1
|
Huang D, Li Z, Li G, Zhou F, Wang G, Ren X, Su J. Biomimetic structural design in 3D-printed scaffolds for bone tissue engineering. Mater Today Bio 2025; 32:101664. [PMID: 40206144 PMCID: PMC11979411 DOI: 10.1016/j.mtbio.2025.101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
The rising prevalence of bone diseases in an aging population underscores the urgent need for innovative and clinically translatable solutions in bone tissue engineering. While significant progress has been made in refining the chemical properties of biomaterials, the structural design of scaffolds-a critical determinant of repair success-remains comparatively underexplored. Structural parameters such as porosity, pore size, and interconnectivity are not only essential for achieving mechanical stability but also pivotal in regulating biological processes, including vascularization, osteogenesis, and immune modulation. This review systematically categorizes scaffold architectures documented in the literature and highlights how these design parameters can be optimized to enhance bone regeneration. Advanced fabrication technologies, particularly 3D printing, are emphasized for their transformative potential in creating precise, biomimetic scaffolds that align with the complex functional demands of native bone. Furthermore, this work synthesizes diverse findings to provide a comprehensive framework for designing next-generation scaffolds. By bridging the gap between structural innovation and clinical application, this review delivers actionable strategies and a strategic roadmap for advancing the field toward improved clinical outcomes and transformative breakthroughs in regenerative medicine.
Collapse
Affiliation(s)
- Dan Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Zuhao Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, China
| | - Fengjin Zhou
- Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
2
|
Cong B, Zhang H. Innovative 3D printing technologies and advanced materials revolutionizing orthopedic surgery: current applications and future directions. Front Bioeng Biotechnol 2025; 13:1542179. [PMID: 40008034 PMCID: PMC11850356 DOI: 10.3389/fbioe.2025.1542179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Three-dimensional (3D) printing has rapidly become a transformative force in orthopedic surgery, enabling the creation of highly customized and precise medical implants and surgical tools. This review aims to provide a more systematic and comprehensive perspective on emerging 3D printing technologies-ranging from extrusion-based methods and bioink printing to powder bed fusion-and the broadening array of materials, including bioactive agents and cell-laden inks. We highlight how these technologies and materials are employed to fabricate patient-specific implants, surgical guides, prosthetics, and advanced tissue engineering scaffolds, significantly enhancing surgical outcomes and patient recovery. Despite notable progress, the field faces challenges such as optimizing mechanical properties, ensuring structural integrity, addressing regulatory complexities across different regions, and considering environmental impacts and cost barriers, especially in low-resource settings. Looking ahead, innovations in smart materials and functionally graded materials (FGMs), along with advancements in bioprinting, hold promise for overcoming these obstacles and expanding the capabilities of 3D printing in orthopedics. This review underscores the pivotal role of interdisciplinary collaboration and ongoing research in harnessing the full potential of additive manufacturing, ultimately paving the way for more effective, personalized, and durable orthopedic solutions that improve patient quality of life.
