1
|
Baumgartner C, Baumgartner J, Lang C, Lisy T, Koren JP. Seizure Detection Devices. J Clin Med 2025; 14:863. [PMID: 39941534 PMCID: PMC11818620 DOI: 10.3390/jcm14030863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Goals of automated detection of epileptic seizures using wearable devices include objective documentation of seizures, prevention of sudden unexpected death in epilepsy (SUDEP) and seizure-related injuries, obviating both the unpredictability of seizures and potential social embarrassment, and finally to develop seizure-triggered on-demand therapies. Automated seizure detection devices are based on the analysis of EEG signals (scalp-EEG, subcutaneous EEG and intracranial EEG), of motor manifestations of seizures (surface EMG, accelerometry), and of physiologic autonomic changes caused by seizures (heart and respiration rate, oxygen saturation, sweat secretion, body temperature). While the detection of generalized tonic-clonic and of focal to bilateral tonic-clonic seizures can be achieved with high sensitivity and low false alarm rates, the detection of focal seizures is still suboptimal, especially in the everyday ambulatory setting. Multimodal seizure detection devices in general provide better performance than devices based on single measurement parameters. Long-term use of seizure detection devices in home environments helps to improve the accuracy of seizure diaries and to reduce seizure-related injuries, while evidence for prevention of SUDEP is still lacking. Automated seizure detection devices are generally well accepted by patients and caregivers.
Collapse
Affiliation(s)
- Christoph Baumgartner
- Department of Neurology, Clinic Hietzing, 1130 Vienna, Austria; (C.L.); (J.P.K.)
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, 1130 Vienna, Austria; (J.B.); (T.L.)
- Medical Faculty, Sigmund Freud University, 1020 Vienna, Austria
| | - Jakob Baumgartner
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, 1130 Vienna, Austria; (J.B.); (T.L.)
- Medical Faculty, Sigmund Freud University, 1020 Vienna, Austria
| | - Clemens Lang
- Department of Neurology, Clinic Hietzing, 1130 Vienna, Austria; (C.L.); (J.P.K.)
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, 1130 Vienna, Austria; (J.B.); (T.L.)
| | - Tamara Lisy
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, 1130 Vienna, Austria; (J.B.); (T.L.)
| | - Johannes P. Koren
- Department of Neurology, Clinic Hietzing, 1130 Vienna, Austria; (C.L.); (J.P.K.)
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, 1130 Vienna, Austria; (J.B.); (T.L.)
| |
Collapse
|
2
|
Timothy Aboyeji S, Wang X, Chen Y, Ahmad I, Li L, Liu Z, Yao C, Zhao G, Zhang Y, Li G, Chen S. Automatic detection of epileptic seizure based on one dimensional cascaded convolutional autoencoder with adaptive window-thresholding. J Neural Eng 2024; 21:056040. [PMID: 39419115 DOI: 10.1088/1741-2552/ad883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Objective. Identifying the seizure occurrence period (SOP) in extended EEG recordings is crucial for neurologists to diagnose seizures effectively. However, many existing computer-aided diagnosis systems for epileptic seizure detection (ESD) primarily focus on distinguishing between ictal and interictal states in EEG recordings. This focus has limited their application in clinical settings, as these systems typically rely on supervised learning approaches that require labeled data.Approach. To address this, our study introduces an unsupervised learning framework for ESD using a 1D- cascaded convolutional autoencoder (1D-CasCAE). In this approach, EEG recordings from selected patients in the CHB-MIT datasets are first segmented into 5 s epochs. Eight informative channels are chosen based on the correlation coefficient and Shannon entropy. The 1D-CasCAE is designed to autonomously learn the characteristic patterns of interictal (non-seizure) segments through downsampling and upsampling processes. The integration of adaptive thresholding and a moving window significantly enhances the model's robustness, enabling it to accurately identify ictal segments in long EEG recordings.Main results. Experimental results demonstrate that the proposed 1D-CasCAE effectively learns normal EEG signal patterns and efficiently detects anomalies (ictal segments) using reconstruction errors. When compared with other leading methods in anomaly detection, our model exhibits superior performance, as evidenced by its average Gmean, sensitivity, specificity, precision, and false positive rate scores of 98.00% ± 3.51%, 94.94% ± 6.92%, 99.60% ± 0.30%, 79.92% ± 13.56% and 0.0044 ± 0.0030 h-1respectively for a typical patient in CHB-MIT datasets.Significance. The developed model framework can be employed in clinical settings, replacing the manual inspection process of EEG signals by neurologists. Furthermore, the proposed automated system can adapt to each patient's SOP through the use of variable time windows for seizure detection.
