1
|
Yang Y, Yu K, Gao S, Yu S, Xiong D, Qin C, Chen H, Tang J, Tang N, Zhu H. Alzheimer's disease knowledge graph enhances knowledge discovery and disease prediction. Comput Biol Med 2025; 192:110285. [PMID: 40306017 DOI: 10.1016/j.compbiomed.2025.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/26/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
OBJECTIVE To construct an Alzheimer's Disease Knowledge Graph (ADKG) by extracting and integrating relationships among Alzheimer's disease (AD), genes, variants, chemicals, drugs, and other diseases from biomedical literature, aiming to identify existing treatments, potential targets, and diagnostic methods for AD. METHODS We annotated 800 PubMed abstracts (ADERC corpus) with 20,886 entities and 4935 relationships, augmented via GPT-4. A SpERT model (SciBERT-based) trained on this data extracted relations from PubMed abstracts, supported by biomedical databases and entity linking refined via abbreviation resolution/string matching. The resulting knowledge graph trained embedding models to predict novel relationships. ADKG's utility was validated by integrating it with UK Biobank data for predictive modeling. RESULTS The ADKG contained 3,199,276 entity mentions and 633,733 triplets, linking >5K unique entities and capturing complex AD-related interactions. Its graph embedding models produced evidence-supported predictions, enabling testable hypotheses. In UK Biobank predictive modeling, ADKG-enhanced models achieved higher AUROC of 0.928 comparing to 0.903 without ADKG enhancement. CONCLUSION By synthesizing literature-derived insights into a computable framework, ADKG bridges molecular mechanisms to clinical phenotypes, advancing precision medicine in Alzheimer's research. Its structured data and predictive utility underscore its potential to accelerate therapeutic discovery and risk stratification.
Collapse
Affiliation(s)
- Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, USA
| | | | - Shan Gao
- Department of Mathematics and Statistics, Yunnan University, China
| | - Sheng Yu
- Center for Statistics Science, Tsinghua University, China
| | - Di Xiong
- Department of Mathematics, Shanghai University, China
| | - Chuanyang Qin
- Department of Mathematics and Statistics, Yunnan University, China
| | - Huiyuan Chen
- Department of Mathematics and Statistics, Yunnan University, China
| | - Jiarui Tang
- Department of Biostatistics, University of North Carolina at Chapel Hill, USA
| | - Niansheng Tang
- Department of Mathematics and Statistics, Yunnan University, China
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
2
|
Bai J, Zhang Z, Yin Y, Jin W, Ali TAA, Xiong Y, Xiao Z. LGG-NeXt: A Next Generation CNN and Transformer Hybrid Model for the Diagnosis of Alzheimer's Disease Using 2D Structural MRI. IEEE J Biomed Health Inform 2025; 29:2808-2818. [PMID: 39527411 DOI: 10.1109/jbhi.2024.3495835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Incurable Alzheimer's disease (AD) plagues many elderly people and families. It is important to accurately diagnose and predict it at an early stage. However, the existing methods have shortcomings, such as inability to learn local and global information and the inability to extract effective features. In this paper, we propose a lightweight classification network Local and Global Graph ConvNeXt. This model has a hybrid architecture of convolutional neural network and Transformers. We build the Global NeXt Block and the Local NeXt Block to extract the local and global features of the structural magnetic resonance imaging (sMRI). These two blocks are optimized by adding global multilayer perceptron and locally grouped attention, respectively. Then, the features are fed into the pixel graph neural network to aggregate the valid pixel features using mask attention. In addition, we decoupled the loss by category to optimize the calculation of the loss. This method was tested on slices of the processed sMRI datasets from ADNI and achieved excellent performance. Our model achieves 95.81% accuracy with fewer parameters and floating point operations per second (FLOPS) than other classical efficient models in the diagnosis of AD.
Collapse
|
3
|
Aghdam MA, Bozdag S, Saeed F. Machine-learning models for Alzheimer's disease diagnosis using neuroimaging data: survey, reproducibility, and generalizability evaluation. Brain Inform 2025; 12:8. [PMID: 40117001 PMCID: PMC11928716 DOI: 10.1186/s40708-025-00252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/16/2025] [Indexed: 03/23/2025] Open
Abstract
Clinical diagnosis of Alzheimer's disease (AD) is usually made after symptoms such as short-term memory loss are exhibited, which minimizes the intervention and treatment options. The existing screening techniques cannot distinguish between stable MCI (sMCI) cases (i.e., patients who do not convert to AD for at least three years) and progressive MCI (pMCI) cases (i.e., patients who convert to AD in three years or sooner). Delayed diagnosis of AD also disproportionately affects underrepresented and socioeconomically disadvantaged populations. The significant positive impact of an early diagnosis solution for AD across diverse ethno-racial and demographic groups is well-known and recognized. While advancements in high-throughput technologies have enabled the generation of vast amounts of multimodal clinical, and neuroimaging datasets related to AD, most methods utilizing these data sets for diagnostic purposes have not found their way in clinical settings. To better understand the landscape, we surveyed the major preprocessing, data management, traditional machine-learning (ML), and deep learning (DL) techniques used for diagnosing AD using neuroimaging data such as structural magnetic resonance imaging (sMRI), functional magnetic resonance imaging (fMRI), and positron emission tomography (PET). Once we had a good understanding of the methods available, we conducted a study to assess the reproducibility and generalizability of open-source ML models. Our evaluation shows that existing models show reduced generalizability when different cohorts of the data modality are used while controlling other computational factors. The paper concludes with a discussion of major challenges that plague ML models for AD diagnosis and biomarker discovery.
Collapse
Affiliation(s)
- Maryam Akhavan Aghdam
- Knight Foundation School of Computing and Information Science (KFSCIS), Florida International University (FIU), Miami, FL, USA
| | - Serdar Bozdag
- Department of Computer Science and Engineering, University of North Texas (UNT), Denton, TX, USA
| | - Fahad Saeed
- Knight Foundation School of Computing and Information Science (KFSCIS), Florida International University (FIU), Miami, FL, USA.
| |
Collapse
|
4
|
Ur Rahman J, Hanif M, Ur Rehman O, Haider U, Mian Qaisar S, Pławiak P. Stages prediction of Alzheimer's disease with shallow 2D and 3D CNNs from intelligently selected neuroimaging data. Sci Rep 2025; 15:9238. [PMID: 40102464 PMCID: PMC11920085 DOI: 10.1038/s41598-025-93560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
Detection of Alzheimer's Disease (AD) is critical for successful diagnosis and treatment, involving the common practice of screening for Mild Cognitive Impairment (MCI). However, the progressive nature of AD makes it challenging to identify its causal factors. Modern diagnostic workflows for AD use cognitive tests, neurological examinations, and biomarker-based methods, e.g., cerebrospinal fluid (CSF) analysis and positron emission tomography (PET) imaging. While these methods are effective, non-invasive imaging techniques like Magnetic Resonance Imaging (MRI) are gaining importance. Deep Learning (DL) approaches for evaluating alterations in brain structure have focused on combining MRI and Convolutional Neural Networks (CNNs) within the spatial architecture of DL. This combination has garnered significant research interest due to its remarkable effectiveness in automating feature extraction across various multilayer perceptron models. Despite this, MRI's noisy and multidimensional nature requires an intelligent preprocessing pipeline for effective disease prediction. Our study aims to detect different stages of AD from the multidimensional neuroimaging data obtained through MRI scans using 2D and 3D CNN architectures. The proposed preprocessing pipeline comprises skull stripping, spatial normalization, and smoothing. It is followed by a novel and efficient pixel count-based frame selection and cropping approach, which renders a notable dimension reduction. Furthermore, the learnable resizer method is applied to enhance the image quality while resizing the data. Finally, the proposed shallow 2D and 3D CNN architectures extract spatio-temporal attributes from the segmented MRI data. Furthermore, we merged both the CNNs for further comparative analysis. Notably, 2D CNN achieved a maximum accuracy of 93%, while 3D CNN reported the highest accuracy of 96.5%.
Collapse
Affiliation(s)
- Jalees Ur Rahman
- Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Muhammad Hanif
- Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Obaid Ur Rehman
- Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
| | - Usman Haider
- Department of AI & DS, FAST School of Computing, National University of Computer and Emerging Sciences, Islamabad, Pakistan
| | - Saeed Mian Qaisar
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait.
- Electrical and Computer Engineering Department, Effat University, 21478, Jeddah, Saudi Arabia.
| | - Paweł Pławiak
- Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155, Krakow, Poland.
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100, Gliwice, Poland.
| |
Collapse
|
5
|
Han L. AD-Diff: enhancing Alzheimer's disease prediction accuracy through multimodal fusion. Front Comput Neurosci 2025; 19:1484540. [PMID: 40145080 PMCID: PMC11937103 DOI: 10.3389/fncom.2025.1484540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Early prediction of Alzheimer's disease (AD) is crucial to improving patient quality of life and treatment outcomes. However, current predictive methods face challenges such as insufficient multimodal information integration and the high cost of PET image acquisition, which limit their effectiveness in practical applications. To address these issues, this paper proposes an innovative model, AD-Diff. This model significantly improves AD prediction accuracy by integrating PET images generated through a diffusion process with cognitive scale data and other modalities. Specifically, the AD-Diff model consists of two core components: the ADdiffusion module and the multimodal Mamba Classifier. The ADdiffusion module uses a 3D diffusion process to generate high-quality PET images, which are then fused with MRI images and tabular data to provide input for the Multimodal Mamba Classifier. Experimental results on the OASIS and ADNI datasets demonstrate that the AD-Diff model performs exceptionally well in both long-term and short-term AD prediction tasks, significantly improving prediction accuracy and reliability. These results highlight the significant advantages of the AD-Diff model in handling complex medical image data and multimodal information, providing an effective tool for the early diagnosis and personalized treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Lei Han
- School of Clinical Sciences, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
6
|
Rahman AU, Ali S, Saqia B, Halim Z, Al-Khasawneh MA, AlHammadi DA, Khan MZ, Ullah I, Alharbi M. Alzheimer's disease prediction using 3D-CNNs: Intelligent processing of neuroimaging data. SLAS Technol 2025; 32:100265. [PMID: 40057236 DOI: 10.1016/j.slast.2025.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/01/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Alzheimer's disease (AD) is a severe neurological illness that demolishes memory and brain functioning. This disease affects an individual's capacity to work, think, and behave. The proportion of individuals suffering from AD is rapidly increasing. It flatters a leading cause of disability and impacts millions of people worldwide. Early detection reduces disease expansion, provides more effective therapies, and leads to better results. However, predicting AD at an early stage is complex since its clinical symptoms match with normal aging, mild cognitive impairment (MCI), and neurodegenerative disorders. Prior studies indicate that early diagnosis is improved by the utilization of magnetic resonance imaging (MRI). However, MRI data is scarce, noisy, and extremely diverse among scanners and patient populations. The 2D CNNs analyze 3D data slices separately, resulting in a loss of inter-slice information and contextual coherence required to detect subtle and diffuse brain alterations. This study offered a novel 3Dimensional-Convolutional Neural Network (3D-CNN) and intelligent preprocessing pipeline for AD prediction. This work uses an intelligent frame selection and 3D dilated convolutions mechanism to recognize the most informative slices associated with AD disease. This enabled the model to capture subtle and diffuse structural changes across the brain visible in MRI scans. The proposed model examined brain structures by recognizing small volumetric changes associated with AD and acquiring spatial hierarchies within MRI data. After conducting various experiments, we observed that the proposed 3D-CNNs are highly proficient in capturing early brain changes. To validate the model's performance, a benchmark dataset called AD Neuroimaging Initiative (ADNI) is used and achieves a maximum accuracy of 92.89 %, outperforming state-of-the-art approaches.