Collapse
Affiliation(s)
- Bo Cong
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, Shandong, China
- Yantai Key Laboratory for Repair and Reconstruction of Bone and Joint, Yantai, Shandong, China
| | - Haiguang Zhang
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, Shandong, China
- Yantai Key Laboratory for Repair and Reconstruction of Bone and Joint, Yantai, Shandong, China
| |
Collapse
|
3
|
Liu X, Zhou J, Chen M, Chen S, You J, Li Y, Lv H, Zhang Y, Zhou Y. 3D-printed biomimetic bone scaffold loaded with lyophilized concentrated growth factors promotes bone defect repair by regulation the VEGFR2/PI3K/AKT signaling pathway. Int J Biol Macromol 2024; 282:136938. [PMID: 39490882 DOI: 10.1016/j.ijbiomac.2024.136938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
This study investigates the effects of concentrated growth factors (CGF) and bone substitutes on the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs), as well as the development of a novel 3D-printed biomimetic bone scaffold. Based on the structure of cancellous bone, 3D-printed bionic bone with sustainable release of growth factors and Ca2+ was prepared. Using BMSCs and EA.hy926 in co-culture with the bionic bone scaffold, experimental results demonstrate that this bionic structural design enhances cell proliferation and adhesion, and that the bionic bone possesses the ability to promote bone and vascular regeneration directly. Transcriptomics, western blot analysis, and flow cytometry are employed to investigate the effects of CGF and Ca2+ on the signaling pathways of BMSCs. The study reports that vascular endothelial growth factor (VEGF) released by CGF activated VEGFR2 on BMSCs, leading to Ca2+ influx and activation of the PI3K/AKT signaling pathway, thereby influencing osteogenesis. Animal experiments confirm the ability of the bionic bone to promote osteogenesis in vivo, and its unique degradation pattern accelerates the in vivo repair of bone defects. In conclusion, this study presents a novel biomimetic strategy and, for the first time, explores the potential mechanism by which VEGF and Ca2+ regulate BMSCs differentiation through the VEGFR2/PI3K/AKT signaling pathway. These insights offer a new perspective for the development of innovative bone substitute materials.
Collapse
Affiliation(s)
- Xiuyu Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jing Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Meiqing Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Siyu Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jiaqian You
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yangyang Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Huixin Lv
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Shao Z, Zhang X, Xu Y, Zhu W, Shi X, Li L. Internal flow field analysis of a dendritic pore scaffold for bone tissue engineering. Comput Methods Biomech Biomed Engin 2024:1-11. [PMID: 38943424 DOI: 10.1080/10255842.2024.2372612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
The effective reconstruction of osteochondral biomimetic structures is a key factor in guiding the regeneration of full-thickness osteochondral defects. Due to the avascular nature of hyaline cartilage, the greatest challenge in constructing this scaffold lies in both utilizing the biomimetic structure to promote vascular differentiation for nutrient delivery to hyaline cartilage, thereby enhancing the efficiency of osteochondral reconstruction, and effectively blocking vascular ingrowth into the cartilage layer to prevent cartilage mineralization. However, the intrinsic relationship between the planning of the microporous pipe network and the flow resistance in the biomimetic structure, and the mechanism of promoting cell adhesion to achieve vascular differentiation and inhibiting cell adhesion to block the growth of blood vessels are still unclear. Inspired by the structure of tree trunks, this study designed a biomimetic tree-like tubular network structure for osteochondral scaffolds based on Murray's law. Utilizing computational fluid dynamics, the study investigated the influence of the branching angle of micro-pores on the flow velocity, pressure distribution, and scaffold permeability within the scaffold. The results indicate that when the differentiation angle exceeds 50 degrees, the highest flow velocity occurs at the confluence of tributaries at the ninth fractal position, forming a barrier layer. This structure effectively guides vascular growth, enhances nutrient transport capacity, increases flow velocity to promote cell adhesion, and inhibits cell infiltration into the cartilage layer.
