will forge a novel approach to elucidating AI models by integrating clinical domain expertise.
Collapse
Affiliation(s)
- Han Yuan
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Chuan Hong
- Department of Biostatistics and Bioinformatics, Duke University, USA
| | | | - Gangming Zhao
- Faculty of Engineering, The University of Hong Kong, China
| | | | - Xinxing Xu
- Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore
| | - Yet Yen Yan
- Department of Radiology, Changi General Hospital, Singapore
| | - Nan Liu
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore; Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore; Institute of Data Science, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Rendon-Atehortua JC, Cardenas-Pena D, Daza-Santacoloma G, Orozco-Gutierrez AA, Jaramillo-Robledo O. Efficient Lung Segmentation from Chest Radiographs using Transfer Learning and Lightweight Deep Architecture. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40039676 DOI: 10.1109/embc53108.2024.10782198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Lung delineation constitutes a critical preprocessing stage for X-ray-based diagnosis and follow-up. However, automatic lung segmentation from chest radiographs (CXR) poses a challenging problem due to anatomical structures' varying shapes and sizes, the differences between radio-opacity, contrast, and image quality, and the requirement of complex models for automatic detection of regions of interest. This work proposes the automated lung segmentation methodology DenseCX, based on U-Net architectures and transfer learning techniques. Unlike other U-Net networks, DenseCX includes an encoder built from Dense blocks, promoting a meaningful feature extraction with lightweight layers. Then, a homogeneous domain adaptation transfers the knowledge from classifying a large cohort of CXR to the DenseCX, reducing the overfitting risk due to the lack of manually labeled images. The experimental setup evaluates the proposed methodology on three public datasets, namely Shenzhen Hospital Chest X-ray, the Japan Society of Radiological Technology, and Montgomery County Chest X-ray, in a leave-one-group-out validation strategy for warranting the generalization. The attained Dice, Sensitivity, and Specificity metrics evidence that DenseCX outperforms other conventional ImageNet initialization while providing the best trade-off between performance and model complexity than state-of-the-art approaches, with a much lighter architecture and an improved convergence.
Collapse
|
9
|
Kang H, Kim N, Ryu J. Attentional decoder networks for chest X-ray image recognition on high-resolution features. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 251:108198. [PMID: 38718718 DOI: 10.1016/j.cmpb.2024.108198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/31/2024] [Accepted: 04/21/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND AND OBJECTIVE This paper introduces an encoder-decoder-based attentional decoder network to recognize small-size lesions in chest X-ray images. In the encoder-only network, small-size lesions disappear during the down-sampling steps or are indistinguishable in the low-resolution feature maps. To address these issues, the proposed network processes images in the encoder-decoder architecture similar to U-Net families and classifies lesions by globally pooling high-resolution feature maps. However, two challenging obstacles prohibit U-Net families from being extended to classification: (1) the up-sampling procedure consumes considerable resources, and (2) there needs to be an effective pooling approach for the high-resolution feature maps. METHODS Therefore, the proposed network employs a lightweight attentional decoder and harmonic magnitude transform. The attentional decoder up-samples the given features with the low-resolution features as the key and value while the high-resolution features as the query. Since multi-scaled features interact, up-sampled features embody global context at a high resolution, maintaining pathological locality. In addition, harmonic magnitude transform is devised for pooling high-resolution feature maps in the frequency domain. We borrow the shift theorem of the Fourier transform to preserve the translation invariant property and further reduce the parameters of the pooling layer by an efficient embedding strategy. RESULTS The proposed network achieves state-of-the-art classification performance on the three public chest X-ray datasets, such as NIH, CheXpert, and MIMIC-CXR. CONCLUSIONS In conclusion, the proposed efficient encoder-decoder network recognizes small-size lesions well in chest X-ray images by efficiently up-sampling feature maps through an attentional decoder and processing high-resolution feature maps with harmonic magnitude transform. We open-source our implementation at https://github.com/Lab-LVM/ADNet.
Collapse
Affiliation(s)
- Hankyul Kang
- Department of Artificial Intelligence, Ajou University, Suwon, Republic of Korea
| | - Namkug Kim
- Department of Convergence Medicine, Ulsan University, Seoul, Republic of Korea
| | - Jongbin Ryu
- Department of Artificial Intelligence, Ajou University, Suwon, Republic of Korea; Department of Software and Computer Engineering, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
10
|
Wang L, Wang Q, Wang X, Ma Y, Zhang L, Liu M. Triplet-constrained deep hashing for chest X-ray image retrieval in COVID-19 assessment. Neural Netw 2024; 173:106182. [PMID: 38387203 DOI: 10.1016/j.neunet.2024.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Radiology images of the chest, such as computer tomography scans and X-rays, have been prominently used in computer-aided COVID-19 analysis. Learning-based radiology image retrieval has attracted increasing attention recently, which generally involves image feature extraction and finding matches in extensive image databases based on query images. Many deep hashing methods have been developed for chest radiology image search due to the high efficiency of retrieval using hash codes. However, they often overlook the complex triple associations between images; that is, images belonging to the same category tend to share similar characteristics and vice versa. To this end, we develop a triplet-constrained deep hashing (TCDH) framework for chest radiology image retrieval to facilitate automated analysis of COVID-19. The TCDH consists of two phases, including (a) feature extraction and (b) image retrieval. For feature extraction, we have introduced a triplet constraint and an image reconstruction task to enhance discriminative ability of learned features, and these features are then converted into binary hash codes to capture semantic information. Specifically, the triplet constraint is designed to pull closer samples within the same category and push apart samples from different categories. Additionally, an auxiliary image reconstruction task is employed during feature extraction to help effectively capture anatomical structures of images. For image retrieval, we utilize learned hash codes to conduct searches for medical images. Extensive experiments on 30,386 chest X-ray images demonstrate the superiority of the proposed method over several state-of-the-art approaches in automated image search. The code is now available online.
Collapse
Affiliation(s)
- Linmin Wang
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Qianqian Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaochuan Wang
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Yunling Ma
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Limei Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
11
|
Abdullah M, Abrha FB, Kedir B, Tamirat Tagesse T. A Hybrid Deep Learning CNN model for COVID-19 detection from chest X-rays. Heliyon 2024; 10:e26938. [PMID: 38468922 PMCID: PMC10926074 DOI: 10.1016/j.heliyon.2024.e26938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Coronavirus disease (COVID-2019) is emerging in Wuhan, China in 2019. It has spread throughout the world since the year 2020. Millions of people were affected and caused death to them till now. To avoid the spreading of COVID-2019, various precautions and restrictions have been taken by all nations. At the same time, infected persons are needed to identify and isolate, and medical treatment should be provided to them. Due to a deficient number of Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, a Chest X-ray image is becoming an effective technique for diagnosing COVID-19. In this work, the Hybrid Deep Learning CNN model is proposed for the diagnosis COVID-19 using chest X-rays. The proposed model consists of a heading model and a base model. The base model utilizes two pre-trained deep learning structures such as VGG16 and VGG19. The feature dimensions from these pre-trained models are reduced by incorporating different pooling layers, such as max and average. In the heading part, dense layers of size three with different activation functions are also added. A dropout layer is supplemented to avoid overfitting. The experimental analyses are conducted to identify the efficacy of the proposed hybrid deep learning with existing transfer learning architectures such as VGG16, VGG19, EfficientNetB0 and ResNet50 using a COVID-19 radiology database. Various classification techniques, such as K-Nearest Neighbor (KNN), Naive Bayes, Random Forest, Support Vector Machine (SVM), and Neural Network, were also used for the performance comparison of the proposed model. The hybrid deep learning model with average pooling layers, along with SVM-linear and neural networks, both achieved an accuracy of 92%.These proposed models can be employed to assist radiologists and physicians in avoiding misdiagnosis rates and to validate the positive COVID-19 infected cases.
Collapse
Affiliation(s)
- Mohan Abdullah
- Department of Electrical and Computer Engineering, Wachemo University, Ethiopia
| | - Ftsum berhe Abrha
- Department of Electrical and Computer Engineering, Wachemo University, Ethiopia
| | - Beshir Kedir
- Department of Electrical and Computer Engineering, Wachemo University, Ethiopia
| | | |
Collapse
|
12
|
Sun X, Wang F, Ma Z, Su H. Dynamic surface reconstruction in robot-assisted minimally invasive surgery based on neural radiance fields. Int J Comput Assist Radiol Surg 2024; 19:519-530. [PMID: 37768485 DOI: 10.1007/s11548-023-03016-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE The purpose of this study was to improve surgical scene perception by addressing the challenge of reconstructing highly dynamic surgical scenes. We proposed a novel depth estimation network and a reconstruction framework that combines neural radiance fields to provide more accurate scene information for surgical task automation and AR navigation. METHODS We added a spatial pyramid pooling module and a Swin-Transformer module to enhance the robustness of stereo depth estimation. We also improved depth accuracy by adding unique matching constraints from optimal transport. To avoid deformation distortion in highly dynamic scenes, we used neural radiance fields to implicitly represent scenes in the time dimension and optimized them with depth and color information in a learning-based manner. RESULTS Our experiments on the KITTI and SCARED datasets show that the proposed depth estimation network performs close to the state-of-the-art method on natural images and surpasses the SOTA method on medical images with 1.12% in 3 px Error and 0.45 px in EPE. The proposed dynamic reconstruction framework successfully reconstructed the dynamic cardiac surface on a totally endoscopic coronary artery bypass video, achieving SOTA performance with 27.983 dB in PSNR, 0.812 in SSIM, and 0.189 in LPIPS. CONCLUSION Our proposed depth estimation network and reconstruction framework provide a significant contribution to the field of surgical scene perception. The framework achieves better results than SOTA methods on medical datasets, reducing mismatches on depth maps and resulting in more accurate depth maps with clearer edges. The proposed ER framework is verified on a series of dynamic cardiac surgical images. Future efforts will focus on improving the training speed and solving the problem of limited field of view.