Collapse
Affiliation(s)
- Atta Ur Rahman
- IRC for Finance and Digital Economy, KFUPM Business School, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Sania Ali
- Department of Computer Science, University of Science and Technology Bannu, 28100, Pakistan
| | - Bibi Saqia
- Department of Computer Science, University of Science and Technology Bannu, 28100, Pakistan
| | - Zahid Halim
- Department of Information Management, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan
| | - M A Al-Khasawneh
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Jordan; School of Computing, Skyline University College, University City Sharjah, 1797, Sharjah, UAE
| | - Dina Abdulaziz AlHammadi
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Inam Ullah
- Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea.
| | - Meshal Alharbi
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
7
|
Warren SL, Moustafa AA. Towards Clinical Diagnoses: Classifying Alzheimer's Disease Using Single fMRI, Small Datasets, and Transfer Learning. Brain Behav 2025; 15:e70427. [PMID: 40108822 PMCID: PMC11922808 DOI: 10.1002/brb3.70427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/30/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025] Open
Abstract
PURPOSE Deep learning and functional magnetic resonance imaging (fMRI) are two unique methodologies that can be combined to diagnose Alzheimer's disease (AD). Multiple studies have harnessed these methods to diagnose AD with high accuracy. However, there are difficulties in adapting this research to real-world diagnoses. For example, the two key issues of data availability and model usability limit clinical applications. These two areas are concerned with problems of accessibility, generalizability, and methodology that may limit model adoption. For example, fMRI deep learning models require a large amount of training data, which is not widely available. Contemporary models are also not typically formatted for clinical data or created for use by non-specialized populations. In this study, we develop a deep-learning fMRI pipeline that addresses some of these issues. METHOD We use transfer learning to address problems with data availability. We also use semi-automated and single-image techniques (i.e., one fMRI volume per participant) to make a model that is usable for non-specialized populations. Our model was initially trained on 524 participants from the Autism Brain Imaging Data Exchange (ABIDE; Autism and controls). Our model was then transferred and fine-tuned to a small sample of 64 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI; AD and controls). FINDINGS AND CONCLUSION This transfer learning model achieved an AD classification accuracy of 77% and outperformed the same model without transfer learning by approximately 30%. Accordingly, our model showed that small AD samples can be accurately classified in a clinically friendly manner.
Collapse
Affiliation(s)
- Samuel L Warren
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, Australia
| | - Ahmed A Moustafa
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, Australia
- Department of Human Anatomy and Physiology, the Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
8
|
Hassan N, Miah ASM, Suzuki K, Okuyama Y, Shin J. Stacked CNN-based multichannel attention networks for Alzheimer disease detection. Sci Rep 2025; 15:5815. [PMID: 39962097 PMCID: PMC11832778 DOI: 10.1038/s41598-025-85703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Alzheimer's Disease (AD) is a progressive condition of a neurological brain disorder recognized by symptoms such as dementia, memory loss, alterations in behaviour, and impaired reasoning abilities. Recently, many researchers have been working to develop an effective AD recognition system using deep learning (DL) based convolutional neural network (CNN) model aiming to deploy the automatic medical image diagnosis system. The existing system is still facing difficulties in achieving satisfactory performance in terms of accuracy and efficiency because of the lack of feature ineffectiveness. This study proposes a lightweight Stacked Convolutional Neural Network with a Channel Attention Network (SCCAN) for MRI based on AD classification to overcome the challenges. In the procedure, we sequentially integrate 5 CNN modules, which form a stack CNN aiming to generate a hierarchical understanding of features through multi-level extraction, effectively reducing noise and enhancing the weight's efficacy. This feature is then fed into a channel attention module to select the practical features based on the channel dimension, facilitating the selection of influential features. . Consequently, the model exhibits reduced parameters, making it suitable for training on smaller datasets. Addressing the class imbalance in the Kaggle MRI dataset, a balanced distribution of samples among classes is emphasized. Extensive experiments of the proposed model with the ADNI1 Complete 1Yr 1.5T, Kaggle, and OASIS-1 datasets showed 99.58%, 99.22%, and 99.70% accuracy, respectively. The proposed model's high performance surpassed state-of-the-art (SOTA) models and proved its excellence as a significant advancement in AD classification using MRI images.
Collapse
Affiliation(s)
- Najmul Hassan
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-0006, Japan
| | - Abu Saleh Musa Miah
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-0006, Japan
| | - Kota Suzuki
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-0006, Japan
| | - Yuichi Okuyama
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-0006, Japan
| | - Jungpil Shin
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-0006, Japan.
| |
Collapse
|
9
|
Halkiopoulos C, Gkintoni E, Aroutzidis A, Antonopoulou H. Advances in Neuroimaging and Deep Learning for Emotion Detection: A Systematic Review of Cognitive Neuroscience and Algorithmic Innovations. Diagnostics (Basel) 2025; 15:456. [PMID: 40002607 PMCID: PMC11854508 DOI: 10.3390/diagnostics15040456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The following systematic review integrates neuroimaging techniques with deep learning approaches concerning emotion detection. It, therefore, aims to merge cognitive neuroscience insights with advanced algorithmic methods in pursuit of an enhanced understanding and applications of emotion recognition. Methods: The study was conducted following PRISMA guidelines, involving a rigorous selection process that resulted in the inclusion of 64 empirical studies that explore neuroimaging modalities such as fMRI, EEG, and MEG, discussing their capabilities and limitations in emotion recognition. It further evaluates deep learning architectures, including neural networks, CNNs, and GANs, in terms of their roles in classifying emotions from various domains: human-computer interaction, mental health, marketing, and more. Ethical and practical challenges in implementing these systems are also analyzed. Results: The review identifies fMRI as a powerful but resource-intensive modality, while EEG and MEG are more accessible with high temporal resolution but limited by spatial accuracy. Deep learning models, especially CNNs and GANs, have performed well in classifying emotions, though they do not always require large and diverse datasets. Combining neuroimaging data with behavioral and cognitive features improves classification performance. However, ethical challenges, such as data privacy and bias, remain significant concerns. Conclusions: The study has emphasized the efficiencies of neuroimaging and deep learning in emotion detection, while various ethical and technical challenges were also highlighted. Future research should integrate behavioral and cognitive neuroscience advances, establish ethical guidelines, and explore innovative methods to enhance system reliability and applicability.
Collapse
Affiliation(s)
- Constantinos Halkiopoulos
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (C.H.); (A.A.); (H.A.)
| | - Evgenia Gkintoni
- Department of Educational Sciences and Social Work, University of Patras, 26504 Patras, Greece
| | - Anthimos Aroutzidis
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (C.H.); (A.A.); (H.A.)
| | - Hera Antonopoulou
- Department of Management Science and Technology, University of Patras, 26334 Patras, Greece; (C.H.); (A.A.); (H.A.)
| |
Collapse
|
10
|
Ghadami R, Rahebi J. Alzheimer's Prediction Methods with Harris Hawks Optimization (HHO) and Deep Learning-Based Approach Using an MLP-LSTM Hybrid Network. Diagnostics (Basel) 2025; 15:377. [PMID: 39941306 PMCID: PMC11816878 DOI: 10.3390/diagnostics15030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objective: Alzheimer's disease is a progressive brain syndrome causing cognitive decline and, ultimately, death. Early diagnosis is essential for timely medical intervention, with MRI medical imaging serving as a primary diagnostic tool. Machine learning (ML) and deep learning (DL) methods are increasingly utilized to analyze these images, but accurately distinguishing between healthy and diseased states remains a challenge. This study aims to address these limitations by developing an integrated approach combining swarm intelligence with ML and DL techniques for Alzheimer's disease classification. Method: This proposal methodology involves sourcing Alzheimer's disease-related MRI images and extracting features using convolutional neural networks (CNNs) and the Gray Level Co-occurrence Matrix (GLCM). The Harris Hawks Optimization (HHO) algorithm is applied to select the most significant features. The selected features are used to train a multi-layer perceptron (MLP) neural network and further processed using a long short-term (LSTM) memory network in order to classify tumors as malignant or benign. The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset is utilized for assessment. Results: The proposed method achieved a classification accuracy of 97.59%, sensitivity of 97.41%, and precision of 97.25%, outperforming other models, including VGG16, GLCM, and ResNet-50, in diagnosing Alzheimer's disease. Conclusions: The results demonstrate the efficacy of the proposed approach in enhancing Alzheimer's disease diagnosis through improved feature extraction and selection techniques. These findings highlight the potential for advanced ML and DL integration to improve diagnostic tools in medical imaging applications.
Collapse
Affiliation(s)
- Raheleh Ghadami
- Department of Computer Engineering, Istanbul Topkapi University, 34662 Istanbul, Türkiye;
| | - Javad Rahebi
- Department of Software Engineering, Istanbul Topkapi University, 34662 Istanbul, Türkiye
| |
Collapse
|
11
|
Momeni F, Shahbazi-Gahrouei D, Mahmoudi T, Mehdizadeh A. Transfer Learning and Neural Network-Based Approach on Structural MRI Data for Prediction and Classification of Alzheimer's Disease. Diagnostics (Basel) 2025; 15:360. [PMID: 39941290 PMCID: PMC11817314 DOI: 10.3390/diagnostics15030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Alzheimer's disease (AD) is a neurodegenerative condition that has no definitive treatment, and its early diagnosis can help to prevent or slow down its progress. Structural magnetic resonance imaging (sMRI) and the progress of artificial intelligence (AI) have significant attention in AD detection. This study aims to differentiate AD from NC and distinguish between LMCI and EMCI from the other two classes. Another goal is the diagnostic performance (accuracy and AUC) of sMRI for predicting AD in its early stages. Methods: In this study, 398 participants were used from the ADNI and OASIS global database of sMRI including 98 individuals with AD, 102 with early mild cognitive impairment (EMCI), 98 with late mild cognitive impairment (LMCI), and 100 normal controls (NC). Results: The proposed model achieved high area under the curve (AUC) values and an accuracy of 99.7%, which is very remarkable for all four classes: NC vs. AD: AUC = [0.985], EMCI vs. NC: AUC = [0.961], LMCI vs. NC: AUC = [0.951], LMCI vs. AD: AUC = [0.989], and EMCI vs. LMCI: AUC = [1.000]. Conclusions: The results reveal that this model incorporates DenseNet169, transfer learning, and class decomposition to classify AD stages, particularly in differentiating EMCI from LMCI. The proposed model performs well with high accuracy and area under the curve for AD diagnostics at early stages. In addition, the accurate diagnosis of EMCI and LMCI can lead to early prediction of AD or prevention and slowing down of AD before its progress.
Collapse
Affiliation(s)
- Farideh Momeni
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Tahereh Mahmoudi
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (T.M.); (A.M.)
| | - Alireza Mehdizadeh
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (T.M.); (A.M.)
| |
Collapse
|
12
|
Alinsaif S. DCA-Enhanced Alzheimer's detection with shearlet and deep learning integration. Comput Biol Med 2025; 185:109538. [PMID: 39674071 DOI: 10.1016/j.compbiomed.2024.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Alzheimer's dementia (AD) is a neurodegenerative disorder that affects the central nervous system, causing the cells to stop working or die. The quality of life for individuals with AD steadily declines over time. While current treatments can relieve symptoms, a definitive cure remains elusive. However, technological advancements in machine learning (ML) and deep learning (DL) have opened up new possibilities for early AD detection. Early diagnosis is crucial, as trial drugs show promising results in patients who are diagnosed early. This study used a magnetic resonance imaging (MRI) dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI). The dataset consisted of 200 patients who were followed up at different time points and categorized as having AD (50), progressive-mild cognitive impairment to AD (50), stable-mild cognitive impairment (50), or cognitively normal (50). However, the utilization of MRI datasets poses challenges such as high dimensionality, limited training samples, and variability within and between subjects. To overcome these challenges, I propose using convolutional neural networks (CNNs) to extract informative features from an MRI sample. I fine-tune four pretrained models (i.e., SqueezeNet-v1.1, MobileNet-v2, Xception, and Inception-v3) to generate discriminative descriptors of MRI sample characteristics. Additionally, I suggest using the 3D shearlet transform, considering the volumetric properties of MRI data. Before the transformation, I implemented preprocessing protocols such as skull stripping, normalization of image intensity, and spatial cropping. I then summarize the shearlet coefficients using texture-based techniques. Finally, I integrate both deep and shearlet-based features using discriminant correlation analysis (DCA) to yield a robust and computationally efficient classification model. I employ two classifiers, support vector machines (SVMs) and decision tree baggers (DTBs). My objective was to develop a model capable of accurately diagnosing early-stage AD that can facilitate effective intervention and management of the condition. Our feature representation demonstrated high accuracy when applied to AD datasets at three time points. Specifically, accuracies of 94.46%, 92.97%, and 95.44% were achieved 18 months, 12 months, and at the time of stable diagnosis, respectively.