Collapse
Affiliation(s)
- Zongheng Shao
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Xujing Zhang
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Yan Xu
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Wenbo Zhu
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Xintong Shi
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Liangduo Li
- School of Mechanical Engineering, Xinjiang University, Urumqi, China
| |
Collapse
|
5
|
Mamuti M, Chao L, Tian Z. Analysis of mechanical characteristics and permeability of TPMS and Voronoi porous structure for bone scaffold. Comput Methods Biomech Biomed Engin 2024:1-14. [PMID: 38812356 DOI: 10.1080/10255842.2024.2358378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Bionic porous structure has been widely used in the field of bone implantation, because it can imitate the topological structure of bone, reduce the elastic modulus of metal bone implantation, and meet the mechanical properties and material transmission characteristics after implantation. This paper mainly studies the effects of different bionic porous structures on the mechanical and material transport properties of bone scaffolds. Firstly, under the same porosity condition, 12 groups of bionic porous structures with different shapes were designed, including G, P, D, I-type three period minimal surface (TPMS) and Voronoi porous structures with different irregularities. Then uses ABAQUS to carry out mechanical finite element simulation on different bionic porous structures, and uses Ti-6Al-4V alloy as forming material, uses laser powder bed fusion technology (LPBF) to prepare the scaffold, then carries out compression experiments. At the same time, COMSOL software is used to simulate the flow characteristics, analyze the permeability characteristics, and verified through cell experiment in vivo. The results show that the mechanical and permeability are different with vary scaffolds. In terms of topology, the morphological characteristics of TPMS are similar to trabecular bone, its compressive strength is relatively strong. Voronoi scaffold has lower elastic modulus, which can provide sufficient mechanical support while reducing stress shielding. In addition, the permeability of TPMS scaffold is better than Voronoi scaffold, which is helpful to promote cell proliferation and bone ingrowth. These bionic porous structures have their own advantages. Therefore, when designing porous structures for bone implantation, it is necessary to select the appropriate porous structure according to different bone implantation requirements. The research will help promote the clinical application of porous structures in the field of bone implantation, and provide theoretical support for the exploration of bone implantation structure design.
Collapse
Affiliation(s)
- Maimaitijiang Mamuti
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- College of Mechanical and Electrical Engineering, XinJiang Vocationa & Technical of Communicians, Wulumuqi, China
| | - Long Chao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zongjun Tian
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
6
|
He L, Zhao M, Cheung JPY, Zhang T, Ren X. Gaussian random field-based characterization and reconstruction of cancellous bone microstructure considering the constraint of correlation structure. J Mech Behav Biomed Mater 2024; 152:106443. [PMID: 38308976 DOI: 10.1016/j.jmbbm.2024.106443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
The macro scale physical properties of cancellous bone materials are governed by the microstructural features, which is of great significance for the multi-scale research of cancellous bone and the inverse design of bone-mimicking materials. Therefore, it is essential to characterize the natural cancellous bone samples, and reconstruct the microstructures with the biomimetic osteointegration and mechanical properties. In this research, a novel approach for the characterization and reconstruction of cancellous bone was proposed, based on the medical image analysis and anisotropic three-dimensional Gaussian random field (GRF). The geometric similarity, i.e. the interface curvature distribution (ISD), was meticulously studied, which is important to the osteointegration ability. And the mechanical properties were validated by the stress-strain curves under the large compressive strain simulated by the smoothed particle hydrodynamic (SPH) method. In addition, the effects of the generation parameters of GRF-based biomimetic microstructures on the apparent properties were analyzed. The ISD results demonstrated that both GRF and micro-CT groups had the similar columnar morphological properties, while the latter had more hyperbolic features. And it was found that the GRF-based biomimetic microstructures and the natural bone samples based on micro-CT (MCT) had the similar failure mode. The concordance correlation coefficient between MCT and GRF pairs was 0.8685, with a Pearson ρ value of 0.8804, and significance level p<0.0001. The Bland-Altman LoA was 0.1647 MPa with 95 % (1.96SD) lower and upper bound value between -0.2892 and 0.6185 MPa. The two groups had almost the same elastic modulus with the mean absolute percentage error (MAPE) of 7.84 %. While the yield stress and total conversion energy of the GRF-based samples were lower than those of the natural bone samples, and the MAPE were 16.99 % and 16.27 %, respectively. Although it meant the lower structural efficiency, the huge design space of this approach and advanced 3D printing technology can provide great potential for the design of orthopedic implants.