Collapse
Affiliation(s)
- Xinan Sun
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China
| | - Feng Wang
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Zhikang Ma
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - He Su
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China.
| |
Collapse
|
13
|
Gopatoti A, Jayakumar R, Billa P, Patteeswaran V. DDA-SSNets: Dual decoder attention-based semantic segmentation networks for COVID-19 infection segmentation and classification using chest X-Ray images. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:623-649. [PMID: 38607728 DOI: 10.3233/xst-230421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
BACKGROUND COVID-19 needs to be diagnosed and staged to be treated accurately. However, prior studies' diagnostic and staging abilities for COVID-19 infection needed to be improved. Therefore, new deep learning-based approaches are required to aid radiologists in detecting and quantifying COVID-19-related lung infections. OBJECTIVE To develop deep learning-based models to classify and quantify COVID-19-related lung infections. METHODS Initially, Dual Decoder Attention-based Semantic Segmentation Networks (DDA-SSNets) such as Dual Decoder Attention-UNet (DDA-UNet) and Dual Decoder Attention-SegNet (DDA-SegNet) are proposed to facilitate the dual segmentation tasks such as lung lobes and infection segmentation in chest X-ray (CXR) images. The lung lobe and infection segmentations are mapped to grade the severity of COVID-19 infection in both the lungs of CXRs. Later, a Genetic algorithm-based Deep Convolutional Neural Network classifier with the optimum number of layers, namely GADCNet, is proposed to classify the extracted regions of interest (ROI) from the CXR lung lobes into COVID-19 and non-COVID-19. RESULTS The DDA-SegNet shows better segmentation with an average BCSSDC of 99.53% and 99.97% for lung lobes and infection segmentations, respectively, compared with DDA-UNet with an average BCSSDC of 99.14% and 99.92%. The proposed DDA-SegNet with GADCNet classifier offered excellent classification results with an average BCCAC of 99.98%, followed by the GADCNet with DDA-UNet with an average BCCAC of 99.92% after extensive testing and analysis. CONCLUSIONS The results show that the proposed DDA-SegNet has superior performance in the segmentation of lung lobes and COVID-19-infected regions in CXRs, along with improved severity grading compared to the DDA-UNet and improved accuracy of the GADCNet classifier in classifying the CXRs into COVID-19, and non-COVID-19.
Collapse
Affiliation(s)
- Anandbabu Gopatoti
- Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Ramya Jayakumar
- Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Poornaiah Billa
- Department of Electronics and Communication Engineering, Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India
| | - Vijayalakshmi Patteeswaran
- Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
14
|
Yang D, Huang Y, Li B, Cai J, Ren G. Dynamic Chest Radiograph Simulation Technique with Deep Convolutional Neural Networks: A Proof-of-Concept Study. Cancers (Basel) 2023; 15:5768. [PMID: 38136313 PMCID: PMC10741831 DOI: 10.3390/cancers15245768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, we present an innovative approach that harnesses deep neural networks to simulate respiratory lung motion and extract local functional information from single-phase chest X-rays, thus providing valuable auxiliary data for early diagnosis of lung cancer. A novel radiograph motion simulation (RMS) network was developed by combining a U-Net and a long short-term memory (LSTM) network for image generation and sequential prediction. By utilizing a spatial transformer network to deform input images, our proposed network ensures accurate image generation. We conducted both qualitative and quantitative assessments to evaluate the effectiveness and accuracy of our proposed network. The simulated respiratory motion closely aligns with pulmonary biomechanics and reveals enhanced details of pulmonary diseases. The proposed network demonstrates precise prediction of respiratory motion in the test cases, achieving remarkable average Dice scores exceeding 0.96 across all phases. The maximum variation in lung length prediction was observed during the end-exhale phase, with average deviation of 4.76 mm (±6.64) for the left lung and 4.77 mm (±7.00) for the right lung. This research validates the feasibility of generating patient-specific respiratory motion profiles from single-phase chest radiographs.
Collapse
Affiliation(s)
- Dongrong Yang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong; (D.Y.); (Y.H.); (B.L.)
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, USA
| | - Yuhua Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong; (D.Y.); (Y.H.); (B.L.)
| | - Bing Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong; (D.Y.); (Y.H.); (B.L.)
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong; (D.Y.); (Y.H.); (B.L.)
| | - Ge Ren
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong; (D.Y.); (Y.H.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
15
|
Gay SS, Kisling KD, Anderson BM, Zhang L, Rhee DJ, Nguyen C, Netherton T, Yang J, Brock K, Jhingran A, Simonds H, Klopp A, Beadle BM, Court LE, Cardenas CE. Identifying the optimal deep learning architecture and parameters for automatic beam aperture definition in 3D radiotherapy. J Appl Clin Med Phys 2023; 24:e14131. [PMID: 37670488 PMCID: PMC10691634 DOI: 10.1002/acm2.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/08/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
PURPOSE Two-dimensional radiotherapy is often used to treat cervical cancer in low- and middle-income countries, but treatment planning can be challenging and time-consuming. Neural networks offer the potential to greatly decrease planning time through automation, but the impact of the wide range of hyperparameters to be set during training on model accuracy has not been exhaustively investigated. In the current study, we evaluated the effect of several convolutional neural network architectures and hyperparameters on 2D radiotherapy treatment field delineation. METHODS Six commonly used deep learning architectures were trained to delineate four-field box apertures on digitally reconstructed radiographs for cervical cancer radiotherapy. A comprehensive search of optimal hyperparameters for all models was conducted by varying the initial learning rate, image normalization methods, and (when appropriate) convolutional kernel size, the number of learnable parameters via network depth and the number of feature maps per convolution, and nonlinear activation functions. This yielded over 1700 unique models, which were all trained until performance converged and then tested on a separate dataset. RESULTS Of all hyperparameters, the choice of initial learning rate was most consistently significant for improved performance on the test set, with all top-performing models using learning rates of 0.0001. The optimal image normalization was not consistent across architectures. High overlap (mean Dice similarity coefficient = 0.98) and surface distance agreement (mean surface distance < 2 mm) were achieved between the treatment field apertures for all architectures using the identified best hyperparameters. Overlap Dice similarity coefficient (DSC) and distance metrics (mean surface distance and Hausdorff distance) indicated that DeepLabv3+ and D-LinkNet architectures were least sensitive to initial hyperparameter selection. CONCLUSION DeepLabv3+ and D-LinkNet are most robust to initial hyperparameter selection. Learning rate, nonlinear activation function, and kernel size are also important hyperparameters for improving performance.
Collapse
Affiliation(s)
- Skylar S. Gay
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | | | | - Lifei Zhang
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Dong Joo Rhee
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Callistus Nguyen
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Tucker Netherton
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jinzhong Yang
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Kristy Brock
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Anuja Jhingran
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Hannah Simonds
- University Hospitals Plymouth NHS TrustPlymouthUnited Kingdom
| | - Ann Klopp
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Beth M. Beadle
- Department of Radiation OncologyStanford UniversityPalo AltoCaliforniaUSA
| | - Laurence E. Court
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Carlos E. Cardenas
- Department of Radiation OncologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
16
|
Saha PK, Nadeem SA, Comellas AP. A Survey on Artificial Intelligence in Pulmonary Imaging. WILEY INTERDISCIPLINARY REVIEWS. DATA MINING AND KNOWLEDGE DISCOVERY 2023; 13:e1510. [PMID: 38249785 PMCID: PMC10796150 DOI: 10.1002/widm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/21/2023] [Indexed: 01/23/2024]
Abstract
Over the last decade, deep learning (DL) has contributed a paradigm shift in computer vision and image recognition creating widespread opportunities of using artificial intelligence in research as well as industrial applications. DL has been extensively studied in medical imaging applications, including those related to pulmonary diseases. Chronic obstructive pulmonary disease, asthma, lung cancer, pneumonia, and, more recently, COVID-19 are common lung diseases affecting nearly 7.4% of world population. Pulmonary imaging has been widely investigated toward improving our understanding of disease etiologies and early diagnosis and assessment of disease progression and clinical outcomes. DL has been broadly applied to solve various pulmonary image processing challenges including classification, recognition, registration, and segmentation. This paper presents a survey of pulmonary diseases, roles of imaging in translational and clinical pulmonary research, and applications of different DL architectures and methods in pulmonary imaging with emphasis on DL-based segmentation of major pulmonary anatomies such as lung volumes, lung lobes, pulmonary vessels, and airways as well as thoracic musculoskeletal anatomies related to pulmonary diseases.