Collapse
Affiliation(s)
- Sunday Timothy Aboyeji
- CAS Key Laboratory of Human-Machine Intelligence Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems,Shenzhen, Guangdong 518055, People's Republic of China
| | - Xin Wang
- CAS Key Laboratory of Human-Machine Intelligence Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems,Shenzhen, Guangdong 518055, People's Republic of China
| | - Yan Chen
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital,Shenzhen 518036, People's Republic of China
| | - Ijaz Ahmad
- CAS Key Laboratory of Human-Machine Intelligence Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems,Shenzhen, Guangdong 518055, People's Republic of China
| | - Lin Li
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital,Shenzhen 518036, People's Republic of China
| | - Zhenzhen Liu
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital,Shenzhen 518036, People's Republic of China
| | - Chen Yao
- Department of Neurosurgery, The National Key Clinic Specialty, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, People's Republic of China
| | - Guoru Zhao
- CAS Key Laboratory of Human-Machine Intelligence Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems,Shenzhen, Guangdong 518055, People's Republic of China
| | - Yu Zhang
- Translational Medicine Center, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems,Shenzhen, Guangdong 518055, People's Republic of China
| | - Shixiong Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172 Shenzhen, People's Republic of China
| |
Collapse
|
3
|
Li H, Liao J, Wang H, Zhan CA, Yang F. EEG power spectra parameterization and adaptive channel selection towards semi-supervised seizure prediction. Comput Biol Med 2024; 175:108510. [PMID: 38691913 DOI: 10.1016/j.compbiomed.2024.108510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND The seizure prediction algorithms have demonstrated their potential in mitigating epilepsy risks by detecting the pre-ictal state using ongoing electroencephalogram (EEG) signals. However, most of them require high-density EEG, which is burdensome to the patients for daily monitoring. Moreover, prevailing seizure models require extensive training with significant labeled data which is very time-consuming and demanding for the epileptologists. METHOD To address these challenges, here we propose an adaptive channel selection strategy and a semi-supervised deep learning model respectively to reduce the number of EEG channels and to limit the amount of labeled data required for accurate seizure prediction. Our channel selection module is centered on features from EEG power spectra parameterization that precisely characterize the epileptic activities to identify the seizure-associated channels for each patient. The semi-supervised model integrates generative adversarial networks and bidirectional long short-term memory networks to enhance seizure prediction. RESULTS Our approach is evaluated on the CHB-MIT and Siena epilepsy datasets. With utilizing only 4 channels, the method demonstrates outstanding performance with an AUC of 93.15% on the CHB-MIT dataset and an AUC of 88.98% on the Siena dataset. Experimental results also demonstrate that our selection approach reduces the model parameters and training time. CONCLUSIONS Adaptive channel selection coupled with semi-supervised learning can offer the possible bases for a light weight and computationally efficient seizure prediction system, making the daily monitoring practical to improve patients' quality of life.
Collapse
Affiliation(s)
- Hanyi Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Jiahui Liao
- School of Electronics and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, 518055, China
| | - Hongxiao Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chang'an A Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China; Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Feng Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Chung YG, Cho A, Kim H, Kim KJ. Single-channel seizure detection with clinical confirmation of seizure locations using CHB-MIT dataset. Front Neurol 2024; 15:1389731. [PMID: 38836000 PMCID: PMC11148866 DOI: 10.3389/fneur.2024.1389731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Long-term electroencephalography (EEG) monitoring is advised to patients with refractory epilepsy who have a failure of anti-seizure medication and therapy. However, its real-life application is limited mainly due to the use of multiple EEG channels. We proposed a patient-specific deep learning-based single-channel seizure detection approach using the long-term scalp EEG recordings of the Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) dataset, in conjunction with neurologists' confirmation of spatial seizure characteristics of individual patients. Methods We constructed 18-, 4-, and single-channel seizure detectors for 13 patients. Neurologists selected a specific channel among four channels, two close to the behind-the-ear and two at the forehead for each patient, after reviewing the patient's distinctive seizure locations with seizure re-annotation. Results Our multi- and single-channel detectors achieved an average sensitivity of 97.05-100%, false alarm rate of 0.22-0.40/h, and latency of 2.1-3.4 s for identification of seizures in continuous EEG recordings. The results demonstrated that seizure detection performance of our single-channel approach was comparable to that of our multi-channel ones. Discussion We suggest that our single-channel approach in conjunction with clinical designation of the most prominent seizure locations has a high potential for wearable seizure detection on long-term EEG recordings for patients with refractory epilepsy.