Collapse
Affiliation(s)
- Lei He
- College of Civil Engineering, Tongji University, Shanghai, China
| | - Moxin Zhao
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Teng Zhang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Xiaodan Ren
- College of Civil Engineering, Tongji University, Shanghai, China.
| |
Collapse
|
7
|
Manescu (Paltanea) V, Paltanea G, Antoniac A, Gruionu LG, Robu A, Vasilescu M, Laptoiu SA, Bita AI, Popa GM, Cocosila AL, Silviu V, Porumb A. Mechanical and Computational Fluid Dynamic Models for Magnesium-Based Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:830. [PMID: 38399081 PMCID: PMC10890492 DOI: 10.3390/ma17040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Today, mechanical properties and fluid flow dynamic analysis are considered to be two of the most important steps in implant design for bone tissue engineering. The mechanical behavior is characterized by Young's modulus, which must have a value close to that of the human bone, while from the fluid dynamics point of view, the implant permeability and wall shear stress are two parameters directly linked to cell growth, adhesion, and proliferation. In this study, we proposed two simple geometries with a three-dimensional pore network dedicated to a manufacturing route based on a titanium wire waving procedure used as an intermediary step for Mg-based implant fabrication. Implant deformation under different static loads, von Mises stresses, and safety factors were investigated using finite element analysis. The implant permeability was computed based on Darcy's law following computational fluid dynamic simulations and, based on the pressure drop, was numerically estimated. It was concluded that both models exhibited a permeability close to the human trabecular bone and reduced wall shear stresses within the biological range. As a general finding, the proposed geometries could be useful in orthopedics for bone defect treatment based on numerical analyses because they mimic the trabecular bone properties.
Collapse
Affiliation(s)
- Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Lucian Gheorghe Gruionu
- Faculty of Mechanics, University of Craiova, 13 Alexandru Ioan Cuza, RO-200585 Craiova, Romania;
| | - Alina Robu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Marius Vasilescu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Stefan Alexandru Laptoiu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Ana Iulia Bita
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Georgiana Maria Popa
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (G.M.P.); (A.L.C.); (V.S.)
| | - Andreea Liliana Cocosila
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (G.M.P.); (A.L.C.); (V.S.)
| | - Vlad Silviu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (G.M.P.); (A.L.C.); (V.S.)
| | - Anca Porumb
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania;
| |
Collapse
|
8
|
Li J, Yang Y, Sun Z, Peng K, Liu K, Xu P, Li J, Wei X, He X. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis. Mater Today Bio 2024; 24:100934. [PMID: 38234458 PMCID: PMC10792490 DOI: 10.1016/j.mtbio.2023.100934] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
A porous structure is essential for bone implants because it increases the bone ingrowth space and improves mechanical and biological properties. The biomimetically designed porous Voronoi scaffold can reconstruct the structure and function of cancellous bone; however, its comprehensive properties need to be investigated further. In this study, algorithms based on scaling factors were used to design the Voronoi scaffolds. Classic approaches, such as computer-aided design and the implicit surface method, have been used to design Diamond, Gyroid, and I-WP scaffolds as controls. All scaffolds were prepared by selective laser melting of titanium alloys and three-dimensional printing. Mechanical tests, finite element analysis, and in vitro and in vivo experiments were performed to investigate the biomechanical, cytologic, and osteogenic performance of the scaffolds, while computational fluid dynamics simulations were used to explore the underlying mechanisms. Diamond scaffolds have a better loading capacity, and the mechanical behaviors and fluid flow of Voronoi scaffolds are similar to those of the human trabecular bone. Cells showed more proliferation and distribution on the Diamond and Voronoi scaffolds and exhibited evident differentiation on Gyroid and Voronoi scaffolds. Bone formation was apparent on the inner part of the Gyroid, the outer part of the I-WP, and the entire Diamond and Voronoi scaffolds. The hydrodynamic properties and stimulus response of cells influenced by the porous structure account for the varied biological performance of the scaffolds. The Voronoi scaffolds with bionic mechanical behavior and an appropriate hydrodynamic response exhibit evident cell growth and osteogenesis, making them preferable for porous structural bone implants.