Collapse
Affiliation(s)
- Punam K Saha
- Departments of Radiology and Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242
| | | | | |
Collapse
|
17
|
Lyu Y, Tian X. MWG-UNet: Hybrid Deep Learning Framework for Lung Fields and Heart Segmentation in Chest X-ray Images. Bioengineering (Basel) 2023; 10:1091. [PMID: 37760193 PMCID: PMC10525798 DOI: 10.3390/bioengineering10091091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Deep learning technology has achieved breakthrough research results in the fields of medical computer vision and image processing. Generative adversarial networks (GANs) have demonstrated a capacity for image generation and expression ability. This paper proposes a new method called MWG-UNet (multiple tasking Wasserstein generative adversarial network U-shape network) as a lung field and heart segmentation model, which takes advantages of the attention mechanism to enhance the segmentation accuracy of the generator so as to improve the performance. In particular, the Dice similarity, precision, and F1 score of the proposed method outperform other models, reaching 95.28%, 96.41%, and 95.90%, respectively, and the specificity surpasses the sub-optimal models by 0.28%, 0.90%, 0.24%, and 0.90%. However, the value of the IoU is inferior to the optimal model by 0.69%. The results show the proposed method has considerable ability in lung field segmentation. Our multi-organ segmentation results for the heart achieve Dice similarity and IoU values of 71.16% and 74.56%. The segmentation results on lung fields achieve Dice similarity and IoU values of 85.18% and 81.36%.
Collapse
Affiliation(s)
| | - Xiaolin Tian
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau 999078, China;
| |
Collapse
|
18
|
Nagendram S, Singh A, Harish Babu G, Joshi R, Pande SD, Ahammad SKH, Dhabliya D, Bisht A. Stochastic gradient descent optimisation for convolutional neural network for medical image segmentation. Open Life Sci 2023; 18:20220665. [PMID: 37589001 PMCID: PMC10426722 DOI: 10.1515/biol-2022-0665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 07/02/2023] [Indexed: 08/18/2023] Open
Abstract
In accordance with the inability of various hair artefacts subjected to dermoscopic medical images, undergoing illumination challenges that include chest-Xray featuring conditions of imaging acquisi-tion situations built with clinical segmentation. The study proposed a novel deep-convolutional neural network (CNN)-integrated methodology for applying medical image segmentation upon chest-Xray and dermoscopic clinical images. The study develops a novel technique of segmenting medical images merged with CNNs with an architectural comparison that incorporates neural networks of U-net and fully convolutional networks (FCN) schemas with loss functions associated with Jaccard distance and Binary-cross entropy under optimised stochastic gradient descent + Nesterov practices. Digital image over clinical approach significantly built the diagnosis and determination of the best treatment for a patient's condition. Even though medical digital images are subjected to varied components clarified with the effect of noise, quality, disturbance, and precision depending on the enhanced version of images segmented with the optimised process. Ultimately, the threshold technique has been employed for the output reached under the pre- and post-processing stages to contrast the image technically being developed. The data source applied is well-known in PH2 Database for Melanoma lesion segmentation and chest X-ray images since it has variations in hair artefacts and illumination. Experiment outcomes outperform other U-net and FCN architectures of CNNs. The predictions produced from the model on test images were post-processed using the threshold technique to remove the blurry boundaries around the predicted lesions. Experimental results proved that the present model has better efficiency than the existing one, such as U-net and FCN, based on the image segmented in terms of sensitivity = 0.9913, accuracy = 0.9883, and dice coefficient = 0.0246.
Collapse
Affiliation(s)
- Sanam Nagendram
- Department of Artificial Intelligence, KKR & KSR Institute of Technology and Sciences, Guntur, India
| | - Arunendra Singh
- Department of Information Technology, Pranveer Singh Institute of Technology, Kanpur, 209305, Uttar Pradesh, India
| | - Gade Harish Babu
- Department of E.C.E, CVR College of Engineering, Hyderabad, India
| | - Rahul Joshi
- CSE Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
| | | | - S. K. Hasane Ahammad
- Department of E.C.E., Koneru Lakshmaiah Education Foundation,
Vaddeswaram, 522302, India
| | - Dharmesh Dhabliya
- Department of Information Technology, Vishwakarma Institute of Information Technology,
Pune, India
| | - Aadarsh Bisht
- University Institute of Engineering, Chandigarh University, Mohali, India
| |
Collapse
|
19
|
Multi-head deep learning framework for pulmonary disease detection and severity scoring with modified progressive learning. Biomed Signal Process Control 2023; 85:104855. [PMID: 36987448 PMCID: PMC10036214 DOI: 10.1016/j.bspc.2023.104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 03/26/2023]
Abstract
Chest X-rays (CXR) are the most commonly used imaging methodology in radiology to diagnose pulmonary diseases with close to 2 billion CXRs taken every year. The recent upsurge of COVID-19 and its variants accompanied by pneumonia and tuberculosis can be fatal in some cases and lives could be saved through early detection and appropriate intervention for the advanced cases. Thus CXRs can be used for an automated severity grading of pulmonary diseases that can aid radiologists in making better and informed diagnoses. In this article, we propose a single framework for disease classification and severity scoring produced by segmenting the lungs into six regions. We present a modified progressive learning technique in which the amount of augmentations at each step is capped. Our base network in the framework is first trained using modified progressive learning and can then be tweaked for new data sets. Furthermore, the segmentation task makes use of an attention map generated within and by the network itself. This attention mechanism allows to achieve segmentation results that are on par with networks having an order of magnitude or more parameters. We also propose severity score grading for 4 thoracic diseases that can provide a single-digit score corresponding to the spread of opacity in different lung segments with the help of radiologists. The proposed framework is evaluated using the BRAX data set for segmentation and classification into six classes with severity grading for a subset of the classes. On the BRAX validation data set, we achieve F1 scores of 0.924 and 0.939 without and with fine-tuning, respectively. A mean matching score of 80.8% is obtained for severity score grading while an average area under receiver operating characteristic curve of 0.88 is achieved for classification.
Collapse
|
20
|
Gopatoti A, Vijayalakshmi P. MTMC-AUR2CNet: Multi-textural multi-class attention recurrent residual convolutional neural network for COVID-19 classification using chest X-ray images. Biomed Signal Process Control 2023; 85:104857. [PMID: 36968651 PMCID: PMC10027978 DOI: 10.1016/j.bspc.2023.104857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/13/2023] [Accepted: 03/11/2023] [Indexed: 03/24/2023]
Abstract
Coronavirus disease (COVID-19) has infected over 603 million confirmed cases as of September 2022, and its rapid spread has raised concerns worldwide. More than 6.4 million fatalities in confirmed patients have been reported. According to reports, the COVID-19 virus causes lung damage and rapidly mutates before the patient receives any diagnosis-specific medicine. Daily increasing COVID-19 cases and the limited number of diagnosis tool kits encourage the use of deep learning (DL) models to assist health care practitioners using chest X-ray (CXR) images. The CXR is a low radiation radiography tool available in hospitals to diagnose COVID-19 and combat this spread. We propose a Multi-Textural Multi-Class (MTMC) UNet-based Recurrent Residual Convolutional Neural Network (MTMC-UR2CNet) and MTMC-UR2CNet with attention mechanism (MTMC-AUR2CNet) for multi-class lung lobe segmentation of CXR images. The lung lobe segmentation output of MTMC-UR2CNet and MTMC-AUR2CNet are mapped individually with their input CXRs to generate the region of interest (ROI). The multi-textural features are extracted from the ROI of each proposed MTMC network. The extracted multi-textural features from ROI are fused and are trained to the Whale optimization algorithm (WOA) based DeepCNN classifier on classifying the CXR images into normal (healthy), COVID-19, viral pneumonia, and lung opacity. The experimental result shows that the MTMC-AUR2CNet has superior performance in multi-class lung lobe segmentation of CXR images with an accuracy of 99.47%, followed by MTMC-UR2CNet with an accuracy of 98.39%. Also, MTMC-AUR2CNet improves the multi-textural multi-class classification accuracy of the WOA-based DeepCNN classifier to 97.60% compared to MTMC-UR2CNet.
Collapse
Affiliation(s)
- Anandbabu Gopatoti
- Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
- Centre for Research, Anna University, Chennai, Tamil Nadu, India
| | - P Vijayalakshmi
- Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
21
|
Horry MJ, Chakraborty S, Pradhan B, Paul M, Zhu J, Loh HW, Barua PD, Acharya UR. Development of Debiasing Technique for Lung Nodule Chest X-ray Datasets to Generalize Deep Learning Models. SENSORS (BASEL, SWITZERLAND) 2023; 23:6585. [PMID: 37514877 PMCID: PMC10385599 DOI: 10.3390/s23146585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Screening programs for early lung cancer diagnosis are uncommon, primarily due to the challenge of reaching at-risk patients located in rural areas far from medical facilities. To overcome this obstacle, a comprehensive approach is needed that combines mobility, low cost, speed, accuracy, and privacy. One potential solution lies in combining the chest X-ray imaging mode with federated deep learning, ensuring that no single data source can bias the model adversely. This study presents a pre-processing pipeline designed to debias chest X-ray images, thereby enhancing internal classification and external generalization. The pipeline employs a pruning mechanism to train a deep learning model for nodule detection, utilizing the most informative images from a publicly available lung nodule X-ray dataset. Histogram equalization is used to remove systematic differences in image brightness and contrast. Model training is then performed using combinations of lung field segmentation, close cropping, and rib/bone suppression. The resulting deep learning models, generated through this pre-processing pipeline, demonstrate successful generalization on an independent lung nodule dataset. By eliminating confounding variables in chest X-ray images and suppressing signal noise from the bone structures, the proposed deep learning lung nodule detection algorithm achieves an external generalization accuracy of 89%. This approach paves the way for the development of a low-cost and accessible deep learning-based clinical system for lung cancer screening.
