1
|
Maier PM, Iggena D, Ploner CJ, Finke C. Memory consolidation affects the interplay of place and response navigation. Cortex 2024; 175:12-27. [PMID: 38701643 DOI: 10.1016/j.cortex.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/11/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Navigation through space is based on memory representations of landmarks ('place') or movement sequences ('response'). Over time, memory representations transform through consolidation. However, it is unclear how the transformation affects place and response navigation in humans. In the present study, healthy adults navigated to target locations in a virtual maze. The preference for using place and response strategies and the ability to recall place and response memories were tested after a delay of one hour (n = 31), one day (n = 30), or two weeks (n = 32). The different delays captured early-phase synaptic changes, changes after one night of sleep, and long-delay changes due to the reorganization of navigation networks. Our results show that the relative contributions of place and response navigation changed as a function of time. After a short delay of up to one day, participants preferentially used a place strategy and exhibited a high degree of visual landmark exploration. After a longer delay of two weeks, place strategy use decreased significantly. Participants now equally relied on place and response strategy use and increasingly repeated previously taken paths. Further analyses indicate that response strategy use predominantly occurred as a compensatory strategy in the absence of sufficient place memory. Over time, place memory faded before response memory. We suggest that the observed shift from place to response navigation is context-dependent since detailed landmark information, which strongly relied on hippocampal function, decayed faster than sequence information, which required less detail and depended on extra-hippocampal areas. We conclude that changes in place and response navigation likely reflect the reorganization of navigation networks during systems consolidation.
Collapse
Affiliation(s)
- Patrizia M Maier
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany; Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and Brain, Berlin, Germany
| | - Deetje Iggena
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany; Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and Brain, Berlin, Germany
| | - Christoph J Ploner
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
| | - Carsten Finke
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany; Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and Brain, Berlin, Germany.
| |
Collapse
|
2
|
Wijnen K, Genzel L, van der Meij J. Rodent maze studies: from following simple rules to complex map learning. Brain Struct Funct 2024; 229:823-841. [PMID: 38488865 PMCID: PMC11004052 DOI: 10.1007/s00429-024-02771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
More than 100 years since the first maze designed for rodent research, researchers now have the choice of a variety of mazes that come in many different shapes and sizes. Still old designs get modified and new designs are introduced to fit new research questions. Yet, which maze is the most optimal to use or which training paradigm should be applied, remains up for debate. In this review, we not only provide a historical overview of maze designs and usages in rodent learning and memory research, but also discuss the possible navigational strategies the animals can use to solve each maze. Furthermore, we summarize the different phases of learning that take place when a maze is used as the experimental task. At last, we delve into how training and maze design can affect what the rodents are actually learning in a spatial task.
Collapse
Affiliation(s)
- Kjell Wijnen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen, The Netherlands
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen, The Netherlands.
| | - Jacqueline van der Meij
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Aleman‐Zapata A, van der Meij J, Genzel L. Disrupting ripples: Methods, results, and caveats in closed-loop approaches in rodents. J Sleep Res 2022; 31:e13532. [PMID: 34913214 PMCID: PMC9787779 DOI: 10.1111/jsr.13532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/30/2022]
Abstract
Hippocampal ripple oscillations have been associated with memory reactivations during wake and sleep. These reactivations should contribute to working memory and memory consolidation respectively. In the past decade studies have moved from being observational to actively disrupting ripple-related activity in closed-loop approaches to enable causal investigations into their function. All together these studies have been able to provide evidence that wake, task-related ripple activity is important for working memory and planning but less important for stabilisation of spatial representations. Rest and sleep-related ripple activity, in contrast, is important for long-term memory performance and thus memory consolidation. In this review, we summarise results from different closed-loop approaches in rodents. Further, we highlight differences in detection and stimulation methods as well as controls and discuss how these differences could influence outcomes.
Collapse
Affiliation(s)
- Adrian Aleman‐Zapata
- Donders Institute for BrainCognition and BehaviourRadboud UniversityNijmegenNetherlands
| | | | - Lisa Genzel
- Donders Institute for BrainCognition and BehaviourRadboud UniversityNijmegenNetherlands
| |
Collapse
|
4
|
Electrophysiological markers of memory consolidation in the human brain when memories are reactivated during sleep. Proc Natl Acad Sci U S A 2022; 119:e2123430119. [PMID: 36279460 PMCID: PMC9636913 DOI: 10.1073/pnas.2123430119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sleep contributes to memory consolidation, we presume, because memories are replayed during sleep. Understanding this aspect of consolidation can help with optimizing normal learning in many contexts and with treating memory disorders and other diseases. Here, we systematically manipulated sleep-based processing using targeted memory reactivation; brief sounds coupled with presleep learning were quietly presented again during sleep, producing 1) recall improvements for specific spatial memories associated with those sounds and 2) physiological responses in the sleep electroencephalogram. Neural activity in the hippocampus and adjacent medial temporal cortex was thus found in association with memory consolidation during sleep. These findings advance understanding of consolidation by linking beneficial memory changes during sleep to both memory reactivation and specific patterns of brain activity. Human accomplishments depend on learning, and effective learning depends on consolidation. Consolidation is the process whereby new memories are gradually stored in an enduring way in the brain so that they can be available when needed. For factual or event knowledge, consolidation is thought to progress during sleep as well as during waking states and to be mediated by interactions between hippocampal and neocortical networks. However, consolidation is difficult to observe directly but rather is inferred through behavioral observations. Here, we investigated overnight memory change by measuring electrical activity in and near the hippocampus. Electroencephalographic (EEG) recordings were made in five patients from electrodes implanted to determine whether a surgical treatment could relieve their seizure disorders. One night, while each patient slept in a hospital monitoring room, we recorded electrophysiological responses to 10 to 20 specific sounds that were presented very quietly, to avoid arousal. Half of the sounds had been associated with objects and their precise spatial locations that patients learned before sleep. After sleep, we found systematic improvements in spatial recall, replicating prior results. We assume that when the sounds were presented during sleep, they reactivated and strengthened corresponding spatial memories. Notably, the sounds also elicited oscillatory intracranial EEG activity, including increases in theta, sigma, and gamma EEG bands. Gamma responses, in particular, were consistently associated with the degree of improvement in spatial memory exhibited after sleep. We thus conclude that this electrophysiological activity in the hippocampus and adjacent medial temporal cortex reflects sleep-based enhancement of memory storage.