Collapse
Affiliation(s)
- Jialiang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Yubing Yang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Kan Peng
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Kaixin Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Jun Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Xinyu Wei
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
9
|
Zhou Y, Isaksson P, Persson C. An improved trabecular bone model based on Voronoi tessellation. J Mech Behav Biomed Mater 2023; 148:106172. [PMID: 37852087 DOI: 10.1016/j.jmbbm.2023.106172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND AND OBJECTIVE Accurate numerical and physical models of trabecular bone, correctly representing its complexity and variability, could be highly advantageous in the development of e.g. new bone-anchored implants due to the limited availability of real bone. Several Voronoi tessellation-based porous models have been reported in the literature, attempting to mimic the trabecular bone. However, these models have been limited to lattice rod-like structures, which are only structurally representative of very high-porosity trabecular bone. The objective of this study was to provide an improved model, more representative of trabecular bone of different porosity. METHODS Boolean operations were utilized to merge scaled Voronoi cells, thereby introducing different structural patterns, controlling porosity and to some extent anisotropy. The mechanical properties of the structures were evaluated using analytical estimations, numerical simulations, and experimental compression tests of 3D-printed versions of the structures. The capacity of the developed models to represent trabecular bone was assessed by comparing some key geometric features with trabecular bone characterized in previous studies. RESULTS The models gave the possibility to provide pore interconnectivity at relatively low porosities as well as both plate- and rod-like structures. The mechanical properties of the generated models were predictable with numerical simulations as well as an analytical approach. The permeability was found to be better than Sawbones at the same porosity. The models also showed the capability of matching e.g. some vertebral structures for key geometric features. CONCLUSIONS An improved numerical model for mimicking trabecular bone structures was successfully developed using Voronoi tessellation and Boolean operations. This is expected to benefit both computational and experimental studies by providing a more diverse and representative structure of trabecular bone.
Collapse
Affiliation(s)
- Yijun Zhou
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, 75121, Sweden.
| | - Per Isaksson
- Division of Applied Mechanics, Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, 75121, Sweden.
| | - Cecilia Persson
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, 75121, Sweden.
| |
Collapse
|
10
|
Singh S, Yadav SK, Meena VK, Vashisth P, Kalyanasundaram D. Orthopedic Scaffolds: Evaluation of Structural Strength and Permeability of Fluid Flow via an Open Cell Neovius Structure for Bone Tissue Engineering. ACS Biomater Sci Eng 2023; 9:5900-5911. [PMID: 37702616 DOI: 10.1021/acsbiomaterials.3c00436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The ability of bone to regenerate itself through mechanobiological responses is its dynamic property. Mechanical cues from a neighboring environment produce the structural strain to promote blood flow and bone marrow mobility that in turn aids the bone regeneration process. Occurrences of these phenomena are crucial for the success of metallic scaffolds implanted in the host bone tissue. Thus, permeability and fluid flow-induced wall shear stress (WSS) are two parameters that directly influence cell bioactivities inside a scaffold and are crucial for effective bone tissue regeneration. Given that the scaffolds shall be implanted in the body, permeability assessment was carried out using non-Newtonian fluid. In this work, the triply periodic minimal surface scaffolds with Neovius architectures were fabricated by using selective laser melting technology. The estimation of fluid flow was carried out using computational fluid dynamics (CFD) analysis with a non-Newtonian blood fluid model. Further, the structural strength of various open cell Neovius lattices was evaluated using a static compression test, and in vitro cell culture using Alamar blue assay was evaluated. Results revealed that the values of intrinsic blood flow permeability of the three-dimensional (3D)-printed open cell porous scaffold with Neovius architecture were of the same order of magnitude as those of human bone, ranging from 0.0025 × 10-9 to 0.0152 × 10-9 m2. The structural elastic modulus and compressive strength of NOCL40, NOCL50, and NOCL60 lattices range from 3.27 to 3.71 GPa and 194 to 205 MPa, respectively. All of the values are comparable to the human bone, thus making these lattices a suitable alternative for orthopedic applications.