Collapse
Affiliation(s)
- Sadiq Alinsaif
- College of Computer Science and Engineering, University of Hafr Al Batin, Hafar Al Batin 39524, Saudi Arabia.
| |
Collapse
|
13
|
Mahavar A, Patel A, Patel A. A Comprehensive Review on Deep Learning Techniques in Alzheimer's Disease Diagnosis. Curr Top Med Chem 2025; 25:335-349. [PMID: 38847164 DOI: 10.2174/0115680266310776240524061252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2025]
Abstract
Alzheimer's Disease (AD) is a serious neurological illness that causes memory loss gradually by destroying brain cells. This deadly brain illness primarily strikes the elderly, impairing their cognitive and bodily abilities until brain shrinkage occurs. Modern techniques are required for an accurate diagnosis of AD. Machine learning has gained attraction in the medical field as a means of determining a person's risk of developing AD in its early stages. One of the most advanced soft computing neural network-based Deep Learning (DL) methodologies has garnered significant interest among researchers in automating early-stage AD diagnosis. Hence, a comprehensive review is necessary to gain insights into DL techniques for the advancement of more effective methods for diagnosing AD. This review explores multiple biomarkers associated with Alzheimer's Disease (AD) and various DL methodologies, including Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), The k-nearest-neighbor (k-NN), Deep Boltzmann Machines (DBM), and Deep Belief Networks (DBN), which have been employed for automating the early diagnosis of AD. Moreover, the unique contributions of this review include the classification of ATN biomarkers for Alzheimer's Disease (AD), systemic description of diverse DL algorithms for early AD assessment, along with a discussion of widely utilized online datasets such as ADNI, OASIS, etc. Additionally, this review provides perspectives on future trends derived from critical evaluation of each variant of DL techniques across different modalities, dataset sources, AUC values, and accuracies.
Collapse
Affiliation(s)
- Anjali Mahavar
- Chandaben Mohanbhai Patel Institute of Computer Application, Charotar University of Science and Technology, CHARUSAT-Campus, Changa, 388421, Anand, Gujarat, India
| | - Atul Patel
- Chandaben Mohanbhai Patel Institute of Computer Application, Charotar University of Science and Technology, CHARUSAT-Campus, Changa, 388421, Anand, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT- Campus, Changa, 388421, Anand, Gujarat, India
| |
Collapse
|
14
|
Abidar S, Hritcu L, Nhiri M. An Overview of the Natural Neuroprotective Agents for the Management of Cognitive Impairment Induced by Scopolamine in Zebrafish ( Danio rerio). CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:21-31. [PMID: 39039682 DOI: 10.2174/0118715273309256240702053609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder mainly characterized by dementia and cognitive decline. AD is essentially associated with the presence of aggregates of the amyloid-β peptide and the hyperphosphorylated microtubule-associated protein tau. The available AD therapies can only alleviate the symptoms; therefore, the development of natural treatments that exhibit neuroprotective effects and correct the behavioral impairment is a critical requirement. The present review aims to collect the natural substances that have been evaluated for their neuroprotective profile against AD-like behaviors induced in zebrafish (Danio rerio) by scopolamine. We focused on articles retrieved from the PubMed database via preset searching strings from 2010 to 2023. Our review assembled 21 studies that elucidated the activities of 28 various natural substances, including bioactive compounds, extracts, fractions, commercial compounds, and essential oils. The listed compounds enhanced cognition and showed several mechanisms of action, namely antioxidant potential, acetylcholinesterase's inhibition, and reduction of lipid peroxidation. Additional studies should be achieved to demonstrate their preventive and therapeutic activities in cellular and rodent models. Further clinical trials would be extremely solicited to support more insight into the neuroprotective effects of the most promising drugs in an AD context.
Collapse
Affiliation(s)
- Sara Abidar
- Laboratory of Biochemistry and Molecular Genetics (LBMG), Faculty of Sciences and Technologies of Tangier (FSTT) Abdelmalek Essaadi University, Tetouan, Morocco
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics (LBMG), Faculty of Sciences and Technologies of Tangier (FSTT) Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
15
|
Raza HA, Ansari SU, Javed K, Hanif M, Mian Qaisar S, Haider U, Pławiak P, Maab I. A proficient approach for the classification of Alzheimer's disease using a hybridization of machine learning and deep learning. Sci Rep 2024; 14:30925. [PMID: 39730532 DOI: 10.1038/s41598-024-81563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. It causes progressive degeneration of the nervous system, affecting the cognitive ability of the human brain. Over the past two decades, neuroimaging data from Magnetic Resonance Imaging (MRI) scans has been increasingly used in the study of brain pathology related to the birth and growth of AD. Recent studies have employed machine learning to detect and classify AD. Deep learning models have also been increasingly utilized with varying degrees of success. This paper presents a novel hybrid approach for early detection and classification of AD using structural MRI (sMRI). The proposed model employs a unique combination of machine learning and deep learning approaches to optimize the precision and accuracy of the detection and classification of AD. The proposed approach surpassed multi-modal machine learning algorithms in accuracy, precision, and F-measure performance measures. Results confirm an outperformance compared to the state-of-the-art in AD versus CN and sMCI versus pMCI paradigms. Within the CN versus AD paradigm, the designed model achieves 91.84% accuracy on test data.
Collapse
Affiliation(s)
- Hafiz Ahmed Raza
- Artificial Intelligence in Medicine (AIM) Lab, GIK Institute of Engineering Sciences and Technology, Topi, 23640, Swabi, Pakistan
| | - Shahab U Ansari
- Artificial Intelligence in Medicine (AIM) Lab, GIK Institute of Engineering Sciences and Technology, Topi, 23640, Swabi, Pakistan
| | - Kamran Javed
- National Centre of Artificial Intelligence (NCAI), Saudi Data and Artificial Intelligence Authority (SDAIA), Riyadh, Saudi Arabia
| | - Muhammad Hanif
- Artificial Intelligence in Medicine (AIM) Lab, GIK Institute of Engineering Sciences and Technology, Topi, 23640, Swabi, Pakistan
| | - Saeed Mian Qaisar
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait.
| | - Usman Haider
- Department of AI and DS, National University of Computer and Emerging Sciences, FAST-NUCES, Islamabad, 23640, Pakistan.
| | - Paweł Pławiak
- Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, Krakow, 31-155, Poland.
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, Gliwice, 44-100, Poland.
| | - Iffat Maab
- Department of Technology Management for Innovation, University of Tokyo, Tokyo, 113-8654, Japan.
- National Institute of Informatics, Hitotsubashi, Chiyoda City, Tokyo, 101-0003, Japan.
| |
Collapse
|
16
|
Rudroff T, Klén R, Rainio O, Tuulari J. The Untapped Potential of Dimension Reduction in Neuroimaging: Artificial Intelligence-Driven Multimodal Analysis of Long COVID Fatigue. Brain Sci 2024; 14:1209. [PMID: 39766408 PMCID: PMC11674449 DOI: 10.3390/brainsci14121209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
This perspective paper explores the untapped potential of artificial intelligence (AI), particularly machine learning-based dimension reduction techniques in multimodal neuroimaging analysis of Long COVID fatigue. The complexity and high dimensionality of neuroimaging data from modalities such as positron emission tomography (PET) and magnetic resonance imaging (MRI) pose significant analytical challenges. Deep neural networks and other machine learning approaches offer powerful tools for managing this complexity and extracting meaningful patterns. The paper discusses current challenges in neuroimaging data analysis, reviews state-of-the-art AI approaches for dimension reduction and multimodal integration, and examines their potential applications in Long COVID research. Key areas of focus include the development of AI-based biomarkers, AI-informed treatment strategies, and personalized medicine approaches. The authors argue that AI-driven multimodal neuroimaging analysis represents a paradigm shift in studying complex brain disorders like Long COVID. While acknowledging technical and ethical challenges, the paper emphasizes the potential of these advanced techniques to uncover new insights into the condition, which might lead to improved diagnostic and therapeutic strategies for those affected by Long COVID fatigue. The broader implications for understanding and treating other complex neurological and psychiatric conditions are also discussed.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Turku PET Centre, University of Turku, Turku University Hospital, 20520 Turku, Finland; (R.K.); (O.R.); (J.T.)
| | | | | | | |
Collapse
|
17
|
Meyer LM, Zamani M, Rokai J, Demosthenous A. Deep learning-based spike sorting: a survey. J Neural Eng 2024; 21:061003. [PMID: 39454590 DOI: 10.1088/1741-2552/ad8b6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
Objective.Deep learning is increasingly permeating neuroscience, leading to a rise in signal-processing applications for extracellular recordings. These signals capture the activity of small neuronal populations, necessitating 'spike sorting' to assign action potentials (spikes) to their underlying neurons. With the rise in publications delving into new methodologies and techniques for deep learning-based spike sorting, it is crucial to synthesise these findings critically. This survey provides an in-depth evaluation of the approaches, methodologies and outcomes presented in recent articles, shedding light on the current state-of-the-art.Approach.Twenty-four articles published until December 2023 on deep learning-based spike sorting have been examined. The proposed methods are divided into three sub-problems of spike sorting: spike detection, feature extraction and classification. Moreover, integrated systems, i.e. models that detect spikes and extract features or do classification within a single network, are included.Main results.Although most algorithms have been developed for single-channel recordings, models utilising multi-channel data have already shown promising results, with efficient hardware implementations running quantised models on application-specific integrated circuits and field programmable gate arrays. Convolutional neural networks have been used extensively for spike detection and classification as the data can be processed spatiotemporally while maintaining low-parameter models and increasing generalisation and efficiency. Autoencoders have been mainly utilised for dimensionality reduction, enabling subsequent clustering with standard methods. Also, integrated systems have shown great potential in solving the spike sorting problem from end to end.Significance.This survey explores recent articles on deep learning-based spike sorting and highlights the capabilities of deep neural networks in overcoming associated challenges, but also highlights potential biases of certain models. Serving as a resource for both newcomers and seasoned researchers in the field, this work provides insights into the latest advancements and may inspire future model development.
Collapse
Affiliation(s)
- Luca M Meyer
- Currently not Affiliated with any Institution, Wiesbaden, Germany
| | - Majid Zamani
- School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
| | - János Rokai
- Institute of Cognitive Neurosciences and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Andreas Demosthenous
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| |
Collapse
|
18
|
Alarjani M, Almarri B. fMRI-based Alzheimer's disease detection via functional connectivity analysis: a systematic review. PeerJ Comput Sci 2024; 10:e2302. [PMID: 39650470 PMCID: PMC11622848 DOI: 10.7717/peerj-cs.2302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/12/2024] [Indexed: 12/11/2024]
Abstract
Alzheimer's disease is a common brain disorder affecting many people worldwide. It is the primary cause of dementia and memory loss. The early diagnosis of Alzheimer's disease is essential to provide timely care to AD patients and prevent the development of symptoms of this disease. Various non-invasive techniques can be utilized to diagnose Alzheimer's in its early stages. These techniques include functional magnetic resonance imaging, electroencephalography, positron emission tomography, and diffusion tensor imaging. They are mainly used to explore functional and structural connectivity of human brains. Functional connectivity is essential for understanding the co-activation of certain brain regions co-activation. This systematic review scrutinizes various works of Alzheimer's disease detection by analyzing the learning from functional connectivity of fMRI datasets that were published between 2018 and 2024. This work investigates the whole learning pipeline including data analysis, standard preprocessing phases of fMRI, feature computation, extraction and selection, and the various machine learning and deep learning algorithms that are used to predict the occurrence of Alzheimer's disease. Ultimately, the paper analyzed results on AD and highlighted future research directions in medical imaging. There is a need for an efficient and accurate way to detect AD to overcome the problems faced by patients in the early stages.
Collapse
Affiliation(s)
- Maitha Alarjani
- Department of Computer Science, King Faisal University, Alhsa, Saudi Arabia
| | - Badar Almarri
- Department of Computer Science, King Faisal University, Alhsa, Saudi Arabia
| |
Collapse
|
19
|
Yu Q, Ma Q, Da L, Li J, Wang M, Xu A, Li Z, Li W. A transformer-based unified multimodal framework for Alzheimer's disease assessment. Comput Biol Med 2024; 180:108979. [PMID: 39098237 DOI: 10.1016/j.compbiomed.2024.108979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
In Alzheimer's disease (AD) assessment, traditional deep learning approaches have often employed separate methodologies to handle the diverse modalities of input data. Recognizing the critical need for a cohesive and interconnected analytical framework, we propose the AD-Transformer, a novel transformer-based unified deep learning model. This innovative framework seamlessly integrates structural magnetic resonance imaging (sMRI), clinical, and genetic data from the extensive Alzheimer's Disease Neuroimaging Initiative (ADNI) database, encompassing 1651 subjects. By employing a Patch-CNN block, the AD-Transformer efficiently transforms image data into image tokens, while a linear projection layer adeptly converts non-image data into corresponding tokens. As the core, a transformer block learns comprehensive representations of the input data, capturing the intricate interplay between modalities. The AD-Transformer sets a new benchmark in AD diagnosis and Mild Cognitive Impairment (MCI) conversion prediction, achieving remarkable average area under curve (AUC) values of 0.993 and 0.845, respectively, surpassing those of traditional image-only models and non-unified multimodal models. Our experimental results confirmed the potential of the AD-Transformer as a potent tool in AD diagnosis and MCI conversion prediction. By providing a unified framework that jointly learns holistic representations of both image and non-image data, the AD-Transformer paves the way for more effective and precise clinical assessments, offering a clinically adaptable strategy for leveraging diverse data modalities in the battle against AD.