Collapse
Affiliation(s)
- Yoon Gi Chung
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Anna Cho
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeonggi-do, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Zeydabadinezhad M, Jowers J, Buhl D, Cabaniss B, Mahmoudi B. A personalized earbud for non-invasive long-term EEG monitoring. J Neural Eng 2024; 21:026026. [PMID: 38479008 DOI: 10.1088/1741-2552/ad33af] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Objective. The primary objective of this study was to evaluate the reliability, comfort, and performance of a custom-fit, non-invasive long-term electrophysiologic headphone, known as Aware Hearable, for the ambulatory recording of brain activities. These recordings play a crucial role in diagnosing neurological disorders such as epilepsy and in studying neural dynamics during daily activities.Approach.The study uses commercial manufacturing processes common to the hearing aid industry, such as 3D scanning, computer-aided design modeling, and 3D printing. These processes enable the creation of the Aware Hearable with a personalized, custom-fit, thereby ensuring complete and consistent contact with the inner surfaces of the ear for high-quality data recordings. Additionally, the study employs a machine learning data analysis approach to validate the recordings produced by Aware Hearable, by comparing them to the gold standard intracranial electroencephalography recordings in epilepsy patients.Main results.The results indicate the potential of Aware Hearable to expedite the diagnosis of epilepsy by enabling extended periods of ambulatory recording.Significance.This offers significant reductions in burden to patients and their families. Furthermore, the device's utility may extend to a broader spectrum, making it suitable for other applications involving neurophysiological recordings in real-world settings.
Collapse
Affiliation(s)
- Mahmoud Zeydabadinezhad
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America
| | - Jon Jowers
- United Sciences, LLC, Atlanta, GA, United States of America
| | - Derek Buhl
- Takeda Pharmaceuticals Company Limited, Cambridge, MA, United States of America
| | - Brian Cabaniss
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Babak Mahmoudi
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
6
|
Joyner M, Hsu SH, Martin S, Dwyer J, Chen DF, Sameni R, Waters SH, Borodin K, Clifford GD, Levey AI, Hixson J, Winkel D, Berent J. Using a standalone ear-EEG device for focal-onset seizure detection. Bioelectron Med 2024; 10:4. [PMID: 38321561 PMCID: PMC10848360 DOI: 10.1186/s42234-023-00135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Seizure detection is challenging outside the clinical environment due to the lack of comfortable, reliable, and practical long-term neurophysiological monitoring devices. We developed a novel, discreet, unobstructive in-ear sensing system that enables long-term electroencephalography (EEG) recording. This is the first study we are aware of that systematically compares the seizure detection utility of in-ear EEG with that of simultaneously recorded intracranial EEG. In addition, we present a similar comparison between simultaneously recorded in-ear EEG and scalp EEG. METHODS In this foundational research, we conducted a clinical feasibility study and validated the ability of the ear-EEG system to capture focal-onset seizures against 1255 hrs of simultaneous ear-EEG data along with scalp or intracranial EEG in 20 patients with refractory focal epilepsy (11 with scalp EEG, 8 with intracranial EEG, and 1 with both). RESULTS In a blinded, independent review of the ear-EEG signals, two epileptologists were able to detect 86.4% of the seizures that were subsequently identified using the clinical gold standard EEG modalities, with a false detection rate of 0.1 per day, well below what has been reported for ambulatory monitoring. The few seizures not detected on the ear-EEG signals emanated from deep within the mesial temporal lobe or extra-temporally and remained very focal, without significant propagation. Following multiple sessions of recording for a median continuous wear time of 13 hrs, patients reported a high degree of tolerance for the device, with only minor adverse events reported by the scalp EEG cohort. CONCLUSIONS These preliminary results demonstrate the potential of using ear-EEG to enable routine collection of complementary, prolonged, and remote neurophysiological evidence, which may permit real-time detection of paroxysmal events such as seizures and epileptiform discharges. This study suggests that the ear-EEG device may assist clinicians in making an epilepsy diagnosis, assessing treatment efficacy, and optimizing medication titration.