Collapse
Affiliation(s)
- Sonu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil Kumar Yadav
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Vijay Kumar Meena
- Central Scientific Instruments Organization, Council of Scientific & Industrial Research, Chandigarh 160030, India
| | - Priya Vashisth
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Dinesh Kalyanasundaram
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
11
|
Luo Y, Xiao M, Almaqrami BS, Kang H, Shao Z, Chen X, Zhang Y. Regenerated silk fibroin based on small aperture scaffolds and marginal sealing hydrogel for osteochondral defect repair. Biomater Res 2023; 27:50. [PMID: 37208690 DOI: 10.1186/s40824-023-00370-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Osteochondral defects pose an enormous challenge without satisfactory repair strategy to date. In particular, the lateral integration of neo-cartilage into the surrounding native cartilage is a difficult and inadequately addressed problem determining tissue repair's success. METHODS Regenerated silk fibroin (RSF) based on small aperture scaffolds was prepared with n-butanol innovatively. Then, the rabbit knee chondrocytes and bone mesenchymal stem cells (BMSCs) were cultured on RSF scaffolds, and after induction of chondrogenic differentiation, cell-scaffold complexes strengthened by a 14 wt% RSF solution were prepared for in vivo experiments. RESULTS A porous scaffold and an RSF sealant exhibiting biocompatibility and excellent adhesive properties are developed and confirmed to promote chondrocyte migration and differentiation. Thus, osteochondral repair and superior horizontal integration are achieved in vivo with this composite. CONCLUSIONS Overall, the new approach of marginal sealing around the RSF scaffolds exhibits preeminent repair results, confirming the ability of this novel graft to facilitate simultaneous regeneration of cartilage-subchondral bone.
Collapse
Affiliation(s)
- Yinyue Luo
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200002, China
| | - Menglin Xiao
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | | | - Hong Kang
- Department of Temporomandibular Joint and Occlusion, School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, 730013, China
| | - Zhengzhong Shao
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai, 200001, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Xin Chen
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai, 200001, China.
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China.
| | - Ying Zhang
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200002, China.
| |
Collapse
|
12
|
Pudełko I, Moskwik A, Kwiecień K, Kriegseis S, Krok-Borkowicz M, Schickle K, Ochońska D, Dobrzyński P, Brzychczy-Włoch M, Gonzalez-Julian J, Pamuła E. Porous Zirconia Scaffolds Functionalized with Calcium Phosphate Layers and PLGA Nanoparticles Loaded with Hydrophobic Gentamicin. Int J Mol Sci 2023; 24:ijms24098400. [PMID: 37176107 PMCID: PMC10178882 DOI: 10.3390/ijms24098400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Implant-related infections are a worldwide issue that is considered very challenging. Conventional therapies commonly end up failing; thus, new solutions are being investigated to overcome this problem. The in situ delivery of the drug at the implant site appears to be more sufficient compared to systemic antibiotic therapy. In this study, we manufactured porous zirconia scaffolds using the foam replication method. To improve their overall bioactivity, they were coated with a calcium phosphate (CaP) layer containing antibiotic-loaded degradable polymer nanoparticles (NPs) obtained by the double emulsion method to achieve the antibacterial effect additionally. Encapsulation efficiency (EE) and drug loading (DL) were superior and were equal to 99.9 ± 0.1% and 9.1 ± 0.1%, respectively. Scaffolds were analyzed with scanning electron microscopy, and their porosity was evaluated. The porosity of investigated samples was over 90% and resembled the microstructure of spongy bone. Furthermore, we investigated the cytocompatibility with osteoblast-like MG-63 cells and antimicrobial properties with Staphylococcus aureus. Scaffolds coated with a CaP layer were found non-toxic for MG-63 cells. Moreover, the presence of antibiotic-loaded nanoparticles had no significant influence on cell viability, and the obtained scaffolds inhibited bacteria growth. Provided processes of fabrication of highly porous zirconia scaffolds and surface functionalization allow minimizing the risk of implant-related infection.