Collapse
Affiliation(s)
- Qi Yu
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Ma
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lijuan Da
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiahui Li
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengying Wang
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Andi Xu
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zilin Li
- School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Wenyuan Li
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Yang Y, Yu K, Gao S, Yu S, Xiong D, Qin C, Chen H, Tang J, Tang N, Zhu H. Alzheimer's Disease Knowledge Graph Enhances Knowledge Discovery and Disease Prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601339. [PMID: 39005357 PMCID: PMC11245034 DOI: 10.1101/2024.07.03.601339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Alzheimer's disease (AD), a progressive neurodegenerative disorder, continues to increase in prevalence without any effective treatments to date. In this context, knowledge graphs (KGs) have emerged as a pivotal tool in biomedical research, offering new perspectives on drug repurposing and biomarker discovery by analyzing intricate network structures. Our study seeks to build an AD-specific knowledge graph, highlighting interactions among AD, genes, variants, chemicals, drugs, and other diseases. The goal is to shed light on existing treatments, potential targets, and diagnostic methods for AD, thereby aiding in drug repurposing and the identification of biomarkers. Results We annotated 800 PubMed abstracts and leveraged GPT-4 for text augmentation to enrich our training data for named entity recognition (NER) and relation classification. A comprehensive data mining model, integrating NER and relationship classification, was trained on the annotated corpus. This model was subsequently applied to extract relation triplets from unannotated abstracts. To enhance entity linking, we utilized a suite of reference biomedical databases and refine the linking accuracy through abbreviation resolution. As a result, we successfully identified 3,199,276 entity mentions and 633,733 triplets, elucidating connections between 5,000 unique entities. These connections were pivotal in constructing a comprehensive Alzheimer's Disease Knowledge Graph (ADKG). We also integrated the ADKG constructed after entity linking with other biomedical databases. The ADKG served as a training ground for Knowledge Graph Embedding models with the high-ranking predicted triplets supported by evidence, underscoring the utility of ADKG in generating testable scientific hypotheses. Further application of ADKG in predictive modeling using the UK Biobank data revealed models based on ADKG outperforming others, as evidenced by higher values in the areas under the receiver operating characteristic (ROC) curves. Conclusion The ADKG is a valuable resource for generating hypotheses and enhancing predictive models, highlighting its potential to advance AD's disease research and treatment strategies.
Collapse
Affiliation(s)
- Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill
| | - Kaixian Yu
- Independent Researcher, Shanghai, P.R. China
| | - Shan Gao
- Department of Mathematics and Statistics, Yunnan University
| | - Sheng Yu
- Center for Statistics Science, Tsinghua University
| | - Di Xiong
- Department of Statistics, Shanghai University
| | - Chuanyang Qin
- Department of Mathematics and Statistics, Yunnan University
| | - Huiyuan Chen
- Department of Mathematics and Statistics, Yunnan University
| | - Jiarui Tang
- Department of Biostatistics, University of North Carolina at Chapel Hill
| | - Niansheng Tang
- Department of Mathematics and Statistics, Yunnan University
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill
| |
Collapse
|
21
|
Panigrahi P, Das S, Chakrabarti S. CCADD: An online webserver for Alzheimer's disease detection from brain MRI. Comput Biol Med 2024; 177:108622. [PMID: 38781645 DOI: 10.1016/j.compbiomed.2024.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/26/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) imposes a growing burden on public health due to its impact on memory, cognition, behavior, and social skills. Early detection using non-invasive brain magnetic resonance images (MRI) is vital for disease management. We introduce CCADD (Corpus Callosum-based Alzheimer's Disease Detection), a user-friendly webserver that automatically identifies and segments the corpus callosum (CC) region from brain MRI slices. Extracted shape and size-based features of CC are fed into Support Vector Machines (SVM), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), K-Nearest Neighbor (KNN), and Artificial Neural Network (ANN) classifiers to predict AD or Mild Cognitive Impairment (MCI). Exhaustive benchmarking on ADNI data reveals high prediction accuracies for different AD severity levels. CCADD empowers clinicians and researchers for AD detection. This server is available at: http://www.hpppi.iicb.res.in/add.
Collapse
Affiliation(s)
- Priyanka Panigrahi
- Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research (CSIR) - Indian Institute of Chemical Biology (IICB), TRUE Campus, Kolkata, 700091, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research (CSIR) - Indian Institute of Chemical Biology (IICB), TRUE Campus, Kolkata, 700091, West Bengal, India.
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research (CSIR) - Indian Institute of Chemical Biology (IICB), TRUE Campus, Kolkata, 700091, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
22
|
Razzak I, Naz S, Alinejad-Rokny H, Nguyen TN, Khalifa F. A Cascaded Mutliresolution Ensemble Deep Learning Framework for Large Scale Alzheimer's Disease Detection Using Brain MRIs. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:573-581. [PMID: 36322495 DOI: 10.1109/tcbb.2022.3219032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's is progressive and irreversible type of dementia, which causes degeneration and death of cells and their connections in the brain. AD worsens over time and greatly impacts patients' life and affects their important mental functions, including thinking, the ability to carry on a conversation, and judgment and response to environment. Clinically, there is no single test to effectively diagnose Alzheimer disease. However, computed tomography (CT) and magnetic resonance imaging (MRI) scans can be used to help in AD diagnosis by observing critical changes in the size of different brain areas, typically parietal and temporal lobes areas. In this work, an integrative mulitresolutional ensemble deep learning-based framework is proposed to achieve better predictive performance for the diagnosis of Alzheimer disease. Unlike ResNet, DenseNet and their variants proposed pipeline utilizes PartialNet in a hierarchical design tailored to AD detection using brain MRIs. The advantage of the proposed analysis system is that PartialNet diversified the depth and deep supervision. Additionally, it also incorporates the properties of identity mappings which makes it powerful in better learning due to feature reuse. Besides, the proposed ensemble PartialNet is better in vanishing gradient, diminishing forward-flow with low number of parameters and better training time in comparison to its counter network. The proposed analysis pipeline has been tested and evaluated on benchmark ADNI dataset collected from 379 subjects patients. Quantitative validation of the obtained results documented our framework's capability, outperforming state-of-the-art learning approaches for both multi-and binary-class AD detection.
Collapse
|
23
|
Malik AK, Tanveer M. Graph Embedded Ensemble Deep Randomized Network for Diagnosis of Alzheimer's Disease. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:546-558. [PMID: 36112566 DOI: 10.1109/tcbb.2022.3202707] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Randomized shallow/deep neural networks with closed form solution avoid the shortcomings that exist in the back propagation (BP) based trained neural networks. Ensemble deep random vector functional link (edRVFL) network utilize the strength of two growing fields, i.e., deep learning and ensemble learning. However, edRVFL model doesn't consider the geometrical relationship of the data while calculating the final output parameters corresponding to each layer considered as base model. In the literature, graph embedded frameworks have been successfully used to describe the geometrical relationship within data. In this paper, we propose an extended graph embedded RVFL (EGERVFL) model that, unlike standard RVFL, employs both intrinsic and penalty subspace learning (SL) criteria under the graph embedded framework in its optimization process to calculate the model's output parameters. The proposed shallow EGERVFL model has only single hidden layer and hence, has less representation learning. Therefore, we further develop an ensemble deep EGERVFL (edEGERVFL) model that can be considered a variant of edRVFL model. Unlike edRVFL, the proposed edEGERVFL model solves graph embedded based optimization problem in each layer and hence, has better generalization performance than edRVFL model. We evaluated the proposed approaches for the diagnosis of Alzheimer's disease and furthermore on UCI datasets. The experimental results demonstrate that the proposed models perform better than baseline models. The source code of the proposed models is available at https://github.com/mtanveer1/.
Collapse
|
24
|
Malik I, Iqbal A, Gu YH, Al-antari MA. Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review. Diagnostics (Basel) 2024; 14:1281. [PMID: 38928696 PMCID: PMC11202897 DOI: 10.3390/diagnostics14121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological disorder that significantly impairs cognitive function, leading to memory loss and eventually death. AD progresses through three stages: early stage, mild cognitive impairment (MCI) (middle stage), and dementia. Early diagnosis of Alzheimer's disease is crucial and can improve survival rates among patients. Traditional methods for diagnosing AD through regular checkups and manual examinations are challenging. Advances in computer-aided diagnosis systems (CADs) have led to the development of various artificial intelligence and deep learning-based methods for rapid AD detection. This survey aims to explore the different modalities, feature extraction methods, datasets, machine learning techniques, and validation methods used in AD detection. We reviewed 116 relevant papers from repositories including Elsevier (45), IEEE (25), Springer (19), Wiley (6), PLOS One (5), MDPI (3), World Scientific (3), Frontiers (3), PeerJ (2), Hindawi (2), IO Press (1), and other multiple sources (2). The review is presented in tables for ease of reference, allowing readers to quickly grasp the key findings of each study. Additionally, this review addresses the challenges in the current literature and emphasizes the importance of interpretability and explainability in understanding deep learning model predictions. The primary goal is to assess existing techniques for AD identification and highlight obstacles to guide future research.
Collapse
Affiliation(s)
- Isra Malik
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 44000, Pakistan
| | - Ahmed Iqbal
- Department of Computer Science, Sir Syed Case Institute of Technology, Islamabad 45230, Pakistan
| | - Yeong Hyeon Gu
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| | - Mugahed A. Al-antari
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
25
|
Hassan N, Musa Miah AS, Shin J. Residual-Based Multi-Stage Deep Learning Framework for Computer-Aided Alzheimer's Disease Detection. J Imaging 2024; 10:141. [PMID: 38921618 PMCID: PMC11204904 DOI: 10.3390/jimaging10060141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Alzheimer's Disease (AD) poses a significant health risk globally, particularly among the elderly population. Recent studies underscore its prevalence, with over 50% of elderly Japanese facing a lifetime risk of dementia, primarily attributed to AD. As the most prevalent form of dementia, AD gradually erodes brain cells, leading to severe neurological decline. In this scenario, it is important to develop an automatic AD-detection system, and many researchers have been working to develop an AD-detection system by taking advantage of the advancement of deep learning (DL) techniques, which have shown promising results in various domains, including medical image analysis. However, existing approaches for AD detection often suffer from limited performance due to the complexities associated with training hierarchical convolutional neural networks (CNNs). In this paper, we introduce a novel multi-stage deep neural network architecture based on residual functions to address the limitations of existing AD-detection approaches. Inspired by the success of residual networks (ResNets) in image-classification tasks, our proposed system comprises five stages, each explicitly formulated to enhance feature effectiveness while maintaining model depth. Following feature extraction, a deep learning-based feature-selection module is applied to mitigate overfitting, incorporating batch normalization, dropout and fully connected layers. Subsequently, machine learning (ML)-based classification algorithms, including Support Vector Machines (SVM), Random Forest (RF) and SoftMax, are employed for classification tasks. Comprehensive evaluations conducted on three benchmark datasets, namely ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS Kaggle, demonstrate the efficacy of our proposed model. Impressively, our model achieves accuracy rates of 99.47%, 99.10% and 99.70% for ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS datasets, respectively, outperforming existing systems in binary class problems. Our proposed model represents a significant advancement in the AD-analysis domain.
Collapse
Affiliation(s)
- Najmul Hassan
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu 965-8580, Japan;
| | | | - Jungpil Shin
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu 965-8580, Japan;
| |
Collapse
|
26
|
Lu B, Chen X, Xavier Castellanos F, Thompson PM, Zuo XN, Zang YF, Yan CG. The power of many brains: Catalyzing neuropsychiatric discovery through open neuroimaging data and large-scale collaboration. Sci Bull (Beijing) 2024; 69:1536-1555. [PMID: 38519398 DOI: 10.1016/j.scib.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Recent advances in open neuroimaging data are enhancing our comprehension of neuropsychiatric disorders. By pooling images from various cohorts, statistical power has increased, enabling the detection of subtle abnormalities and robust associations, and fostering new research methods. Global collaborations in imaging have furthered our knowledge of the neurobiological foundations of brain disorders and aided in imaging-based prediction for more targeted treatment. Large-scale magnetic resonance imaging initiatives are driving innovation in analytics and supporting generalizable psychiatric studies. We also emphasize the significant role of big data in understanding neural mechanisms and in the early identification and precise treatment of neuropsychiatric disorders. However, challenges such as data harmonization across different sites, privacy protection, and effective data sharing must be addressed. With proper governance and open science practices, we conclude with a projection of how large-scale imaging resources and collaborations could revolutionize diagnosis, treatment selection, and outcome prediction, contributing to optimal brain health.