Collapse
Affiliation(s)
- Michael J Horry
- Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
- IBM Australia Limited, Sydney, NSW 2000, Australia
| | - Subrata Chakraborty
- Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - Biswajeet Pradhan
- Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Earth Observation Center, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Manoranjan Paul
- Machine Vision and Digital Health (MaViDH), School of Computing and Mathematics, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Jing Zhu
- Department of Radiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Hui Wen Loh
- School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore
| | - Prabal Datta Barua
- Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia
- School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, QLD 4300, Australia
| |
Collapse
|
22
|
Experimental analysis of machine learning methods to detect Covid-19 from x-rays. JOURNAL OF ENGINEERING RESEARCH 2023; 11:100063. [PMCID: PMC10065050 DOI: 10.1016/j.jer.2023.100063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 02/02/2024]
Abstract
To automate the detection of covid-19 patients most have proposed deep learning neural networks to classify patients using large databases of chest x-rays. Very few used classical machine learning methods. Machine learning methods may require less computational power and perform well if the data set is small. We experiment with classical machine learning methods on three different data sources varying in size from 55 to almost 4000 samples. We experiment with four feature extraction methods of Gabor, SURF, LBP, and HOG. Backpropagation neural networks and k-nearest neighbor classifiers are combined using one of the four combining methods of bagging, RSM, ARCx4 boosting and Ada-boosting. Results show that using the proper feature extraction and feature selection methods very high performance can be reached using simple backpropagation neural network classifiers. Regardless of combiner method used, the best classification rate achieved was 99.06% for the largest data set, and 100% for the smallest data set.
Collapse
|
23
|
Sulaiman A, Anand V, Gupta S, Asiri Y, Elmagzoub MA, Reshan MSA, Shaikh A. A Convolutional Neural Network Architecture for Segmentation of Lung Diseases Using Chest X-ray Images. Diagnostics (Basel) 2023; 13:diagnostics13091651. [PMID: 37175042 PMCID: PMC10178696 DOI: 10.3390/diagnostics13091651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The segmentation of lungs from medical images is a critical step in the diagnosis and treatment of lung diseases. Deep learning techniques have shown great promise in automating this task, eliminating the need for manual annotation by radiologists. In this research, a convolution neural network architecture is proposed for lung segmentation using chest X-ray images. In the proposed model, concatenate block is embedded to learn a series of filters or features used to extract meaningful information from the image. Moreover, a transpose layer is employed in the concatenate block to improve the spatial resolution of feature maps generated by a prior convolutional layer. The proposed model is trained using k-fold validation as it is a powerful and flexible tool for evaluating the performance of deep learning models. The proposed model is evaluated on five different subsets of the data by taking the value of k as 5 to obtain the optimized model to obtain more accurate results. The performance of the proposed model is analyzed for different hyper-parameters such as the batch size as 32, optimizer as Adam and 40 epochs. The dataset used for the segmentation of disease is taken from the Kaggle repository. The various performance parameters such as accuracy, IoU, and dice coefficient are calculated, and the values obtained are 0.97, 0.93, and 0.96, respectively.
Collapse
Affiliation(s)
- Adel Sulaiman
- Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia
| | - Vatsala Anand
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Sheifali Gupta
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Yousef Asiri
- Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia
| | - M A Elmagzoub
- Department of Network and Communication Engineering, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia
| | - Mana Saleh Al Reshan
- Department of Information Systems, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia
| | - Asadullah Shaikh
- Department of Information Systems, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia
| |
Collapse
|
24
|
Pedersen AE, Kusk MW, Knudsen GH, Busk CAGR, Lysdahlgaard S. Collimation border with U-Net segmentation on chest radiographs compared to radiologists. Radiography (Lond) 2023; 29:647-652. [PMID: 37141685 DOI: 10.1016/j.radi.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Chest Radiography (CXR) is a common radiographic procedure. Radiation exposure to patients should be kept as low as reasonably achievable (ALARA), and monitored continuously as part of quality assurance (QA) programs. One of the most effective dose reduction tools is proper collimation practice. The purpose of this study is to determine whether a U-Net convolutional neural networks (U-CNN) can be trained to automatically segment the lungs and calculate an optimized collimation border on a limited CXR dataset. METHODS 662 CXRs with manual lung segmentations were obtained from an open-source dataset. These were used to train and validate three different U-CNNs for automatic lung segmentation and optimal collimation. The U-CNN dimensions were 128 × 128, 256 × 256, and 512 × 512 pixels and validated with five-fold cross validation. The U-CNN with the highest area under the curve (AUC) was tested externally, using a dataset of 50 CXRs. Dice scores (DS) were used to compare U-CNN segmentations with manual segmentations by three radiographers and two junior radiologists. RESULTS DS for the three U-CNN dimensions with segmentation of the lungs ranged from 0.93 to 0.96, respectively. DS of the collimation border for each U-CNN was 0.95 compared to the ground truth labels. DS for lung segmentation and collimation border between the junior radiologists was 0.97 and 0.97. One radiographer differed significantly from the U-CNN (p = 0.016). CONCLUSION We demonstrated that a U-CNN could reliably segment the lungs and suggest a collimation border with great accuracy compared to junior radiologists. This algorithm has the potential to automate collimation auditing of CXRs. IMPLICATIONS FOR PRACTICE Creating an automatic segmentation model of the lungs can produce a collimation border, which can be used in CXR QA programs.
Collapse
Affiliation(s)
- A E Pedersen
- Department of Radiology and Nuclear Medicine, Hospital of South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - M W Kusk
- Department of Radiology and Nuclear Medicine, Hospital of South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark; Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Imaging Research Initiative Southwest (IRIS), Hospital of South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark; Radiography & Diagnostic Imaging, School of Medicine, University College Dublin, Ireland
| | - G H Knudsen
- Department of Radiology and Nuclear Medicine, Hospital of South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark; Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Imaging Research Initiative Southwest (IRIS), Hospital of South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - C A G R Busk
- Department of Radiology and Nuclear Medicine, Hospital of South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark; Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Imaging Research Initiative Southwest (IRIS), Hospital of South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - S Lysdahlgaard
- Department of Radiology and Nuclear Medicine, Hospital of South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark; Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Imaging Research Initiative Southwest (IRIS), Hospital of South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark.
| |
Collapse
|
25
|
Agrawal T, Choudhary P. ReSE‐Net: Enhanced UNet architecture for lung segmentation in chest radiography images. Comput Intell 2023. [DOI: 10.1111/coin.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Tarun Agrawal
- Department of Computer Science and Engineering NIT Hamirpur Hamirpur Himachal Pradesh India
| | - Prakash Choudhary
- Department of Computer Science and Engineering Central University of Rajasthan Ajmer Rajasthan India
| |
Collapse
|
26
|
GLAN: GAN Assisted Lightweight Attention Network for Biomedical Imaging Based Diagnostics. Cognit Comput 2023. [DOI: 10.1007/s12559-023-10131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
27
|
Shamrat FJM, Azam S, Karim A, Ahmed K, Bui FM, De Boer F. High-precision multiclass classification of lung disease through customized MobileNetV2 from chest X-ray images. Comput Biol Med 2023; 155:106646. [PMID: 36805218 DOI: 10.1016/j.compbiomed.2023.106646] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
In this study, multiple lung diseases are diagnosed with the help of the Neural Network algorithm. Specifically, Emphysema, Infiltration, Mass, Pleural Thickening, Pneumonia, Pneumothorax, Atelectasis, Edema, Effusion, Hernia, Cardiomegaly, Pulmonary Fibrosis, Nodule, and Consolidation, are studied from the ChestX-ray14 dataset. A proposed fine-tuned MobileLungNetV2 model is employed for analysis. Initially, pre-processing is done on the X-ray images from the dataset using CLAHE to increase image contrast. Additionally, a Gaussian Filter, to denoise images, and data augmentation methods are used. The pre-processed images are fed into several transfer learning models; such as InceptionV3, AlexNet, DenseNet121, VGG19, and MobileNetV2. Among these models, MobileNetV2 performed with the highest accuracy of 91.6% in overall classifying lesions on Chest X-ray Images. This model is then fine-tuned to optimise the MobileLungNetV2 model. On the pre-processed data, the fine-tuned model, MobileLungNetV2, achieves an extraordinary classification accuracy of 96.97%. Using a confusion matrix for all the classes, it is determined that the model has an overall high precision, recall, and specificity scores of 96.71%, 96.83% and 99.78% respectively. The study employs the Grad-cam output to determine the heatmap of disease detection. The proposed model shows promising results in classifying multiple lesions on Chest X-ray images.