Collapse
Affiliation(s)
| | | | | | | | - Denise Fay Chen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Reza Sameni
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Samuel H Waters
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Gari D Clifford
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - John Hixson
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Winkel
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
7
|
Ulate-Campos A, Loddenkemper T. Review on the current long-term, limited lead electroencephalograms. Epilepsy Behav 2024; 150:109557. [PMID: 38070411 DOI: 10.1016/j.yebeh.2023.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 01/14/2024]
Abstract
In the last century, 10-20 lead EEG recordings became the gold standard of surface EEG recordings, and the 10-20 system provided comparability between international studies. With the emergence of advanced EEG sensors, that may be able to record and process signals in much more compact units, this additional sensor technology now opens up opportunities to revisit current ambulatory EEG recording practices and specific patient populations, and even electrodes that are embedded into the head surface. Here, we aim to provide an overview of current limited sensor long-term EEG systems. We performed a literature review using Pubmed as a database and included the relevant articles. The review identified several systems for recording long-term ambulatory EEGs. In general, EEGs recorded with these modalities can be acquired in ambulatory and home settings, achieve good sensitivity with low false detection rates, are used for automatic seizure detection as well as seizure forecasting, and are well tolerated by patients, but each of them has advantages and disadvantages. Subcutaneous, subgaleal, and subscalp electrodes are minimally invasive and provide stable signals that can record ultra--long-term EEG and are in general less noisy than scalp EEG, but they have limited spatial coverage and require anesthesia, a surgical procedure and a trained surgeon to be placed. Behind and in the ear electrodes are discrete, unobtrusive with a good sensitivity mainly for temporal seizures but might miss extratemporal seizures, recordings could be obscured by muscle artifacts and bilateral ictal patterns might be difficult to register. Finally, recording systems using electrodes in a headband can be easily and quickly placed by the patient or caregiver, but have less spatial coverage and are more prone to movement because electrodes are not attached. Overall, limited EEG recording systems offer a promising opportunity to potentially record targeted EEG with focused indications for prolonged periods, but further validation work is needed.
Collapse
|
8
|
Hartmann M, Koren J, Baumgartner C, Duun-Henriksen J, Gritsch G, Kluge T, Perko H, Fürbass F. Seizure detection with deep neural networks for review of two-channel electroencephalogram. Epilepsia 2023; 64 Suppl 4:S34-S39. [PMID: 35416283 DOI: 10.1111/epi.17259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
Ultra-long-term electroencephalographic (EEG) registration using minimally invasive low-channel devices is an emerging technology to assess sporadic seizure events. Highly sensitive automatic seizure detection algorithms are needed for semiautomatic evaluation of these prolonged recordings. We describe the design and validation of a deep neural network for two-channel seizure detection. The model is trained using EEG recordings from 590 patients in a publicly available seizure database. These recordings are based on the full 10-20 electrode system and include seizure annotations created by reviews of the full set of EEG channels. Validation was performed using 48 scalp EEG recordings from an independent epilepsy center and consensus seizure annotations from three neurologists. For each patient, a three-electrode subgroup (two channels with a common reference) of the full montage was selected for validation of the two-channel model. Mean sensitivity across patients of 88.8% and false positive rate across patients of 12.9/day were achieved. The proposed training approach is of great practical relevance, because true recordings from low-channel devices are currently available only in small numbers, and the generation of gold standard seizure annotations in two EEG channels is often difficult. The study demonstrates that automatic seizure detection based on two-channel EEG data is feasible and review of ultra-long-term recordings can be made efficient and effective.