Collapse
Affiliation(s)
- Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York 10016, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg 10962, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Basic Science Data Center, Beijing 100190, China
| | - Yu-Feng Zang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310004, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou 310030, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou 311121, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
27
|
Yang H, Mao J, Ye Q, Bucholc M, Liu S, Gao W, Pan J, Xin J, Ding X. Distance-based novelty detection model for identifying individuals at risk of developing Alzheimer's disease. Front Aging Neurosci 2024; 16:1285905. [PMID: 38685909 PMCID: PMC11057441 DOI: 10.3389/fnagi.2024.1285905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Novelty detection (ND, also known as one-class classification) is a machine learning technique used to identify patterns that are typical of the majority class and can discriminate deviations as novelties. In the context of Alzheimer's disease (AD), ND could be employed to detect abnormal or atypical behavior that may indicate early signs of cognitive decline or the presence of the disease. To date, few research studies have used ND to discriminate the risk of developing AD and mild cognitive impairment (MCI) from healthy controls (HC). Methods In this work, two distinct cohorts with highly heterogeneous data, derived from the Australian Imaging Biomarkers and Lifestyle (AIBL) Flagship Study of Ageing project and the Fujian Medical University Union Hospital (FMUUH) China, were employed. An innovative framework with built-in easily interpretable ND models constructed solely on HC data was introduced along with proposing a strategy of distance to boundary (DtB) to detect MCI and AD. Subsequently, a web-based graphical user interface (GUI) that incorporates the proposed framework was developed for non-technical stakeholders. Results Our experimental results indicate that the best overall performance of detecting AD individuals in AIBL and FMUUH datasets was obtained by using the Mixture of Gaussian-based ND algorithm applied to single modality, with an AUC of 0.8757 and 0.9443, a sensitivity of 96.79% and 89.09%, and a specificity of 89.63% and 90.92%, respectively. Discussion The GUI offers an interactive platform to aid stakeholders in making diagnoses of MCI and AD, enabling streamlined decision-making processes. More importantly, the proposed DtB strategy could visually and quantitatively identify individuals at risk of developing AD.
Collapse
Affiliation(s)
- Hongqin Yang
- Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Jiangbing Mao
- Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Magda Bucholc
- School of Computing, Engineering and Intelligent Systems, Ulster University, Derry-Londonderry, Derry, United Kingdom
| | - Shuo Liu
- School of Computing, Engineering and Intelligent Systems, Ulster University, Derry-Londonderry, Derry, United Kingdom
| | - Wenzhao Gao
- School of Computing, Engineering and Intelligent Systems, Ulster University, Derry-Londonderry, Derry, United Kingdom
| | - Jie Pan
- Xiamen Jingyi Zhikang Technology Co., Ltd., Xiamen, China
| | - Jiawei Xin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xuemei Ding
- School of Computing, Engineering and Intelligent Systems, Ulster University, Derry-Londonderry, Derry, United Kingdom
- Fujian Provincial Engineering Research Centre for Public Service Big Data Mining and Application, Fujian Provincial University Engineering Research Centre for Big Data Analysis and Application, Fujian Normal University, Fuzhou, China
| |
Collapse
|
28
|
Arvidsson I, Strandberg O, Palmqvist S, Stomrud E, Cullen N, Janelidze S, Tideman P, Heyden A, Åström K, Hansson O, Mattsson-Carlgren N. Comparing a pre-defined versus deep learning approach for extracting brain atrophy patterns to predict cognitive decline due to Alzheimer's disease in patients with mild cognitive symptoms. Alzheimers Res Ther 2024; 16:61. [PMID: 38504336 PMCID: PMC10949809 DOI: 10.1186/s13195-024-01428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Predicting future Alzheimer's disease (AD)-related cognitive decline among individuals with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) is an important task for healthcare. Structural brain imaging as measured by magnetic resonance imaging (MRI) could potentially contribute when making such predictions. It is unclear if the predictive performance of MRI can be improved using entire brain images in deep learning (DL) models compared to using pre-defined brain regions. METHODS A cohort of 332 individuals with SCD/MCI were included from the Swedish BioFINDER-1 study. The goal was to predict longitudinal SCD/MCI-to-AD dementia progression and change in Mini-Mental State Examination (MMSE) over four years. Four models were evaluated using different predictors: (1) clinical data only, including demographics, cognitive tests and APOE ε4 status, (2) clinical data plus hippocampal volume, (3) clinical data plus all regional MRI gray matter volumes (N = 68) extracted using FreeSurfer software, (4) a DL model trained using multi-task learning with MRI images, Jacobian determinant images and baseline cognition as input. A double cross-validation scheme, with five test folds and for each of those ten validation folds, was used. External evaluation was performed on part of the ADNI dataset, including 108 patients. Mann-Whitney U-test was used to determine statistically significant differences in performance, with p-values less than 0.05 considered significant. RESULTS In the BioFINDER cohort, 109 patients (33%) progressed to AD dementia. The performance of the clinical data model for prediction of progression to AD dementia was area under the curve (AUC) = 0.85 and four-year cognitive decline was R2 = 0.14. The performance was improved for both outcomes when adding hippocampal volume (AUC = 0.86, R2 = 0.16). Adding FreeSurfer brain regions improved prediction of four-year cognitive decline but not progression to AD (AUC = 0.83, R2 = 0.17), while the DL model worsened the performance for both outcomes (AUC = 0.84, R2 = 0.08). A sensitivity analysis showed that the Jacobian determinant image was more informative than the MRI image, but that performance was maximized when both were included. In the external evaluation cohort from ADNI, 23 patients (21%) progressed to AD dementia. The results for predicted progression to AD dementia were similar to the results for the BioFINDER test data, while the performance for the cognitive decline was deteriorated. CONCLUSIONS The DL model did not significantly improve the prediction of clinical disease progression in AD, compared to regression models with a single pre-defined brain region.
Collapse
Affiliation(s)
- Ida Arvidsson
- Centre for Mathematical Sciences, Lund University, Lund, Sweden.
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Nicholas Cullen
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Pontus Tideman
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Anders Heyden
- Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | - Karl Åström
- Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
- Department of Neurology, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
29
|
Şeker M, Özerdem MS. Deep insights into MCI diagnosis: A comparative deep learning analysis of EEG time series. J Neurosci Methods 2024; 403:110057. [PMID: 38215948 DOI: 10.1016/j.jneumeth.2024.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Individuals in the early stages of Alzheimer's Disease (AD) are typically diagnosed with Mild Cognitive Impairment (MCI). MCI represents a transitional phase between normal cognitive function and AD. Electroencephalography (EEG) records carry valuable insights into cerebral cortex brain activities to analyze neuronal degeneration. To enhance the precision of dementia diagnosis, automatic and intelligent methods are required for the analysis and processing of EEG signals. NEW METHODS This paper aims to address the challenges associated with MCI diagnosis by leveraging EEG signals and deep learning techniques. The analysis in this study focuses on processing the information embedded within the sequence of raw EEG time series data. EEG recordings are collected from 10 Healthy Controls (HC) and 10 MCI participants using 19 electrodes during a 30 min eyes-closed session. EEG time series are transformed into 2 separate formats of input tensors and applied to deep neural network architectures. Convolutional Neural Network (CNN) and ResNet from scratch are performed with 2D time series with different segment lengths. Furthermore, EEGNet and DeepConvNet architectures are utilized for 1D time series. RESULTS ResNet demonstrates superior effectiveness in detecting MCI when compared to CNN architecture. Complete discrimination is achieved using EEGNet and DeepConvNet for noisy segments. COMPARISON WITH EXISTING METHODS ResNet has yielded a 3 % higher accuracy rate compared to CNN. None of the architectures in the literature have achieved 100 % accuracy except proposed EEGNet and DeepConvnet. CONCLUSION Deep learning architectures hold great promise in enhancing the accuracy of early MCI detection.
Collapse
Affiliation(s)
- Mesut Şeker
- Department of Electrical and Electronics Engineering, Dicle University, Diyarbakir, Turkey.
| | - Mehmet Siraç Özerdem
- Department of Electrical and Electronics Engineering, Dicle University, Diyarbakir, Turkey.
| |
Collapse
|
30
|
Zong M, Pei X, Yan K, Luo D, Zhao Y, Wang P, Chen L. Deep Learning Model Based on Multisequence MRI Images for Assessing Adverse Pregnancy Outcome in Placenta Accreta. J Magn Reson Imaging 2024; 59:510-521. [PMID: 37851581 DOI: 10.1002/jmri.29023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Preoperative assessment of adverse outcomes risk in placenta accreta spectrum (PAS) disorders is of high clinical relevance for perioperative management and prognosis. PURPOSE To investigate the association of preoperative MRI multisequence images and adverse pregnancy outcomes by establishing a deep learning model in patients with PAS. STUDY TYPE Retrospective. POPULATION 323 pregnant women (age from 20 to 46, the median age is 33), suspected of PAS, underwent MRI to assess the PAS, divided into the training (N = 227) and validation datasets (N = 96). FIELD STRENGTH/SEQUENCE 1.5T scanner/fast imaging employing steady-state acquisition sequence and single shot fast spin echo sequence. ASSESSMENT Different deep learning models (i.e., with single MRI input sequence/two sequences/multisequence) were compared to assess the risk of adverse pregnancy outcomes, which defined as intraoperative bleeding ≥1500 mL and/or hysterectomy. Net reclassification improvement (NRI) was used for quantitative comparison of assessing adverse pregnancy outcome between different models. STATISTICAL TESTS The AUC, sensitivity, specificity, and accuracy were used for evaluation. The Shapiro-Wilk test and t-test were used. A P value of <0.05 was considered statistically significant. RESULTS 215 cases were invasive placenta accreta (67.44% of them with adverse outcomes) and 108 cases were non-invasive placenta accreta (9.25% of them with adverse outcomes). The model with four sequences assessed adverse pregnancy outcomes with AUC of 0.8792 (95% CI, 0.8645-0.8939), with ACC of 85.93% (95%, 84.43%-87.43%), with SEN of 86.24% (95% CI, 82.46%-90.02%), and with SPC of 85.62% (95%, 82.00%-89.23%) on the test cohort. The performance of model with four sequences improved above 0.10 comparing with that of model with two sequences and above 0.20 comparing with that of model with single sequence in terms of NRI. DATA CONCLUSION The proposed model showed good diagnostic performance for assessing adverse pregnancy outcomes. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ming Zong
- School of Computer Science, Peking University, Beijing, China
| | - Xinlong Pei
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Kun Yan
- School of Computer Science, Peking University, Beijing, China
| | - Deng Luo
- School of Software and Microelectronics, Peking University, Beijing, China
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Ping Wang
- School of Software and Microelectronics, Peking University, Beijing, China
- National Engineering Research Center for Software Engineering, Peking University, Beijing, China
- Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing, China
| | - Lian Chen
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
| |
Collapse
|
31
|
Cilia ND, De Stefano C, Fontanella F, Siniscalchi SM. How word semantics and phonology affect handwriting of Alzheimer's patients: A machine learning based analysis. Comput Biol Med 2024; 169:107891. [PMID: 38181607 DOI: 10.1016/j.compbiomed.2023.107891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Using kinematic properties of handwriting to support the diagnosis of neurodegenerative disease is a real challenge: non-invasive detection techniques combined with machine learning approaches promise big steps forward in this research field. In literature, the tasks proposed focused on different cognitive skills to elicitate handwriting movements. In particular, the meaning and phonology of words to copy can compromise writing fluency. In this paper, we investigated how word semantics and phonology affect the handwriting of people affected by Alzheimer's disease. To this aim, we used the data from six handwriting tasks, each requiring copying a word belonging to one of the following categories: regular (have a predictable phoneme-grapheme correspondence, e.g., cat), non-regular (have atypical phoneme-grapheme correspondence, e.g., laugh), and non-word (non-meaningful pronounceable letter strings that conform to phoneme-grapheme conversion rules). We analyzed the data using a machine learning approach by implementing four well-known and widely-used classifiers and feature selection. The experimental results showed that the feature selection allowed us to derive a different set of highly distinctive features for each word type. Furthermore, non-regular words needed, on average, more features but achieved excellent classification performance: the best result was obtained on a non-regular, reaching an accuracy close to 90%.