Collapse
Affiliation(s)
- Fm Javed Mehedi Shamrat
- Department of Software Engineering, Daffodil International University, Birulia, 1216, Dhaka, Bangladesh
| | - Sami Azam
- Faculty of Science and Technology, Charles Darwin University, Casuarina, NT 0909, Australia.
| | - Asif Karim
- Faculty of Science and Technology, Charles Darwin University, Casuarina, NT 0909, Australia.
| | - Kawsar Ahmed
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; Group of Bio-photomatiχ, Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Francis M Bui
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Friso De Boer
- Faculty of Science and Technology, Charles Darwin University, Casuarina, NT 0909, Australia
| |
Collapse
|
28
|
Wang X, Yang B, Pan X, Liu F, Zhang S. BPCN: bilateral progressive compensation network for lung infection image segmentation. Phys Med Biol 2023; 68. [PMID: 36580682 DOI: 10.1088/1361-6560/acaf21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Lung infection image segmentation is a key technology for autonomous understanding of the potential illness. However, current approaches usually lose the low-level details, which leads to a considerable accuracy decrease for lung infection areas with varied shapes and sizes. In this paper, we propose bilateral progressive compensation network (BPCN), a bilateral progressive compensation network to improve the accuracy of lung lesion segmentation through complementary learning of spatial and semantic features. The proposed BPCN are mainly composed of two deep branches. One branch is the multi-scale progressive fusion for main region features. The other branch is a flow-field based adaptive body-edge aggregation operations to explicitly learn detail features of lung infection areas which is supplement to region features. In addition, we propose a bilateral spatial-channel down-sampling to generate a hierarchical complementary feature which avoids losing discriminative features caused by pooling operations. Experimental results show that our proposed network outperforms state-of-the-art segmentation methods in lung infection segmentation on two public image datasets with or without a pseudo-label training strategy.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Zhejiang University of Technology, Zhejiang Province, People's Republic of China
| | - Baoqi Yang
- Zhejiang University of Technology, Zhejiang Province, People's Republic of China
| | - Xiang Pan
- Zhejiang University of Technology, Zhejiang Province, People's Republic of China
| | - Fuchang Liu
- Hangzhou Normal University, Zhejiang Province, People's Republic of China
| | - Sanyuan Zhang
- Zhejiang University, Zhejiang Province, People's Republic of China
| |
Collapse
|
29
|
Ullah I, Ali F, Shah B, El-Sappagh S, Abuhmed T, Park SH. A deep learning based dual encoder-decoder framework for anatomical structure segmentation in chest X-ray images. Sci Rep 2023; 13:791. [PMID: 36646735 PMCID: PMC9842654 DOI: 10.1038/s41598-023-27815-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder-decoder convolutional neural network (CNN). The first network in the dual encoder-decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network's representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder-decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods.
Collapse
Affiliation(s)
- Ihsan Ullah
- Department of Robotics and Mechatronics Engineering, Daegu Gyeonbuk Institute of Science and Engineering (DGIST), Daegu, 42988, South Korea
| | - Farman Ali
- Department of Computer Science and Engineering, School of Convergence, College of Computing and Informatics, Sungkyunkwan University, Seoul, 03063, South Korea
| | - Babar Shah
- College of Technological Innovation, Zayed University, Dubai, 19282, United Arab Emirates
| | - Shaker El-Sappagh
- Faculty of Computer Science and Engineering, Galala University, Suez, 435611, Egypt
- Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University, Banha, 13518, Egypt
| | - Tamer Abuhmed
- Department of Computer Science and Engineering, College of Computing and Informatics, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sang Hyun Park
- Department of Robotics and Mechatronics Engineering, Daegu Gyeonbuk Institute of Science and Engineering (DGIST), Daegu, 42988, South Korea.
| |
Collapse
|
30
|
He T, Liu H, Zhang Z, Li C, Zhou Y. Research on the Application of Artificial Intelligence in Public Health Management: Leveraging Artificial Intelligence to Improve COVID-19 CT Image Diagnosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1158. [PMID: 36673913 PMCID: PMC9858906 DOI: 10.3390/ijerph20021158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 05/31/2023]
Abstract
Since the start of 2020, the outbreak of the Coronavirus disease (COVID-19) has been a global public health emergency, and it has caused unprecedented economic and social disaster. In order to improve the diagnosis efficiency of COVID-19 patients, a number of researchers have conducted extensive studies on applying artificial intelligence techniques to the analysis of COVID-19-related medical images. The automatic segmentation of lesions from computed tomography (CT) images using deep learning provides an important basis for the quantification and diagnosis of COVID-19 cases. For a deep learning-based CT diagnostic method, a few of accurate pixel-level labels are essential for the training process of a model. However, the translucent ground-glass area of the lesion usually leads to mislabeling while performing the manual labeling operation, which weakens the accuracy of the model. In this work, we propose a method for correcting rough labels; that is, to hierarchize these rough labels into precise ones by performing an analysis on the pixel distribution of the infected and normal areas in the lung. The proposed method corrects the incorrectly labeled pixels and enables the deep learning model to learn the infected degree of each infected pixel, with which an aiding system (named DLShelper) for COVID-19 CT image diagnosis using the hierarchical labels is also proposed. The DLShelper targets lesion segmentation from CT images, as well as the severity grading. The DLShelper assists medical staff in efficient diagnosis by providing rich auxiliary diagnostic information (including the severity grade, the proportions of the lesion and the visualization of the lesion area). A comprehensive experiment based on a public COVID-19 CT image dataset is also conducted, and the experimental results show that the DLShelper significantly improves the accuracy of segmentation for the lesion areas and also achieves a promising accuracy for the severity grading task.
Collapse
Affiliation(s)
- Tiancheng He
- Department of Political Party and State Governance, East China University of Political Science and Law, Shanghai 201620, China
| | - Hong Liu
- Department of Political Party and State Governance, East China University of Political Science and Law, Shanghai 201620, China
- Teacher Work Department of the Party Committee, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhihao Zhang
- College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090, China
| | - Chao Li
- Department of Computer Science, Zhijiang College of Zhejiang University of Technology, Hangzhou 310024, China
| | - Youmei Zhou
- Department of Landscape Architecture, College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China
| |
Collapse
|
31
|
Podder P, Das SR, Mondal MRH, Bharati S, Maliha A, Hasan MJ, Piltan F. LDDNet: A Deep Learning Framework for the Diagnosis of Infectious Lung Diseases. SENSORS (BASEL, SWITZERLAND) 2023; 23:480. [PMID: 36617076 PMCID: PMC9824583 DOI: 10.3390/s23010480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
This paper proposes a new deep learning (DL) framework for the analysis of lung diseases, including COVID-19 and pneumonia, from chest CT scans and X-ray (CXR) images. This framework is termed optimized DenseNet201 for lung diseases (LDDNet). The proposed LDDNet was developed using additional layers of 2D global average pooling, dense and dropout layers, and batch normalization to the base DenseNet201 model. There are 1024 Relu-activated dense layers and 256 dense layers using the sigmoid activation method. The hyper-parameters of the model, including the learning rate, batch size, epochs, and dropout rate, were tuned for the model. Next, three datasets of lung diseases were formed from separate open-access sources. One was a CT scan dataset containing 1043 images. Two X-ray datasets comprising images of COVID-19-affected lungs, pneumonia-affected lungs, and healthy lungs exist, with one being an imbalanced dataset with 5935 images and the other being a balanced dataset with 5002 images. The performance of each model was analyzed using the Adam, Nadam, and SGD optimizers. The best results have been obtained for both the CT scan and CXR datasets using the Nadam optimizer. For the CT scan images, LDDNet showed a COVID-19-positive classification accuracy of 99.36%, a 100% precision recall of 98%, and an F1 score of 99%. For the X-ray dataset of 5935 images, LDDNet provides a 99.55% accuracy, 73% recall, 100% precision, and 85% F1 score using the Nadam optimizer in detecting COVID-19-affected patients. For the balanced X-ray dataset, LDDNet provides a 97.07% classification accuracy. For a given set of parameters, the performance results of LDDNet are better than the existing algorithms of ResNet152V2 and XceptionNet.
Collapse
Affiliation(s)
- Prajoy Podder
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Sanchita Rani Das
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - M. Rubaiyat Hossain Mondal
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Subrato Bharati
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Azra Maliha
- Faculty of Engineering and IT, The British University in Dubai, Dubai P.O. Box 345015, United Arab Emirates
| | - Md Junayed Hasan
- National Subsea Centre, Robert Gordon University, Aberdeen AB10 7AQ, UK
| | - Farzin Piltan
- Ulsan Industrial Artificial Intelligence (UIAI) Lab, Department of Electrical, Electronics and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
32
|
Celik G. Detection of Covid-19 and other pneumonia cases from CT and X-ray chest images using deep learning based on feature reuse residual block and depthwise dilated convolutions neural network. Appl Soft Comput 2023; 133:109906. [PMID: 36504726 PMCID: PMC9726212 DOI: 10.1016/j.asoc.2022.109906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Covid-19 has become a worldwide epidemic which has caused the death of millions in a very short time. This disease, which is transmitted rapidly, has mutated and different variations have emerged. Early diagnosis is important to prevent the spread of this disease. In this study, a new deep learning-based architecture is proposed for rapid detection of Covid-19 and other symptoms using CT and X-ray chest images. This method, called CovidDWNet, is based on a structure based on feature reuse residual block (FRB) and depthwise dilated convolutions (DDC) units. The FRB and DDC units efficiently acquired various features in the chest scan images and it was seen that the proposed architecture significantly improved its performance. In addition, the feature maps obtained with the CovidDWNet architecture were estimated with the Gradient boosting (GB) algorithm. With the CovidDWNet+GB architecture, which is a combination of CovidDWNet and GB, a performance increase of approximately 7% in CT images and between 3% and 4% in X-ray images has been achieved. The CovidDWNet+GB architecture achieved the highest success compared to other architectures, with 99.84% and 100% accuracy rates, respectively, on different datasets containing binary class (Covid-19 and Normal) CT images. Similarly, the proposed architecture showed the highest success with 96.81% accuracy in multi-class (Covid-19, Lung Opacity, Normal and Viral Pneumonia) X-ray images and 96.32% accuracy in the dataset containing X-ray and CT images. When the time to predict the disease in CT or X-ray images is examined, it is possible to say that it has a high speed because the CovidDWNet+GB method predicts thousands of images within seconds.