Collapse
Affiliation(s)
- Manfred Hartmann
- Center for Health and Bioresources, Austrian Institute of Technology, Vienna, Austria
| | - Johannes Koren
- Department of Neurology, Clinic Hietzing, Vienna, Austria
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Christoph Baumgartner
- Department of Neurology, Clinic Hietzing, Vienna, Austria
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
- Medical Faculty, Sigmund Freud University, Vienna, Austria
| | | | - Gerhard Gritsch
- Center for Health and Bioresources, Austrian Institute of Technology, Vienna, Austria
| | - Tilmann Kluge
- Center for Health and Bioresources, Austrian Institute of Technology, Vienna, Austria
| | - Hannes Perko
- Center for Health and Bioresources, Austrian Institute of Technology, Vienna, Austria
| | - Franz Fürbass
- Center for Health and Bioresources, Austrian Institute of Technology, Vienna, Austria
| |
Collapse
|
9
|
Yu S, El Atrache R, Tang J, Jackson M, Makarucha A, Cantley S, Sheehan T, Vieluf S, Zhang B, Rogers JL, Mareels I, Harrer S, Loddenkemper T. Artificial intelligence-enhanced epileptic seizure detection by wearables. Epilepsia 2023; 64:3213-3226. [PMID: 37715325 DOI: 10.1111/epi.17774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023]
Abstract
OBJECTIVE Wrist- or ankle-worn devices are less intrusive than the widely used electroencephalographic (EEG) systems for monitoring epileptic seizures. Using custom-developed deep-learning seizure detection models, we demonstrate the detection of a broad range of seizure types by wearable signals. METHODS Patients admitted to the epilepsy monitoring unit were enrolled and asked to wear wearable sensors on either wrists or ankles. We collected patients' electrodermal activity, accelerometry (ACC), and photoplethysmography, from which blood volume pulse (BVP) is derived. Board-certified epileptologists determined seizure onset, offset, and types using video and EEG recordings per the International League Against Epilepsy 2017 classification. We applied three neural network models-a convolutional neural network (CNN) and a CNN-long short-term memory (LSTM)-based generalized detection model and an autoencoder-based personalized detection model-to the raw time-series sensor data to detect seizures and utilized performance measures, including sensitivity, false positive rate (the number of false alarms divided by the total number of nonseizure segments), number of false alarms per day, and detection delay. We applied a 10-fold patientwise cross-validation scheme to the multisignal biosensor data and evaluated model performance on 28 seizure types. RESULTS We analyzed 166 patients (47.6% female, median age = 10.0 years) and 900 seizures (13 254 h of sensor data) for 28 seizure types. With a CNN-LSTM-based seizure detection model, ACC, BVP, and their fusion performed better than chance; ACC and BVP data fusion reached the best detection performance of 83.9% sensitivity and 35.3% false positive rate. Nineteen of 28 seizure types could be detected by at least one data modality with area under receiver operating characteristic curve > .8 performance. SIGNIFICANCE Results from this in-hospital study contribute to a paradigm shift in epilepsy care that entails noninvasive seizure detection, provides time-sensitive and accurate data on additional clinical seizure types, and proposes a novel combination of an out-of-the-box monitoring algorithm with an individualized person-oriented seizure detection approach.
Collapse
Affiliation(s)
- Shuang Yu
- IBM Australia, Melbourne, Victoria, Australia
| | - Rima El Atrache
- Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Michele Jackson
- Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Sarah Cantley
- Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Theodore Sheehan
- Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Solveig Vieluf
- Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Zhang
- Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey L Rogers
- Digital Health, IBM T. J. Watson Research Center, Yorktown Heights, New York, USA
| | | | - Stefan Harrer
- IBM Australia, Melbourne, Victoria, Australia
- Digital Health Cooperative Research Centre, Melbourne, Victoria, Australia
| | - Tobias Loddenkemper
- Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Kaongoen N, Choi J, Woo Choi J, Kwon H, Hwang C, Hwang G, Kim BH, Jo S. The future of wearable EEG: a review of ear-EEG technology and its applications. J Neural Eng 2023; 20:051002. [PMID: 37748474 DOI: 10.1088/1741-2552/acfcda] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Objective.This review paper provides a comprehensive overview of ear-electroencephalogram (EEG) technology, which involves recording EEG signals from electrodes placed in or around the ear, and its applications in the field of neural engineering.Approach.We conducted a thorough literature search using multiple databases to identify relevant studies related to ear-EEG technology and its various applications. We selected 123 publications and synthesized the information to highlight the main findings and trends in this field.Main results.Our review highlights the potential of ear-EEG technology as the future of wearable EEG technology. We discuss the advantages and limitations of ear-EEG compared to traditional scalp-based EEG and methods to overcome those limitations. Through our review, we found that ear-EEG is a promising method that produces comparable results to conventional scalp-based methods. We review the development of ear-EEG sensing devices, including the design, types of sensors, and materials. We also review the current state of research on ear-EEG in different application areas such as brain-computer interfaces, and clinical monitoring.Significance.This review paper is the first to focus solely on reviewing ear-EEG research articles. As such, it serves as a valuable resource for researchers, clinicians, and engineers working in the field of neural engineering. Our review sheds light on the exciting future prospects of ear-EEG, and its potential to advance neural engineering research and become the future of wearable EEG technology.