Collapse
Affiliation(s)
- Nicole D Cilia
- Department of Computer Engineering, University of Enna "Kore", Italy; Institute for Computing and Information Sciences, Radboud University Nijmegen, The Netherlands.
| | - Claudio De Stefano
- Department of Electrical and Information Engineering Mathematics, University of Cassino and Southern Lazio, Italy.
| | - Francesco Fontanella
- Department of Electrical and Information Engineering Mathematics, University of Cassino and Southern Lazio, Italy.
| | | |
Collapse
|
32
|
Vedaei F, Mashhadi N, Alizadeh M, Zabrecky G, Monti D, Wintering N, Navarreto E, Hriso C, Newberg AB, Mohamed FB. Deep learning-based multimodality classification of chronic mild traumatic brain injury using resting-state functional MRI and PET imaging. Front Neurosci 2024; 17:1333725. [PMID: 38312737 PMCID: PMC10837852 DOI: 10.3389/fnins.2023.1333725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is a public health concern. The present study aimed to develop an automatic classifier to distinguish between patients with chronic mTBI (n = 83) and healthy controls (HCs) (n = 40). Resting-state functional MRI (rs-fMRI) and positron emission tomography (PET) imaging were acquired from the subjects. We proposed a novel deep-learning-based framework, including an autoencoder (AE), to extract high-level latent and rectified linear unit (ReLU) and sigmoid activation functions. Single and multimodality algorithms integrating multiple rs-fMRI metrics and PET data were developed. We hypothesized that combining different imaging modalities provides complementary information and improves classification performance. Additionally, a novel data interpretation approach was utilized to identify top-performing features learned by the AEs. Our method delivered a classification accuracy within the range of 79-91.67% for single neuroimaging modalities. However, the performance of classification improved to 95.83%, thereby employing the multimodality model. The models have identified several brain regions located in the default mode network, sensorimotor network, visual cortex, cerebellum, and limbic system as the most discriminative features. We suggest that this approach could be extended to the objective biomarkers predicting mTBI in clinical settings.
Collapse
Affiliation(s)
- Faezeh Vedaei
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Najmeh Mashhadi
- Department of Computer Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Mahdi Alizadeh
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Daniel Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Emily Navarreto
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chloe Hriso
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrew B. Newberg
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B. Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
33
|
Fathi S, Ahmadi A, Dehnad A, Almasi-Dooghaee M, Sadegh M. A Deep Learning-Based Ensemble Method for Early Diagnosis of Alzheimer's Disease using MRI Images. Neuroinformatics 2024; 22:89-105. [PMID: 38042764 PMCID: PMC10917836 DOI: 10.1007/s12021-023-09646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 12/04/2023]
Abstract
Recently, the early diagnosis of Alzheimer's disease has gained major attention due to the growing prevalence of the disease and the resulting costs imposed on individuals and society. The main objective of this study was to propose an ensemble method based on deep learning for the early diagnosis of AD using MRI images. The methodology of this study consisted of collecting the dataset, preprocessing, creating the individual and ensemble models, evaluating the models based on ADNI data, and validating the trained model based on the local dataset. The proposed method was an ensemble approach selected through a comparative analysis of various ensemble scenarios. Finally, the six best individual CNN-based classifiers were selected to combine and constitute the ensemble model. The evaluation showed an accuracy rate of 98.57, 96.37, 94.22, 99.83, 93.88, and 93.92 for NC/AD, NC/EMCI, EMCI/LMCI, LMCI/AD, four-way and three-way classification groups, respectively. The validation results on the local dataset revealed an accuracy of 88.46 for three-way classification. Our performance results were higher than most reviewed studies and comparable with others. Although comparative analysis showed superior results of ensemble methods against individual architectures, there were no significant differences among various ensemble approaches. The validation results revealed the low performance of individual models in practice. In contrast, the ensemble method showed promising results. However, further studies on various and larger datasets are required to validate the generalizability of the model.
Collapse
Affiliation(s)
- Sina Fathi
- Department of Health Information Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Surrey Business School, University of Surrey, Guildford Surrey, GU2 7XH, UK.
| | - Afsaneh Dehnad
- School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Almasi-Dooghaee
- Neurology Department, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Sadegh
- Neurology Department, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Kolasa K, Admassu B, Hołownia-Voloskova M, Kędzior KJ, Poirrier JE, Perni S. Systematic reviews of machine learning in healthcare: a literature review. Expert Rev Pharmacoecon Outcomes Res 2024; 24:63-115. [PMID: 37955147 DOI: 10.1080/14737167.2023.2279107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION The increasing availability of data and computing power has made machine learning (ML) a viable approach to faster, more efficient healthcare delivery. METHODS A systematic literature review (SLR) of published SLRs evaluating ML applications in healthcare settings published between1 January 2010 and 27 March 2023 was conducted. RESULTS In total 220 SLRs covering 10,462 ML algorithms were reviewed. The main application of AI in medicine related to the clinical prediction and disease prognosis in oncology and neurology with the use of imaging data. Accuracy, specificity, and sensitivity were provided in 56%, 28%, and 25% SLRs respectively. Internal and external validation was reported in 53% and less than 1% of the cases respectively. The most common modeling approach was neural networks (2,454 ML algorithms), followed by support vector machine and random forest/decision trees (1,578 and 1,522 ML algorithms, respectively). EXPERT OPINION The review indicated considerable reporting gaps in terms of the ML's performance, both internal and external validation. Greater accessibility to healthcare data for developers can ensure the faster adoption of ML algorithms into clinical practice.
Collapse
Affiliation(s)
- Katarzyna Kolasa
- Division of Health Economics and Healthcare Management, Kozminski University, Warsaw, Poland
| | - Bisrat Admassu
- Division of Health Economics and Healthcare Management, Kozminski University, Warsaw, Poland
| | | | | | | | | |
Collapse
|
35
|
Alwuthaynani MM, Abdallah ZS, Santos-Rodriguez R. A robust class decomposition-based approach for detecting Alzheimer's progression. Exp Biol Med (Maywood) 2023; 248:2514-2525. [PMID: 38059336 PMCID: PMC10854473 DOI: 10.1177/15353702231211880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/17/2023] [Accepted: 02/28/2023] [Indexed: 12/08/2023] Open
Abstract
Computer-aided diagnosis of Alzheimer's disease (AD) is a rapidly growing field with the possibility to be utilized in practice. Deep learning has received much attention in detecting AD from structural magnetic resonance imaging (sMRI). However, training a convolutional neural network from scratch is problematic because it requires a lot of annotated data and additional computational time. Transfer learning can offer a promising and practical solution by transferring information learned from other image recognition tasks to medical image classification. Another issue is the dataset distribution's irregularities. A common classification issue in datasets is a class imbalance, where the distribution of samples among the classes is biased. For example, a dataset may contain more instances of some classes than others. Class imbalance is challenging because most machine learning algorithms assume that each class should have an equal number of samples. Models consequently perform poorly in prediction. Class decomposition can address this problem by making learning a dataset's class boundaries easier. Motivated by these approaches, we propose a class decomposition transfer learning (CDTL) approach that employs VGG19, AlexNet, and an entropy-based technique to detect AD from sMRI. This study aims to assess the robustness of the CDTL approach in detecting the cognitive decline of AD using data from various ADNI cohorts to determine whether comparable classification accuracy for the two or more cohorts would be obtained. Furthermore, the proposed model achieved state-of-the-art performance in predicting mild cognitive impairment (MCI)-to-AD conversion with an accuracy of 91.45%.
Collapse
Affiliation(s)
- Maha M Alwuthaynani
- University of Bristol, Bristol BS8 1TH, UK
- College of Computer Science & Information Systems, Najran University, Najran 61441, Saudi Arabia
| | | | | |
Collapse
|
36
|
Bucholc M, James C, Khleifat AA, Badhwar A, Clarke N, Dehsarvi A, Madan CR, Marzi SJ, Shand C, Schilder BM, Tamburin S, Tantiangco HM, Lourida I, Llewellyn DJ, Ranson JM. Artificial intelligence for dementia research methods optimization. Alzheimers Dement 2023; 19:5934-5951. [PMID: 37639369 DOI: 10.1002/alz.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/31/2023]
Abstract
Artificial intelligence (AI) and machine learning (ML) approaches are increasingly being used in dementia research. However, several methodological challenges exist that may limit the insights we can obtain from high-dimensional data and our ability to translate these findings into improved patient outcomes. To improve reproducibility and replicability, researchers should make their well-documented code and modeling pipelines openly available. Data should also be shared where appropriate. To enhance the acceptability of models and AI-enabled systems to users, researchers should prioritize interpretable methods that provide insights into how decisions are generated. Models should be developed using multiple, diverse datasets to improve robustness, generalizability, and reduce potentially harmful bias. To improve clarity and reproducibility, researchers should adhere to reporting guidelines that are co-produced with multiple stakeholders. If these methodological challenges are overcome, AI and ML hold enormous promise for changing the landscape of dementia research and care. HIGHLIGHTS: Machine learning (ML) can improve diagnosis, prevention, and management of dementia. Inadequate reporting of ML procedures affects reproduction/replication of results. ML models built on unrepresentative datasets do not generalize to new datasets. Obligatory metrics for certain model structures and use cases have not been defined. Interpretability and trust in ML predictions are barriers to clinical translation.
Collapse
Affiliation(s)
- Magda Bucholc
- Cognitive Analytics Research Lab, School of Computing, Engineering & Intelligent Systems, Ulster University, Derry, UK
| | - Charlotte James
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - AmanPreet Badhwar
- Multiomics Investigation of Neurodegenerative Diseases (MIND) Lab, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Institut de génie biomédical, Université de Montréal, Montréal, Quebec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Natasha Clarke
- Multiomics Investigation of Neurodegenerative Diseases (MIND) Lab, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
| | - Amir Dehsarvi
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences, and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Cameron Shand
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Brian M Schilder
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | | | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK
- The Alan Turing Institute, London, UK
| | | |
Collapse
|
37
|
Arvidsson I, Strandberg O, Palmqvist S, Stomrud E, Cullen N, Janelidze S, Tideman P, Heyden A, Åström K, Hansson O, Mattsson-Carlgren N. Comparing a pre-defined versus deep learning approach for extracting brain atrophy patterns to predict cognitive decline due to Alzheimer's disease in patients with mild cognitive symptoms. RESEARCH SQUARE 2023:rs.3.rs-3569391. [PMID: 37986841 PMCID: PMC10659533 DOI: 10.21203/rs.3.rs-3569391/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Predicting future Alzheimer's disease (AD)-related cognitive decline among individuals with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) is an important task for healthcare. Structural brain imaging as measured by magnetic resonance imaging (MRI) could potentially contribute when making such predictions. It is unclear if the predictive performance of MRI can be improved using entire brain images in deep learning (DL) models compared to using pre-defined brain regions. Methods A cohort of 332 individuals with SCD/MCI were included from the Swedish BioFINDER-1 study. The goal was to predict longitudinal SCD/MCI-to-AD dementia progression and change in Mini-Mental State Examination (MMSE) over four years. Four models were evaluated using different predictors: 1) clinical data only, including demographics, cognitive tests and APOE e4 status, 2) clinical data plus hippocampal volume, 3) clinical data plus all regional MRI gray matter volumes (N=68) extracted using FreeSurfer software, 4) a DL model trained using multi-task learning with MRI images, Jacobian determinant images and baseline cognition as input. Models were developed on 80% of subjects (N=267) and tested on the remaining 20% (N=65). Mann-Whitney U-test was used to determine statistically significant differences in performance, with p-values less than 0.05 considered significant. Results In the test set, 21 patients (32.3%) progressed to AD dementia. The performance of the clinical data model for prediction of progression to AD dementia was area under the curve (AUC)=0.87 and four-year cognitive decline was R2=0.17. The performance was significantly improved for both outcomes when adding hippocampal volume (AUC=0.91, R2=0.26, p-values <0.05) or FreeSurfer brain regions (AUC=0.90, R2=0.27, p-values <0.05). Conversely, the DL model did not show any significant difference from the clinical data model (AUC=0.86, R2=0.13). A sensitivity analysis showed that the Jacobian determinant image was more informative than the MRI image, but that performance was maximized when both were included. Conclusions The DL model did not significantly improve the prediction of clinical disease progression in AD, compared to regression models with a single pre-defined brain region.