Collapse
Affiliation(s)
- Gaffari Celik
- Agri Ibrahim Cecen University, Department of Computer Technology, Agri, Turkey
| |
Collapse
|
33
|
Comparison of X-ray films in term of kVp, mA, exposure time and distance using Radiographic Chest Phantom as a radiation quality. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
A Patient-Specific Algorithm for Lung Segmentation in Chest Radiographs. AI 2022. [DOI: 10.3390/ai3040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung segmentation plays an important role in computer-aided detection and diagnosis using chest radiographs (CRs). Currently, the U-Net and DeepLabv3+ convolutional neural network architectures are widely used to perform CR lung segmentation. To boost performance, ensemble methods are often used, whereby probability map outputs from several networks operating on the same input image are averaged. However, not all networks perform adequately for any specific patient image, even if the average network performance is good. To address this, we present a novel multi-network ensemble method that employs a selector network. The selector network evaluates the segmentation outputs from several networks; on a case-by-case basis, it selects which outputs are fused to form the final segmentation for that patient. Our candidate lung segmentation networks include U-Net, with five different encoder depths, and DeepLabv3+, with two different backbone networks (ResNet50 and ResNet18). Our selector network is a ResNet18 image classifier. We perform all training using the publicly available Shenzhen CR dataset. Performance testing is carried out with two independent publicly available CR datasets, namely, Montgomery County (MC) and Japanese Society of Radiological Technology (JSRT). Intersection-over-Union scores for the proposed approach are 13% higher than the standard averaging ensemble method on MC and 5% better on JSRT.
Collapse
|
35
|
Okolo GI, Katsigiannis S, Ramzan N. IEViT: An enhanced vision transformer architecture for chest X-ray image classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107141. [PMID: 36162246 DOI: 10.1016/j.cmpb.2022.107141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Chest X-ray imaging is a relatively cheap and accessible diagnostic tool that can assist in the diagnosis of various conditions, including pneumonia, tuberculosis, COVID-19, and others. However, the requirement for expert radiologists to view and interpret chest X-ray images can be a bottleneck, especially in remote and deprived areas. Recent advances in machine learning have made possible the automated diagnosis of chest X-ray scans. In this work, we examine the use of a novel Transformer-based deep learning model for the task of chest X-ray image classification. METHODS We first examine the performance of the Vision Transformer (ViT) state-of-the-art image classification machine learning model for the task of chest X-ray image classification, and then propose and evaluate the Input Enhanced Vision Transformer (IEViT), a novel enhanced Vision Transformer model that can achieve improved performance on chest X-ray images associated with various pathologies. RESULTS Experiments on four chest X-ray image data sets containing various pathologies (tuberculosis, pneumonia, COVID-19) demonstrated that the proposed IEViT model outperformed ViT for all the data sets and variants examined, achieving an F1-score between 96.39% and 100%, and an improvement over ViT of up to +5.82% in terms of F1-score across the four examined data sets. IEViT's maximum sensitivity (recall) ranged between 93.50% and 100% across the four data sets, with an improvement over ViT of up to +3%, whereas IEViT's maximum precision ranged between 97.96% and 100% across the four data sets, with an improvement over ViT of up to +6.41%. CONCLUSIONS Results showed that the proposed IEViT model outperformed all ViT's variants for all the examined chest X-ray image data sets, demonstrating its superiority and generalisation ability. Given the relatively low cost and the widespread accessibility of chest X-ray imaging, the use of the proposed IEViT model can potentially offer a powerful, but relatively cheap and accessible method for assisting diagnosis using chest X-ray images.
Collapse
Affiliation(s)
| | | | - Naeem Ramzan
- University of the West of Scotland, High St., Paisley, PA1 2BE, UK
| |
Collapse
|
36
|
Segmentation-Based Classification Deep Learning Model Embedded with Explainable AI for COVID-19 Detection in Chest X-ray Scans. Diagnostics (Basel) 2022; 12:diagnostics12092132. [PMID: 36140533 PMCID: PMC9497601 DOI: 10.3390/diagnostics12092132] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/16/2022] Open
Abstract
Background and Motivation: COVID-19 has resulted in a massive loss of life during the last two years. The current imaging-based diagnostic methods for COVID-19 detection in multiclass pneumonia-type chest X-rays are not so successful in clinical practice due to high error rates. Our hypothesis states that if we can have a segmentation-based classification error rate <5%, typically adopted for 510 (K) regulatory purposes, the diagnostic system can be adapted in clinical settings. Method: This study proposes 16 types of segmentation-based classification deep learning-based systems for automatic, rapid, and precise detection of COVID-19. The two deep learning-based segmentation networks, namely UNet and UNet+, along with eight classification models, namely VGG16, VGG19, Xception, InceptionV3, Densenet201, NASNetMobile, Resnet50, and MobileNet, were applied to select the best-suited combination of networks. Using the cross-entropy loss function, the system performance was evaluated by Dice, Jaccard, area-under-the-curve (AUC), and receiver operating characteristics (ROC) and validated using Grad-CAM in explainable AI framework. Results: The best performing segmentation model was UNet, which exhibited the accuracy, loss, Dice, Jaccard, and AUC of 96.35%, 0.15%, 94.88%, 90.38%, and 0.99 (p-value <0.0001), respectively. The best performing segmentation-based classification model was UNet+Xception, which exhibited the accuracy, precision, recall, F1-score, and AUC of 97.45%, 97.46%, 97.45%, 97.43%, and 0.998 (p-value <0.0001), respectively. Our system outperformed existing methods for segmentation-based classification models. The mean improvement of the UNet+Xception system over all the remaining studies was 8.27%. Conclusion: The segmentation-based classification is a viable option as the hypothesis (error rate <5%) holds true and is thus adaptable in clinical practice.
Collapse
|
37
|
|
38
|
Zhang Z, Li Y, Shin BS. C 2 -GAN: Content-consistent generative adversarial networks for unsupervised domain adaptation in medical image segmentation. Med Phys 2022; 49:6491-6504. [PMID: 35981348 DOI: 10.1002/mp.15944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/19/2022] [Accepted: 07/31/2022] [Indexed: 11/05/2022] Open
Abstract
PURPOSE In clinical practice, medical image analysis has played a key role in disease diagnosis. One of the important steps is to perform an accurate organ or tissue segmentation for assisting medical professionals in making correct diagnoses. Despite the tremendous progress in the deep learning-based medical image segmentation approaches, they often fail to generalize to test datasets due to distribution discrepancies across domains. Recent advances aligning the domain gaps by using bi-directional GANs (e.g., CycleGAN) have shown promising results, but the strict constraints of the cycle consistency hamper these methods from yielding better performance. The purpose of this study is to propose a novel bi-directional GAN-based segmentation model with fewer constraints on the cycle consistency to improve the generalized segmentation results. METHODS We propose a novel unsupervised domain adaptation approach by designing content-consistent generative adversarial networks (C2 -GAN) for medical image segmentation. Firstly, we introduce content consistency instead of cycle consistency to relax the constraint of the invertibility map to encourage the synthetic domain generated with a large domain transportation distance. The synthetic domain is thus pulled close to the target domain for the reduction of domain discrepancy. Secondly, we suggest a novel style transfer loss based on the difference in low-frequency magnitude to further mitigate the appearance shifts across domains. RESULTS We validate our proposed approach on three public X-ray datasets including the Montgomery, JSRT, and Shenzhen datasets. For an accurate evaluation, we randomly divided the images of each dataset into 70% for training, 10% for evaluation, and 20% for testing. The mean Dice was 95.73 ± 0.22%, 95.16 ± 1.42% for JSRT and Shenzhen datasets, respectively. For the recall and precision metrics, our model also achieved better or comparable performance than the state-of-the-art CycleGAN-based UDA approaches. CONCLUSIONS The experimental results validate the effectiveness of our method in mitigating the domain gaps and improving generalized segmentation results for X-ray image segmentation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zuyu Zhang
- Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, Korea
| | - Yan Li
- Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, Korea
| | - Byeong-Seok Shin
- Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, Korea
| |
Collapse
|
39
|
Deep Segmentation Networks for Segmenting Kidneys and Detecting Kidney Stones in Unenhanced Abdominal CT Images. Diagnostics (Basel) 2022; 12:diagnostics12081788. [PMID: 35892498 PMCID: PMC9330428 DOI: 10.3390/diagnostics12081788] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Recent breakthroughs of deep learning algorithms in medical imaging, automated detection, and segmentation techniques for renal (kidney) in abdominal computed tomography (CT) images have been limited. Radiomics and machine learning analyses of renal diseases rely on the automatic segmentation of kidneys in CT images. Inspired by this, our primary aim is to utilize deep semantic segmentation learning models with a proposed training scheme to achieve precise and accurate segmentation outcomes. Moreover, this work aims to provide the community with an open-source, unenhanced abdominal CT dataset for training and testing the deep learning segmentation networks to segment kidneys and detect kidney stones. Five variations of deep segmentation networks are trained and tested both dependently (based on the proposed training scheme) and independently. Upon comparison, the models trained with the proposed training scheme enable the highly accurate 2D and 3D segmentation of kidneys and kidney stones. We believe this work is a fundamental step toward AI-driven diagnostic strategies, which can be an essential component of personalized patient care and improved decision-making in treating kidney diseases.