Collapse
Affiliation(s)
- Iwona Pudełko
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Anna Moskwik
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Konrad Kwiecień
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Sven Kriegseis
- Department of Ceramics and Refractory Materials, Institute of Mineral Engineering, RWTH Aachen University, Forckenbeckstraße 33, 52074 Aachen, Germany
| | - Małgorzata Krok-Borkowicz
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Karolina Schickle
- Department of Ceramics and Refractory Materials, Institute of Mineral Engineering, RWTH Aachen University, Forckenbeckstraße 33, 52074 Aachen, Germany
- Department of Restorative Dentistry and Endodontology, Justus-Liebig-University Giessen, Schlangenzahl 14, 35392 Gießen, Germany
| | - Dorota Ochońska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Str., 31-121 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej Str., 41-819 Zabrze, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Str., 31-121 Kraków, Poland
| | - Jesus Gonzalez-Julian
- Department of Ceramics and Refractory Materials, Institute of Mineral Engineering, RWTH Aachen University, Forckenbeckstraße 33, 52074 Aachen, Germany
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| |
Collapse
|
13
|
Bio-manufacturing innovation lights up the future. Biodes Manuf 2023. [DOI: 10.1007/s42242-023-00233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
14
|
Belda R, Megías R, Marco M, Vercher-Martínez A, Giner E. Numerical analysis of the influence of triply periodic minimal surface structures morphometry on the mechanical response. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107342. [PMID: 36693291 DOI: 10.1016/j.cmpb.2023.107342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Design of bone scaffolds requires a combination of material and geometry to fulfil requirements of mechanical properties, porosity and pore size. Triply Periodic Minimal Surface (TPMS) structures have gained attention due to their similarities to cancellous bone. In this work, we aim at exploring relationships between morphometry and mechanical properties for TPMS configurations. METHODS Eight TPMS structures are defined considering six porosity levels and their morphometry is characterized. The stiffness matrix of each structure is assessed and related to morphometry through a statistical analysis. RESULTS An orthotropic mechanical behavior has been derived from the numerical homogenization. Properties decay exponentially for decreasing volume fraction. Through volume fraction variation, TPMS mechanical properties can be selected to match bone properties in a range of 0.2% to 70% of the bulk material properties. CONCLUSIONS The comparison between cancellous bone and TPMS morphometry, considering a unit cell size of 1.5 mm, reveals that the configurations analyzed in this work match the requirements of volume fraction, mean thickness and pore size. However, the TPMS studied in this work differ from cancellous bone anisotropy. The results in this paper provide a framework to select the proper TPMS configuration and its geometry for patient-specific applications.
Collapse
Affiliation(s)
- Ricardo Belda
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés, 28911, Madrid, Spain; Institute of Mechanical and Biomechanical Engineering - I2MB, Department of Mechanical Engineering and Materials, Universitat Politècnica de València, Camino de Vera, Valencia 46022, Spain.
| | - Raquel Megías
- Institute of Mechanical and Biomechanical Engineering - I2MB, Department of Mechanical Engineering and Materials, Universitat Politècnica de València, Camino de Vera, Valencia 46022, Spain
| | - Miguel Marco
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés, 28911, Madrid, Spain
| | - Ana Vercher-Martínez
- Institute of Mechanical and Biomechanical Engineering - I2MB, Department of Mechanical Engineering and Materials, Universitat Politècnica de València, Camino de Vera, Valencia 46022, Spain
| | - Eugenio Giner
- Institute of Mechanical and Biomechanical Engineering - I2MB, Department of Mechanical Engineering and Materials, Universitat Politècnica de València, Camino de Vera, Valencia 46022, Spain
| |
Collapse
|