Collapse
|
38
|
Niemeyer F, Galbusera F, Tao Y, Phillips FM, An HS, Louie PK, Samartzis D, Wilke HJ. Deep phenotyping the cervical spine: automatic characterization of cervical degenerative phenotypes based on T2-weighted MRI. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:3846-3856. [PMID: 37644278 DOI: 10.1007/s00586-023-07909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/17/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Radiological degenerative phenotypes provide insight into a patient's overall extent of disease and can be predictive for future pathological developments as well as surgical outcomes and complications. The objective of this study was to develop a reliable method for automatically classifying sagittal MRI image stacks of cervical spinal segments with respect to these degenerative phenotypes. METHODS We manually evaluated sagittal image data of the cervical spine of 873 patients (5182 motion segments) with respect to 5 radiological phenotypes. We then used this data set as ground truth for training a range of multi-class multi-label deep learning-based models to classify each motion segment automatically, on which we then performed hyper-parameter optimization. RESULTS The ground truth evaluations turned out to be relatively balanced for the labels disc displacement posterior, osteophyte anterior superior, osteophyte posterior superior, and osteophyte posterior inferior. Although we could not identify a single model that worked equally well across all the labels, the 3D-convolutional approach turned out to be preferable for classifying all labels. CONCLUSIONS Class imbalance in the training data and label noise made it difficult to achieve high predictive power for underrepresented classes. This shortcoming will be mitigated in the future versions by extending the training data set accordingly. Nevertheless, the classification performance rivals and in some cases surpasses that of human raters, while speeding up the evaluation process to only require a few seconds.
Collapse
Affiliation(s)
- Frank Niemeyer
- Institute for Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, University Hospital Ulm, Ulm, Germany
| | - Fabio Galbusera
- Department of Teaching, Research and Development, Schulthess Clinic, Spine Center, Lengghalde 2, 8008, Zurich, Switzerland.
| | - Youping Tao
- Institute for Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, University Hospital Ulm, Ulm, Germany
| | - Frank M Phillips
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Howard S An
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Philip K Louie
- Spine Clinic, Virginia Mason Medical Center, Seattle, WA, USA
| | - Dino Samartzis
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Hans-Joachim Wilke
- Institute for Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
39
|
Chen CC, Wu CT, Chen CPC, Chung CY, Chen SC, Lee MS, Cheng CT, Liao CH. Predicting the Risk of Total Hip Replacement by Using A Deep Learning Algorithm on Plain Pelvic Radiographs: Diagnostic Study. JMIR Form Res 2023; 7:e42788. [PMID: 37862084 PMCID: PMC10625092 DOI: 10.2196/42788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/27/2023] [Accepted: 08/04/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Total hip replacement (THR) is considered the gold standard of treatment for refractory degenerative hip disorders. Identifying patients who should receive THR in the short term is important. Some conservative treatments, such as intra-articular injection administered a few months before THR, may result in higher odds of arthroplasty infection. Delayed THR after functional deterioration may result in poorer outcomes and longer waiting times for those who have been flagged as needing THR. Deep learning (DL) in medical imaging applications has recently obtained significant breakthroughs. However, the use of DL in practical wayfinding, such as short-term THR prediction, is still lacking. OBJECTIVE In this study, we will propose a DL-based assistant system for patients with pelvic radiographs to identify the need for THR within 3 months. METHODS We developed a convolutional neural network-based DL algorithm to analyze pelvic radiographs, predict the hip region of interest (ROI), and determine whether or not THR is required. The data set was collected from August 2008 to December 2017. The images included 3013 surgical hip ROIs that had undergone THR and 1630 nonsurgical hip ROIs. The images were split, using split-sample validation, into training (n=3903, 80%), validation (n=476, 10%), and testing (n=475, 10%) sets to evaluate the algorithm performance. RESULTS The algorithm, called SurgHipNet, yielded an area under the receiver operating characteristic curve of 0.994 (95% CI 0.990-0.998). The accuracy, sensitivity, specificity, and F1-score of the model were 0.977, 0.920, 0932, and 0.944, respectively. CONCLUSIONS The proposed approach has demonstrated that SurgHipNet shows the ability and potential to provide efficient support in clinical decision-making; it can assist physicians in promptly determining the optimal timing for THR.
Collapse
Affiliation(s)
- Chih-Chi Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Ta Wu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Carl P C Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Ying Chung
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Mel S Lee
- Department of Orthopaedic Surgery, Pao-Chien Hospital, Pingtung, Taiwan
| | - Chi-Tung Cheng
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taoyuan, Taiwan
| | - Chien-Hung Liao
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taoyuan, Taiwan
| |
Collapse
|
40
|
Lamontagne-Caron R, Desrosiers P, Potvin O, Doyon N, Duchesne S. Predicting cognitive decline in a low-dimensional representation of brain morphology. Sci Rep 2023; 13:16793. [PMID: 37798311 PMCID: PMC10556003 DOI: 10.1038/s41598-023-43063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
Identifying early signs of neurodegeneration due to Alzheimer's disease (AD) is a necessary first step towards preventing cognitive decline. Individual cortical thickness measures, available after processing anatomical magnetic resonance imaging (MRI), are sensitive markers of neurodegeneration. However, normal aging cortical decline and high inter-individual variability complicate the comparison and statistical determination of the impact of AD-related neurodegeneration on trajectories. In this paper, we computed trajectories in a 2D representation of a 62-dimensional manifold of individual cortical thickness measures. To compute this representation, we used a novel, nonlinear dimension reduction algorithm called Uniform Manifold Approximation and Projection (UMAP). We trained two embeddings, one on cortical thickness measurements of 6237 cognitively healthy participants aged 18-100 years old and the other on 233 mild cognitively impaired (MCI) and AD participants from the longitudinal database, the Alzheimer's Disease Neuroimaging Initiative database (ADNI). Each participant had multiple visits ([Formula: see text]), one year apart. The first embedding's principal axis was shown to be positively associated ([Formula: see text]) with participants' age. Data from ADNI is projected into these 2D spaces. After clustering the data, average trajectories between clusters were shown to be significantly different between MCI and AD subjects. Moreover, some clusters and trajectories between clusters were more prone to host AD subjects. This study was able to differentiate AD and MCI subjects based on their trajectory in a 2D space with an AUC of 0.80 with 10-fold cross-validation.
Collapse
Affiliation(s)
- Rémi Lamontagne-Caron
- Département de médecine, Université Laval, Quebec, QC, G1V 0A6, Canada.
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada.
| | - Patrick Desrosiers
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada
- Centre interdisciplinaire en modélisation mathématique, Université Laval, Quebec, QC, G1V 0A6, Canada
- Département de physique, de génie physique et d'optique, Université Laval, Quebec, QC, G1V 0A6, Canada
| | | | - Nicolas Doyon
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada
- Centre interdisciplinaire en modélisation mathématique, Université Laval, Quebec, QC, G1V 0A6, Canada
- Département de mathématiques et de statistique, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Simon Duchesne
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada
- Département de radiologie et médecine nucléaire, Université Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
41
|
Bottani S, Burgos N, Maire A, Saracino D, Ströer S, Dormont D, Colliot O. Evaluation of MRI-based machine learning approaches for computer-aided diagnosis of dementia in a clinical data warehouse. Med Image Anal 2023; 89:102903. [PMID: 37523918 DOI: 10.1016/j.media.2023.102903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when applied to research data sets but their performance on real-life clinical routine data has not been evaluated yet. The aim of this work was to study the performance of such approaches on clinical routine data, based on a hospital data warehouse, and to compare the results to those obtained on a research data set. The clinical data set was extracted from the hospital data warehouse of the Greater Paris area, which includes 39 different hospitals. The research set was composed of data from the Alzheimer's Disease Neuroimaging Initiative data set. In the clinical set, the population of interest was identified by exploiting the diagnostic codes from the 10th revision of the International Classification of Diseases that are assigned to each patient. We studied how the imbalance of the training sets, in terms of contrast agent injection and image quality, may bias the results. We demonstrated that computer-aided diagnosis performance was strongly biased upwards (over 17 percent points of balanced accuracy) by the confounders of image quality and contrast agent injection, a phenomenon known as the Clever Hans effect or shortcut learning. When these biases were removed, the performance was very poor. In any case, the performance was considerably lower than on the research data set. Our study highlights that there are still considerable challenges for translating dementia computer-aided diagnosis systems to clinical routine.
Collapse
Affiliation(s)
- Simona Bottani
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Ninon Burgos
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | | | - Dario Saracino
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France; IM2A, Reference Centre for Rare or Early-Onset Dementias, Département de Neurologie, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
| | - Sebastian Ströer
- AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, Paris, 75013, France
| | - Didier Dormont
- AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, Paris, 75013, France; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, DMU DIAMENT, Paris, 75013, France
| | - Olivier Colliot
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| |
Collapse
|
42
|
Pruthviraja D, Nagaraju SC, Mudligiriyappa N, Raisinghani MS, Khan SB, Alkhaldi NA, Malibari AA. Detection of Alzheimer's Disease Based on Cloud-Based Deep Learning Paradigm. Diagnostics (Basel) 2023; 13:2687. [PMID: 37627946 PMCID: PMC10453097 DOI: 10.3390/diagnostics13162687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Deep learning is playing a major role in identifying complicated structure, and it outperforms in term of training and classification tasks in comparison to traditional algorithms. In this work, a local cloud-based solution is developed for classification of Alzheimer's disease (AD) as MRI scans as input modality. The multi-classification is used for AD variety and is classified into four stages. In order to leverage the capabilities of the pre-trained GoogLeNet model, transfer learning is employed. The GoogLeNet model, which is pre-trained for image classification tasks, is fine-tuned for the specific purpose of multi-class AD classification. Through this process, a better accuracy of 98% is achieved. As a result, a local cloud web application for Alzheimer's prediction is developed using the proposed architectures of GoogLeNet. This application enables doctors to remotely check for the presence of AD in patients.
Collapse
Affiliation(s)
- Dayananda Pruthviraja
- Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sowmyarani C. Nagaraju
- Department of Computer Science and Engineering, R V College of Engineering, Bengaluru 560059, India
| | - Niranjanamurthy Mudligiriyappa
- Department of Artificial Intelligence and Machine Learning, BMS Institute of Technology and Management, Bengaluru 560064, India
| | | | - Surbhi Bhatia Khan
- Department of Data Science, School of Science, Engineering and Environment, University of Salford, Manchester M54WT, UK
| | - Nora A. Alkhaldi
- Department of Computer Science, College of Computer Science and Information Technology, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Areej A. Malibari
- Department of Industrial and Systems Engineering, College of Engineering, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
43
|
Zhang J, He X, Liu Y, Cai Q, Chen H, Qing L. Multi-modal cross-attention network for Alzheimer's disease diagnosis with multi-modality data. Comput Biol Med 2023; 162:107050. [PMID: 37269680 DOI: 10.1016/j.compbiomed.2023.107050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 06/05/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, the most common cause of dementia, so the accurate diagnosis of AD and its prodromal stage mild cognitive impairment (MCI) is significant. Recent studies have demonstrated that multiple neuroimaging and biological measures contain complementary information for diagnosis. Many existing multi-modal models based on deep learning simply concatenate each modality's features despite substantial differences in representation spaces. In this paper, we propose a novel multi-modal cross-attention AD diagnosis (MCAD) framework to learn the interaction between modalities for better playing their complementary roles for AD diagnosis with multi-modal data including structural magnetic resonance imaging (sMRI), fluorodeoxyglucose-positron emission tomography (FDG-PET) and cerebrospinal fluid (CSF) biomarkers. Specifically, the imaging and non-imaging representations are learned by the image encoder based on cascaded dilated convolutions and CSF encoder, respectively. Then, a multi-modal interaction module is introduced, which takes advantage of cross-modal attention to integrate imaging and non-imaging information and reinforce relationships between these modalities. Moreover, an extensive objective function is designed to reduce the discrepancy between modalities for effectively fusing the features of multi-modal data, which could further improve the diagnosis performance. We evaluate the effectiveness of our proposed method on the ADNI dataset, and the extensive experiments demonstrate that our MCAD achieves superior performance for multiple AD-related classification tasks, compared to several competing methods. Also, we investigate the importance of cross-attention and the contribution of each modality to the diagnostics performance. The experimental results demonstrate that combining multi-modality data via cross-attention is helpful for accurate AD diagnosis.