Collapse
|
40
|
Young LH, Kim J, Yakin M, Lin H, Dao DT, Kodati S, Sharma S, Lee AY, Lee CS, Sen HN. Automated Detection of Vascular Leakage in Fluorescein Angiography - A Proof of Concept. Transl Vis Sci Technol 2022; 11:19. [PMID: 35877095 PMCID: PMC9339697 DOI: 10.1167/tvst.11.7.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this paper was to develop a deep learning algorithm to detect retinal vascular leakage (leakage) in fluorescein angiography (FA) of patients with uveitis and use the trained algorithm to determine clinically notable leakage changes. Methods An algorithm was trained and tested to detect leakage on a set of 200 FA images (61 patients) and evaluated on a separate 50-image test set (21 patients). The ground truth was leakage segmentation by two clinicians. The Dice Similarity Coefficient (DSC) was used to measure concordance. Results During training, the algorithm achieved a best average DSC of 0.572 (95% confidence interval [CI] = 0.548–0.596). The trained algorithm achieved a DSC of 0.563 (95% CI = 0.543–0.582) when tested on an additional set of 50 images. The trained algorithm was then used to detect leakage on pairs of FA images from longitudinal patient visits. Longitudinal leakage follow-up showed a >2.21% change in the visible retina area covered by leakage (as detected by the algorithm) had a sensitivity and specificity of 90% (area under the curve [AUC] = 0.95) of detecting a clinically notable change compared to the gold standard, an expert clinician's assessment. Conclusions This deep learning algorithm showed modest concordance in identifying vascular leakage compared to ground truth but was able to aid in identifying vascular FA leakage changes over time. Translational Relevance This is a proof-of-concept study that vascular leakage can be detected in a more standardized way and that tools can be developed to help clinicians more objectively compare vascular leakage between FAs.
Collapse
Affiliation(s)
- LeAnne H Young
- National Eye Institute, Bethesda, MD, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Jongwoo Kim
- National Library of Medicine, Bethesda, MD, USA
| | | | - Henry Lin
- National Eye Institute, Bethesda, MD, USA
| | | | | | - Sumit Sharma
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - H Nida Sen
- National Eye Institute, Bethesda, MD, USA
| |
Collapse
|
41
|
Neural architecture search for pneumonia diagnosis from chest X-rays. Sci Rep 2022; 12:11309. [PMID: 35788644 PMCID: PMC9252574 DOI: 10.1038/s41598-022-15341-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
Pneumonia is one of the diseases that causes the most fatalities worldwide, especially in children. Recently, pneumonia-caused deaths have increased dramatically due to the novel Coronavirus global pandemic. Chest X-ray (CXR) images are one of the most readily available and common imaging modality for the detection and identification of pneumonia. However, the detection of pneumonia from chest radiography is a difficult task even for experienced radiologists. Artificial Intelligence (AI) based systems have great potential in assisting in quick and accurate diagnosis of pneumonia from chest X-rays. The aim of this study is to develop a Neural Architecture Search (NAS) method to find the best convolutional architecture capable of detecting pneumonia from chest X-rays. We propose a Learning by Teaching framework inspired by the teaching-driven learning methodology from humans, and conduct experiments on a pneumonia chest X-ray dataset with over 5000 images. Our proposed method yields an area under ROC curve (AUC) of 97.6% for pneumonia detection, which improves upon previous NAS methods by 5.1% (absolute).
Collapse
|
42
|
Jafar A, Hameed MT, Akram N, Waqas U, Kim HS, Naqvi RA. CardioNet: Automatic Semantic Segmentation to Calculate the Cardiothoracic Ratio for Cardiomegaly and Other Chest Diseases. J Pers Med 2022; 12:988. [PMID: 35743771 PMCID: PMC9225197 DOI: 10.3390/jpm12060988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Semantic segmentation for diagnosing chest-related diseases like cardiomegaly, emphysema, pleural effusions, and pneumothorax is a critical yet understudied tool for identifying the chest anatomy. A dangerous disease among these is cardiomegaly, in which sudden death is a high risk. An expert medical practitioner can diagnose cardiomegaly early using a chest radiograph (CXR). Cardiomegaly is a heart enlargement disease that can be analyzed by calculating the transverse cardiac diameter (TCD) and the cardiothoracic ratio (CTR). However, the manual estimation of CTR and other chest-related diseases requires much time from medical experts. Based on their anatomical semantics, artificial intelligence estimates cardiomegaly and related diseases by segmenting CXRs. Unfortunately, due to poor-quality images and variations in intensity, the automatic segmentation of the lungs and heart with CXRs is challenging. Deep learning-based methods are being used to identify the chest anatomy segmentation, but most of them only consider the lung segmentation, requiring a great deal of training. This work is based on a multiclass concatenation-based automatic semantic segmentation network, CardioNet, that was explicitly designed to perform fine segmentation using fewer parameters than a conventional deep learning scheme. Furthermore, the semantic segmentation of other chest-related diseases is diagnosed using CardioNet. CardioNet is evaluated using the JSRT dataset (Japanese Society of Radiological Technology). The JSRT dataset is publicly available and contains multiclass segmentation of the heart, lungs, and clavicle bones. In addition, our study examined lung segmentation using another publicly available dataset, Montgomery County (MC). The experimental results of the proposed CardioNet model achieved acceptable accuracy and competitive results across all datasets.
Collapse
Affiliation(s)
- Abbas Jafar
- Department of Computer Engineering, Myongji University, Yongin 03674, Korea;
| | - Muhammad Talha Hameed
- Department of Primary and Secondary Healthcare, Lahore 54000, Pakistan; (M.T.H.); (N.A.)
| | - Nadeem Akram
- Department of Primary and Secondary Healthcare, Lahore 54000, Pakistan; (M.T.H.); (N.A.)
| | - Umer Waqas
- Research and Development, AItheNutrigene, Seoul 06132, Korea;
| | - Hyung Seok Kim
- School of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea
| | - Rizwan Ali Naqvi
- Department of Unmanned Vehicle Engineering, Sejong University, Seoul 05006, Korea
| |
Collapse
|
43
|
Fang Z, Ye B, Yuan B, Wang T, Zhong S, Li S, Zheng J. Angle prediction model when the imaging plane is tilted about z-axis. THE JOURNAL OF SUPERCOMPUTING 2022; 78:18598-18615. [PMID: 35692867 PMCID: PMC9175174 DOI: 10.1007/s11227-022-04595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Computer Tomography (CT) is a complicated imaging system, requiring highly geometric positioning. We found a special artifact caused by detection plane tilted around z-axis. In short scan cone-beam reconstruction, this kind of geometric deviation result in half circle shaped fuzzy around highlighted particles in reconstructed slices. This artifact is distinct near the slice periphery, but deficient around the slice center. We generated mathematical models, and InceptionV3-R deep network to study the slice artifact features to estimate the detector z-axis tilt angle. The testing results are: mean absolute error of 0.08819 degree, the Root mean square error of 0.15221 degree and R-square of 0.99944. A geometric deviation recover formula was deduced, which can eliminate this artifact efficiently. This research enlarges the CT artifact knowledge hierarchy, and verifies the capability of machine learning in CT geometric deviation artifact recoveries.
Collapse
Affiliation(s)
- Zheng Fang
- School of Aerospace Engineering, Xiamen University, Xiamen, 361102 China
| | - Bichao Ye
- School of Aerospace Engineering, Xiamen University, Xiamen, 361102 China
| | - Bingan Yuan
- School of Aerospace Engineering, Xiamen University, Xiamen, 361102 China
| | - Tingjun Wang
- School of Aerospace Engineering, Xiamen University, Xiamen, 361102 China
| | - Shuo Zhong
- School of Aerospace Engineering, Xiamen University, Xiamen, 361102 China
| | - Shunren Li
- ASR Technology (Xiamen) Co., Ltd, Xiamen, China
| | - Jianyi Zheng
- School of Aerospace Engineering, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
44
|
Liu W, Luo J, Yang Y, Wang W, Deng J, Yu L. Automatic lung segmentation in chest X-ray images using improved U-Net. Sci Rep 2022; 12:8649. [PMID: 35606509 PMCID: PMC9127108 DOI: 10.1038/s41598-022-12743-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/16/2022] [Indexed: 11/08/2022] Open
Abstract
The automatic segmentation of the lung region for chest X-ray (CXR) can help doctors diagnose many lung diseases. However, extreme lung shape changes and fuzzy lung regions caused by serious lung diseases may incorrectly make the automatic lung segmentation model. We improved the U-Net network by using the pre-training Efficientnet-b4 as the encoder and the Residual block and the LeakyReLU activation function in the decoder. The network can extract Lung field features efficiently and avoid the gradient instability caused by the multiplication effect in gradient backpropagation. Compared with the traditional U-Net model, our method improves about 2.5% dice coefficient and 6% Jaccard Index for the two benchmark lung segmentation datasets. Our model improves about 5% dice coefficient and 9% Jaccard Index for the private lung segmentation datasets compared with the traditional U-Net model. Comparative experiments show that our method can improve the accuracy of lung segmentation of CXR images and it has a lower standard deviation and good robustness.