Collapse
Affiliation(s)
- Netiwit Kaongoen
- Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jaehoon Choi
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jin Woo Choi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, United States of America
| | - Haram Kwon
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Chaeeun Hwang
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Guebin Hwang
- Robotics Program, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Byung Hyung Kim
- Department of Artificial Intelligence, Inha University, Incheon, Republic of Korea
| | - Sungho Jo
- School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Yu Y, Bezerianos A, Cichocki A, Li J. Latent Space Coding Capsule Network for Mental Workload Classification. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3417-3427. [PMID: 37607136 DOI: 10.1109/tnsre.2023.3307481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Mental workload can be monitored in real time, which helps us improve work efficiency by maintaining an appropriate workload level. Based on previous studies, we have known that features, such as band power and brain connectivity, can be utilized to classify the levels of mental workload. As band power and brain connectivity represent different but complementary information related to mental workload, it is helpful to integrate them together for workload classification. Although deep learning models have been utilized for workload classification based on EEG, the classification performance is not satisfactory. This is because the current models cannot well tackle variances in the features extracted from non-stationary EEG. In order to address this problem, we, in this study, proposed a novel deep learning model, called latent space coding capsule network (LSCCN). The features of band power and brain connectivity were fused and then modelled in a latent space. The subsequent convolutional and capsule modules were used for workload classification. The proposed LSCCN was compared to the state-of-the-art methods. The results demonstrated that the proposed LSCCN was superior to the compared methods. LSCCN achieved a higher testing accuracy with a relatively smaller standard deviation, indicating a more reliable classification across participants. In addition, we explored the distribution of the features and found that top discriminative features were localized in the frontal, parietal, and occipital regions. This study not only provides a novel deep learning model but also informs further studies in workload classification and promotes practical usage of workload monitoring.
Collapse
|
12
|
Rivas-Carrillo SD, Akkuratov EE, Valdez Ruvalcaba H, Vargas-Sanchez A, Komorowski J, San-Juan D, Grabherr MG. MindReader: Unsupervised Classification of Electroencephalographic Data. SENSORS (BASEL, SWITZERLAND) 2023; 23:2971. [PMID: 36991682 PMCID: PMC10057802 DOI: 10.3390/s23062971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Electroencephalogram (EEG) interpretation plays a critical role in the clinical assessment of neurological conditions, most notably epilepsy. However, EEG recordings are typically analyzed manually by highly specialized and heavily trained personnel. Moreover, the low rate of capturing abnormal events during the procedure makes interpretation time-consuming, resource-hungry, and overall an expensive process. Automatic detection offers the potential to improve the quality of patient care by shortening the time to diagnosis, managing big data and optimizing the allocation of human resources towards precision medicine. Here, we present MindReader, a novel unsupervised machine-learning method comprised of the interplay between an autoencoder network, a hidden Markov model (HMM), and a generative component: after dividing the signal into overlapping frames and performing a fast Fourier transform, MindReader trains an autoencoder neural network for dimensionality reduction and compact representation of different frequency patterns for each frame. Next, we processed the temporal patterns using a HMM, while a third and generative component hypothesized and characterized the different phases that were then fed back to the HMM. MindReader then automatically generates labels that the physician can interpret as pathological and non-pathological phases, thus effectively reducing the search space for trained personnel. We evaluated MindReader's predictive performance on 686 recordings, encompassing more than 980 h from the publicly available Physionet database. Compared to manual annotations, MindReader identified 197 of 198 epileptic events (99.45%), and is, as such, a highly sensitive method, which is a prerequisite for clinical use.