Collapse
Affiliation(s)
- Jin Zhang
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiaohai He
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Yan Liu
- Department of Neurology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610031, China
| | - Qingyan Cai
- Department of Geriatric Medicine, The Fourth People's Hospital of Chengdu, Chengdu, Sichuan, 610036, China
| | - Honggang Chen
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Linbo Qing
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
44
|
Mujahid M, Rehman A, Alam T, Alamri FS, Fati SM, Saba T. An Efficient Ensemble Approach for Alzheimer's Disease Detection Using an Adaptive Synthetic Technique and Deep Learning. Diagnostics (Basel) 2023; 13:2489. [PMID: 37568852 PMCID: PMC10417320 DOI: 10.3390/diagnostics13152489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease is an incurable neurological disorder that leads to a gradual decline in cognitive abilities, but early detection can significantly mitigate symptoms. The automatic diagnosis of Alzheimer's disease is more important due to the shortage of expert medical staff, because it reduces the burden on medical staff and enhances the results of diagnosis. A detailed analysis of specific brain disorder tissues is required to accurately diagnose the disease via segmented magnetic resonance imaging (MRI). Several studies have used the traditional machine-learning approaches to diagnose the disease from MRI, but manual extracted features are more complex, time-consuming, and require a huge amount of involvement from expert medical staff. The traditional approach does not provide an accurate diagnosis. Deep learning has automatic extraction features and optimizes the training process. The Magnetic Resonance Imaging (MRI) Alzheimer's disease dataset consists of four classes: mild demented (896 images), moderate demented (64 images), non-demented (3200 images), and very mild demented (2240 images). The dataset is highly imbalanced. Therefore, we used the adaptive synthetic oversampling technique to address this issue. After applying this technique, the dataset was balanced. The ensemble of VGG16 and EfficientNet was used to detect Alzheimer's disease on both imbalanced and balanced datasets to validate the performance of the models. The proposed method combined the predictions of multiple models to make an ensemble model that learned complex and nuanced patterns from the data. The input and output of both models were concatenated to make an ensemble model and then added to other layers to make a more robust model. In this study, we proposed an ensemble of EfficientNet-B2 and VGG-16 to diagnose the disease at an early stage with the highest accuracy. Experiments were performed on two publicly available datasets. The experimental results showed that the proposed method achieved 97.35% accuracy and 99.64% AUC for multiclass datasets and 97.09% accuracy and 99.59% AUC for binary-class datasets. We evaluated that the proposed method was extremely efficient and provided superior performance on both datasets as compared to previous methods.
Collapse
Affiliation(s)
- Muhammad Mujahid
- Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan;
| | - Amjad Rehman
- Artificial Intelligence & Data Analytics Lab CCIS, Prince Sultan University, Riyadh 11586, Saudi Arabia; (A.R.); (S.M.F.); (T.S.)
| | - Teg Alam
- Department of Industrial Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia;
| | - Faten S. Alamri
- Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Suliman Mohamed Fati
- Artificial Intelligence & Data Analytics Lab CCIS, Prince Sultan University, Riyadh 11586, Saudi Arabia; (A.R.); (S.M.F.); (T.S.)
| | - Tanzila Saba
- Artificial Intelligence & Data Analytics Lab CCIS, Prince Sultan University, Riyadh 11586, Saudi Arabia; (A.R.); (S.M.F.); (T.S.)
| |
Collapse
|
45
|
Liu L, Liu S, Zhang L, To XV, Nasrallah F, Chandra SS. Cascaded Multi-Modal Mixing Transformers for Alzheimer's Disease Classification with Incomplete Data. Neuroimage 2023:120267. [PMID: 37422279 DOI: 10.1016/j.neuroimage.2023.120267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023] Open
Abstract
Accurate medical classification requires a large number of multi-modal data, and in many cases, different feature types. Previous studies have shown promising results when using multi-modal data, outperforming single-modality models when classifying diseases such as Alzheimer's Disease (AD). However, those models are usually not flexible enough to handle missing modalities. Currently, the most common workaround is discarding samples with missing modalities which leads to considerable data under-utilisation. Adding to the fact that labelled medical images are already scarce, the performance of data-driven methods like deep learning can be severely hampered. Therefore, a multi-modal method that can handle missing data in various clinical settings is highly desirable. In this paper, we present Multi-Modal Mixing Transformer (3MT), a disease classification transformer that not only leverages multi-modal data but also handles missing data scenarios. In this work, we test 3MT for AD and Cognitively normal (CN) classification and mild cognitive impairment (MCI) conversion prediction to progressive MCI (pMCI) or stable MCI (sMCI) using clinical and neuroimaging data. The model uses a novel Cascaded Modality Transformers architecture with cross-attention to incorporate multi-modal information for more informed predictions. We propose a novel modality dropout mechanism to ensure an unprecedented level of modality independence and robustness to handle missing data scenarios. The result is a versatile network that enables the mixing of arbitrary numbers of modalities with different feature types and also ensures full data utilization in missing data scenarios. The model is trained and evaluated on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with the state-of-the-art performance and further evaluated with The Australian Imaging Biomarker & Lifestyle Flagship Study of Ageing (AIBL) dataset with missing data.
Collapse
Affiliation(s)
- Linfeng Liu
- Queensland Brain Institute, The University of Queensland, Australia.
| | - Siyu Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Australia
| | - Lu Zhang
- Queensland Brain Institute, The University of Queensland, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Australia
| | - Xuan Vinh To
- Queensland Brain Institute, The University of Queensland, Australia
| | - Fatima Nasrallah
- Queensland Brain Institute, The University of Queensland, Australia
| | - Shekhar S Chandra
- School of Information Technology and Electrical Engineering, The University of Queensland, Australia
| |
Collapse
|
46
|
Pallawi S, Singh DK. Study of Alzheimer’s disease brain impairment and methods for its early diagnosis: a comprehensive survey. INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL 2023; 12:7. [DOI: 10.1007/s13735-023-00271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 01/03/2025]
|
47
|
Fu J, He B, Yang J, Liu J, Ouyang A, Wang Y. CDRNet: Cascaded dense residual network for grayscale and pseudocolor medical image fusion. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 234:107506. [PMID: 37003041 DOI: 10.1016/j.cmpb.2023.107506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE Multimodal medical fusion images have been widely used in clinical medicine, computer-aided diagnosis and other fields. However, the existing multimodal medical image fusion algorithms generally have shortcomings such as complex calculations, blurred details and poor adaptability. To solve this problem, we propose a cascaded dense residual network and use it for grayscale and pseudocolor medical image fusion. METHODS The cascaded dense residual network uses a multiscale dense network and a residual network as the basic network architecture, and a multilevel converged network is obtained through cascade. The cascaded dense residual network contains 3 networks, the first-level network inputs two images with different modalities to obtain a fused Image 1, the second-level network uses fused Image 1 as the input image to obtain fused Image 2 and the third-level network uses fused Image 2 as the input image to obtain fused Image 3. The multimodal medical image is trained through each level of the network, and the output fusion image is enhanced step-by-step. RESULTS As the number of networks increases, the fusion image becomes increasingly clearer. Through numerous fusion experiments, the fused images of the proposed algorithm have higher edge strength, richer details, and better performance in the objective indicators than the reference algorithms. CONCLUSION Compared with the reference algorithms, the proposed algorithm has better original information, higher edge strength, richer details and an improvement of the four objective SF, AG, MZ and EN indicator metrics.
Collapse
Affiliation(s)
- Jun Fu
- School of Information Engineering, Zunyi Normal University, Zunyi, Guizhou, 563006, China.
| | - Baiqing He
- Nanchang Institute of Technology, Nanchang, Jiangxi, 330044, China
| | - Jie Yang
- School of Information Engineering, Zunyi Normal University, Zunyi, Guizhou, 563006, China
| | - Jianpeng Liu
- School of Science, East China Jiaotong University, Nanchang, Jiangxi, 330013, China
| | - Aijia Ouyang
- School of Information Engineering, Zunyi Normal University, Zunyi, Guizhou, 563006, China
| | - Ya Wang
- School of Information Engineering, Zunyi Normal University, Zunyi, Guizhou, 563006, China
| |
Collapse
|
48
|
Wang D, Honnorat N, Fox PT, Ritter K, Eickhoff SB, Seshadri S, Habes M. Deep neural network heatmaps capture Alzheimer's disease patterns reported in a large meta-analysis of neuroimaging studies. Neuroimage 2023; 269:119929. [PMID: 36740029 PMCID: PMC11155416 DOI: 10.1016/j.neuroimage.2023.119929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
Deep neural networks currently provide the most advanced and accurate machine learning models to distinguish between structural MRI scans of subjects with Alzheimer's disease and healthy controls. Unfortunately, the subtle brain alterations captured by these models are difficult to interpret because of the complexity of these multi-layer and non-linear models. Several heatmap methods have been proposed to address this issue and analyze the imaging patterns extracted from the deep neural networks, but no quantitative comparison between these methods has been carried out so far. In this work, we explore these questions by deriving heatmaps from Convolutional Neural Networks (CNN) trained using T1 MRI scans of the ADNI data set and by comparing these heatmaps with brain maps corresponding to Support Vector Machine (SVM) activation patterns. Three prominent heatmap methods are studied: Layer-wise Relevance Propagation (LRP), Integrated Gradients (IG), and Guided Grad-CAM (GGC). Contrary to prior studies where the quality of heatmaps was visually or qualitatively assessed, we obtained precise quantitative measures by computing overlap with a ground-truth map from a large meta-analysis that combined 77 voxel-based morphometry (VBM) studies independently from ADNI. Our results indicate that all three heatmap methods were able to capture brain regions covering the meta-analysis map and achieved better results than SVM activation patterns. Among them, IG produced the heatmaps with the best overlap with the independent meta-analysis.
Collapse
Affiliation(s)
- Di Wang
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nicolas Honnorat
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peter T Fox
- Biomedical Image Analytics Division, Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kerstin Ritter
- Department of Psychiatry and Neurosciences, Charite - University of Medicine Berlin and Humboldt-University Berlin, Berlin, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich-Heine University Düsseldorf, Germany
| | - Sudha Seshadri
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamad Habes
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Biomedical Image Analytics Division, Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
49
|
Liu F, Wang H, Liang SN, Jin Z, Wei S, Li X. MPS-FFA: A multiplane and multiscale feature fusion attention network for Alzheimer's disease prediction with structural MRI. Comput Biol Med 2023; 157:106790. [PMID: 36958239 DOI: 10.1016/j.compbiomed.2023.106790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/13/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Structural magnetic resonance imaging (sMRI) is a popular technique that is widely applied in Alzheimer's disease (AD) diagnosis. However, only a few structural atrophy areas in sMRI scans are highly associated with AD. The degree of atrophy in patients' brain tissues and the distribution of lesion areas differ among patients. Therefore, a key challenge in sMRI-based AD diagnosis is identifying discriminating atrophy features. Hence, we propose a multiplane and multiscale feature-level fusion attention (MPS-FFA) model. The model has three components, (1) A feature encoder uses a multiscale feature extractor with hybrid attention layers to simultaneously capture and fuse multiple pathological features in the sagittal, coronal, and axial planes. (2) A global attention classifier combines clinical scores and two global attention layers to evaluate the feature impact scores and balance the relative contributions of different feature blocks. (3) A feature similarity discriminator minimizes the feature similarities among heterogeneous labels to enhance the ability of the network to discriminate atrophy features. The MPS-FFA model provides improved interpretability for identifying discriminating features using feature visualization. The experimental results on the baseline sMRI scans from two databases confirm the effectiveness (e.g., accuracy and generalizability) of our method in locating pathological locations. The source code is available at https://github.com/LiuFei-AHU/MPSFFA.
Collapse
Affiliation(s)
- Fei Liu
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, Hefei, China; School of Computer Science and Technology, Anhui University, Hefei, China
| | - Huabin Wang
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, Hefei, China; School of Computer Science and Technology, Anhui University, Hefei, China.
| | - Shiuan-Ni Liang
- School of Engineering, Monash University Malaysia, Kuala Lumpur, Malaysia
| | - Zhe Jin
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, Hefei, China
| | - Shicheng Wei
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, Hefei, China
| | - Xuejun Li
- Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, Hefei, China; School of Computer Science and Technology, Anhui University, Hefei, China
| | | |
Collapse
|
50
|
El-Sappagh S, Alonso-Moral JM, Abuhmed T, Ali F, Bugarín-Diz A. Trustworthy artificial intelligence in Alzheimer’s disease: state of the art, opportunities, and challenges. Artif Intell Rev 2023. [DOI: 10.1007/s10462-023-10415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|