Collapse
Affiliation(s)
- Wufeng Liu
- Henan University of Technology, Zhengzhou, 450001, China.
| | - Jiaxin Luo
- Henan University of Technology, Zhengzhou, 450001, China
| | - Yan Yang
- Henan University of Technology, Zhengzhou, 450001, China
| | - Wenlian Wang
- Nanyang Central Hospital, Nanyang, 473009, China
| | - Junkui Deng
- Nanyang Central Hospital, Nanyang, 473009, China
| | - Liang Yu
- Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
45
|
Sevli O. A deep learning-based approach for diagnosing COVID-19 on chest x-ray images, and a test study with clinical experts. Comput Intell 2022; 38:COIN12526. [PMID: 35941907 PMCID: PMC9348396 DOI: 10.1111/coin.12526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/06/2022] [Accepted: 04/05/2022] [Indexed: 01/20/2023]
Abstract
Pneumonia is among the common symptoms of the virus that causes COVID-19, which has turned into a worldwide pandemic. It is possible to diagnose pneumonia by examining chest radiographs. Chest x-ray (CXR) is a fast, low-cost, and practical method widely used in this field. The fact that different pathogens other than COVID-19 also cause pneumonia and the radiographic images of all are similar make it difficult to detect the source of the disease. In this study, automatic detection of COVID-19 cases over CXR images was tried to be performed using convolutional neural network (CNN), a deep learning technique. Classifications were carried out using six different architectures on the dataset consisting of 15,153 images of three different types: healthy, COVID-19, and other viral-induced pneumonia. In the classifications performed with five different state-of-art models, ResNet18, GoogLeNet, AlexNet, VGG16, and DenseNet161, and a minimal CNN architecture specific to this study, the most successful result was obtained with the ResNet18 architecture as 99.25% accuracy. Although the minimal CNN model developed for this study has a simpler structure, it was observed that it has a success to compete with more complex models. The performances of the models used in this study were compared with similar studies in the literature and it was revealed that they generally achieved higher success. The model with the highest success was transformed into a test application, tested by 10 volunteer clinicians, and it was concluded that it provides 99.06% accuracy in practical use. This result reveals that the conducted study can play the role of a successful decision support system for experts.
Collapse
Affiliation(s)
- Onur Sevli
- Faculty of Engineering and Architecture, Computer Engineering DepartmentBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| |
Collapse
|
46
|
Astley JR, Wild JM, Tahir BA. Deep learning in structural and functional lung image analysis. Br J Radiol 2022; 95:20201107. [PMID: 33877878 PMCID: PMC9153705 DOI: 10.1259/bjr.20201107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The recent resurgence of deep learning (DL) has dramatically influenced the medical imaging field. Medical image analysis applications have been at the forefront of DL research efforts applied to multiple diseases and organs, including those of the lungs. The aims of this review are twofold: (i) to briefly overview DL theory as it relates to lung image analysis; (ii) to systematically review the DL research literature relating to the lung image analysis applications of segmentation, reconstruction, registration and synthesis. The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. 479 studies were initially identified from the literature search with 82 studies meeting the eligibility criteria. Segmentation was the most common lung image analysis DL application (65.9% of papers reviewed). DL has shown impressive results when applied to segmentation of the whole lung and other pulmonary structures. DL has also shown great potential for applications in image registration, reconstruction and synthesis. However, the majority of published studies have been limited to structural lung imaging with only 12.9% of reviewed studies employing functional lung imaging modalities, thus highlighting significant opportunities for further research in this field. Although the field of DL in lung image analysis is rapidly expanding, concerns over inconsistent validation and evaluation strategies, intersite generalisability, transparency of methodological detail and interpretability need to be addressed before widespread adoption in clinical lung imaging workflow.
Collapse
Affiliation(s)
| | - Jim M Wild
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
47
|
Sharma CM, Goyal L, Chariar VM, Sharma N. Lung Disease Classification in CXR Images Using Hybrid Inception-ResNet-v2 Model and Edge Computing. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9036457. [PMID: 35368941 PMCID: PMC8968389 DOI: 10.1155/2022/9036457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/20/2022]
Abstract
Chest X-ray (CXR) imaging is one of the most widely used and economical tests to diagnose a wide range of diseases. However, even for expert radiologists, it is a challenge to accurately diagnose diseases from CXR samples. Furthermore, there remains an acute shortage of trained radiologists worldwide. In the present study, a range of machine learning (ML), deep learning (DL), and transfer learning (TL) approaches have been evaluated to classify diseases in an openly available CXR image dataset. A combination of the synthetic minority over-sampling technique (SMOTE) and weighted class balancing is used to alleviate the effects of class imbalance. A hybrid Inception-ResNet-v2 transfer learning model coupled with data augmentation and image enhancement gives the best accuracy. The model is deployed in an edge environment using Amazon IoT Core to automate the task of disease detection in CXR images with three categories, namely pneumonia, COVID-19, and normal. Comparative analysis has been given in various metrics such as precision, recall, accuracy, AUC-ROC score, etc. The proposed technique gives an average accuracy of 98.66%. The accuracies of other TL models, namely SqueezeNet, VGG19, ResNet50, and MobileNetV2 are 97.33%, 91.66%, 90.33%, and 76.00%, respectively. Further, a DL model, trained from scratch, gives an accuracy of 92.43%. Two feature-based ML classification techniques, namely support vector machine with local binary pattern (SVM + LBP) and decision tree with histogram of oriented gradients (DT + HOG) yield an accuracy of 87.98% and 86.87%, respectively.
Collapse
|
48
|
Peng T, Wang C, Zhang Y, Wang J. H-SegNet: hybrid segmentation network for lung segmentation in chest radiographs using mask region-based convolutional neural network and adaptive closed polyline searching method. Phys Med Biol 2022; 67. [PMID: 35287125 DOI: 10.1088/1361-6560/ac5d74] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
Abstract
Chest x-ray (CXR) is one of the most commonly used imaging techniques for the detection and diagnosis of pulmonary diseases. One critical component in many computer-aided systems, for either detection or diagnosis in digital CXR, is the accurate segmentation of the lung. Due to low-intensity contrast around lung boundary and large inter-subject variance, it has been challenging to segment lung from structural CXR images accurately. In this work, we propose an automatic Hybrid Segmentation Network (H-SegNet) for lung segmentation on CXR. The proposed H-SegNet consists of two key steps: (1) an image preprocessing step based on a deep learning model to automatically extract coarse lung contours; (2) a refinement step to fine-tune the coarse segmentation results based on an improved principal curve-based method coupled with an improved machine learning method. Experimental results on several public datasets show that the proposed method achieves superior segmentation results in lung CXRs, compared with several state-of-the-art methods.
Collapse
Affiliation(s)
- Tao Peng
- Department of Radiation Oncology, Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX, United States of America
| | - Caishan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - You Zhang
- Department of Radiation Oncology, Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX, United States of America
| | - Jing Wang
- Department of Radiation Oncology, Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX, United States of America
| |
Collapse
|
49
|
Nayak J, Naik B, Dinesh P, Vakula K, Dash PB, Pelusi D. Significance of deep learning for Covid-19: state-of-the-art review. RESEARCH ON BIOMEDICAL ENGINEERING 2022. [PMCID: PMC7980106 DOI: 10.1007/s42600-021-00135-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose The appearance of the 2019 novel coronavirus (Covid-19), for which there is no treatment or a vaccine, formed a sense of necessity for new drug discovery advances. The pandemic of NCOV-19 (novel coronavirus-19) has been engaged as a public health disaster of overall distress by the World Health Organization. Different pandemic models for NCOV-19 are being exploited by researchers all over the world to acquire experienced assessments and impose major control measures. Among the standard techniques for NCOV-19 global outbreak prediction, epidemiological and simple statistical techniques have attained more concern by researchers. Insufficiency and deficiency of health tests for identifying a solution became a major difficulty in controlling the spread of NCOV-19. To solve this problem, deep learning has emerged as a novel solution over a dozen of machine learning techniques. Deep learning has attained advanced performance in medical applications. Deep learning has the capacity of recognizing patterns in large complex datasets. They are identified as an appropriate method for analyzing affected patients of NCOV-19. Conversely, these techniques for disease recognition focus entirely on enhancing the accurateness of forecasts or classifications without the ambiguity measure in a decision. Knowing how much assurance present in a computer-based health analysis is necessary for gaining clinicians’ expectations in the technology and progress treatment consequently. Today, NCOV-19 diseases are the main healthcare confront throughout the world. Detecting NCOV-19 in X-ray images is vital for diagnosis, treatment, and evaluation. Still, analytical ambiguity in a report is a difficult yet predictable task for radiologists. Method In this paper, an in-depth analysis has been performed on the significance of deep learning for Covid-19 and as per the standard search database, this is the first review research work ever made concentrating particularly on Deep Learning for NCOV-19. Conclusion The main aim behind this research work is to inspire the research community and to innovate novel research using deep learning. Moreover, the outcome of this detailed structured review on the impact of deep learning in covid-19 analysis will be helpful for further investigations on various modalities of diseases detection, prevention and finding novel solutions.
Collapse
Affiliation(s)
- Janmenjoy Nayak
- Department of Computer Science and Engineering, Aditya Institute of Technology and Management (AITAM), K Kotturu, Tekkali, AP 532201 India
| | - Bighnaraj Naik
- Department of Computer Application, Veer Surendra Sai University of Technology, Burla, Odisha 768018 India
| | - Paidi Dinesh
- Department of Computer Science and Engineering, Sri Sivani College of Engineering, Srikakulam, AP 532402 India
| | - Kanithi Vakula
- Department of Computer Science and Engineering, Sri Sivani College of Engineering, Srikakulam, AP 532402 India
| | - Pandit Byomakesha Dash
- Department of Computer Application, Veer Surendra Sai University of Technology, Burla, Odisha 768018 India
| | - Danilo Pelusi
- Faculty of Communication Sciences, University of Teramo, Coste Sant', Agostino Campus, Teramo, Italy
| |
Collapse
|
50
|
Maity A, Nair TR, Mehta S, Prakasam P. Automatic lung parenchyma segmentation using a deep convolutional neural network from chest X-rays. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|