Collapse
Affiliation(s)
- Salvador Daniel Rivas-Carrillo
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden
- Department of Cell and Molecular Biology, Uppsala University, 75237 Uppsala, Sweden
| | - Evgeny E. Akkuratov
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, 11428 Stockholm, Sweden;
| | - Hector Valdez Ruvalcaba
- Epilepsy Clinic, Instituto Nacional de Neurologia y Neurocirugía, Mexico City 14269, Mexico; (H.V.R.); (D.S.-J.)
| | | | - Jan Komorowski
- Department of Cell and Molecular Biology, Uppsala University, 75237 Uppsala, Sweden
- Washington National Primate Research Center, Seattle, WA 98121, USA
- The Institute of Computer Science, Polish Academy of Sciences, 01-248 Warsaw, Poland
| | - Daniel San-Juan
- Epilepsy Clinic, Instituto Nacional de Neurologia y Neurocirugía, Mexico City 14269, Mexico; (H.V.R.); (D.S.-J.)
| | - Manfred G. Grabherr
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
13
|
Shayeste H, Asl BM. Automatic seizure detection based on Gray Level Co-occurrence Matrix of STFT imaged-EEG. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
Modality encoded latent dataset for emotion recognition. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Ren Z, Han X, Wang B. The performance evaluation of the state-of-the-art EEG-based seizure prediction models. Front Neurol 2022; 13:1016224. [PMID: 36504642 PMCID: PMC9732735 DOI: 10.3389/fneur.2022.1016224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The recurrent and unpredictable nature of seizures can lead to unintentional injuries and even death. The rapid development of electroencephalogram (EEG) and Artificial Intelligence (AI) technologies has made it possible to predict seizures in real-time through brain-machine interfaces (BCI), allowing advanced intervention. To date, there is still much room for improvement in predictive seizure models constructed by EEG using machine learning (ML) and deep learning (DL). But, the most critical issue is how to improve the performance and generalization of the model, which involves some confusing conceptual and methodological issues. This review focuses on analyzing several factors affecting the performance of seizure prediction models, focusing on the aspects of post-processing, seizure occurrence period (SOP), seizure prediction horizon (SPH), and algorithms. Furthermore, this study presents some new directions and suggestions for building high-performance prediction models in the future. We aimed to clarify the concept for future research in related fields and improve the performance of prediction models to provide a theoretical basis for future applications of wearable seizure detection devices.
Collapse
Affiliation(s)
- Zhe Ren
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiong Han
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China,*Correspondence: Xiong Han
| | - Bin Wang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
16
|
Li W, Wang G, Lei X, Sheng D, Yu T, Wang G. Seizure detection based on wearable devices: A review of device, mechanism, and algorithm. Acta Neurol Scand 2022; 146:723-731. [PMID: 36255131 DOI: 10.1111/ane.13716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
With sudden and unpredictable nature, seizures lead to great risk of the secondary damage, status epilepticus, and sudden unexpected death in epilepsy. Thus, it is essential to use a wearable device to detect seizure and inform patients' caregivers for assistant to prevent or relieve adverse consequence. In this review, we gave an account of the current state of the field of seizure detection based on wearable devices from three parts: devices, physiological activities, and algorithms. Firstly, seizure monitoring devices available in the market primarily involve wristband-type devices, patch-type devices, and armband-type devices, which are able to detect motor seizures, focal autonomic seizures, or absence seizures. Secondly, seizure-related physiological activities involve the discharge of brain neurons presented, autonomous nervous activities, and motor. Plenty of studies focus on features from one signal, while it is a lack of evidences about the change of signal coupling along with seizures. Thirdly, the seizure detection algorithms developed from simple threshold method to complicated machine learning and deep learning, aiming at distinguish seizures from normal events. After understanding of some preliminary studies, we will propose our own thought for future development in this field.
Collapse
Affiliation(s)
- Wen Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Guangming Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiyuan Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Duozheng Sheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tao Yu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|