Collapse
|
5
|
Lam YS, Liu XX, Ke Y, Yung WH. Edge-based network analysis reveals frequency-specific network dynamics in aberrant anxiogenic processing in rats. Netw Neurosci 2022; 6:816-833. [PMID: 36605411 PMCID: PMC9810363 DOI: 10.1162/netn_a_00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/10/2022] [Indexed: 01/07/2023] Open
Abstract
Uncovering interactions between edges of brain networks can reveal the organizational principle of the networks and also their dysregulations underlying aberrant behaviours such as in neuropsychiatric diseases. In this study, we looked into the applicability of edge-based network analysis in uncovering possible network mechanisms of aberrant anxiogenic processing. Utilizing a rat model of prodromal Parkinson's disease we examined how a dorsomedial striatum-tied associative network (DSAN) may mediate context-based anxiogenic behaviour. Following dopamine depletion in the dorsomedial striatum, an exaggerated bottom-up signalling (posterior parietal-hippocampal-retrosplenial to anterior prefrontal-cingulate-amygdala regions) and gradient specific to the theta frequency in this network was observed. This change was accompanied by increased anxiety behaviour of the animals. By employing an edge-based approach in correlating informational flow (phase transfer entropy) with functional connectivity of all edges of this network, we further explore how the abnormal bottom-up signalling might be explained by alterations to the informational flow-connectivity motifs in the network. Our results demonstrate usage of edge-based network analysis in revealing concurrent informational processing and functional organization dynamics across multiple pathways in a brain network. This approach in unveiling network abnormalities and its impact on behavioural outcomes would be useful in probing the network basis of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Yin-Shing Lam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong
| | - Xiu-Xiu Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
6
|
Bastian L, Samanta A, Ribeiro de Paula D, Weber FD, Schoenfeld R, Dresler M, Genzel L. Spindle-slow oscillation coupling correlates with memory performance and connectivity changes in a hippocampal network after sleep. Hum Brain Mapp 2022; 43:3923-3943. [PMID: 35488512 PMCID: PMC9374888 DOI: 10.1002/hbm.25893] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Abstract
After experiences are encoded, post‐encoding reactivations during sleep have been proposed to mediate long‐term memory consolidation. Spindle–slow oscillation coupling during NREM sleep is a candidate mechanism through which a hippocampal‐cortical dialogue may strengthen a newly formed memory engram. Here, we investigated the role of fast spindle‐ and slow spindle–slow oscillation coupling in the consolidation of spatial memory in humans with a virtual watermaze task involving allocentric and egocentric learning strategies. Furthermore, we analyzed how resting‐state functional connectivity evolved across learning, consolidation, and retrieval of this task using a data‐driven approach. Our results show task‐related connectivity changes in the executive control network, the default mode network, and the hippocampal network at post‐task rest. The hippocampal network could further be divided into two subnetworks of which only one showed modulation by sleep. Decreased functional connectivity in this subnetwork was associated with higher spindle–slow oscillation coupling power, which was also related to better memory performance at test. Overall, this study contributes to a more holistic understanding of the functional resting‐state networks and the mechanisms during sleep associated to spatial memory consolidation.
Collapse
Affiliation(s)
- Lisa Bastian
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Anumita Samanta
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Demetrius Ribeiro de Paula
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frederik D Weber
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Martin Dresler
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Lisa Genzel
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Arzy S, Kaplan R. Transforming Social Perspectives with Cognitive Maps. Soc Cogn Affect Neurosci 2022; 17:939-955. [PMID: 35257155 PMCID: PMC9527473 DOI: 10.1093/scan/nsac017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 01/29/2023] Open
Abstract
Growing evidence suggests that cognitive maps represent relations between social knowledge similar to how spatial locations are represented in an environment. Notably, the extant human medial temporal lobe literature assumes associations between social stimuli follow a linear associative mapping from an egocentric viewpoint to a cognitive map. Yet, this form of associative social memory doesn't account for a core phenomenon of social interactions in which social knowledge learned via comparisons to the self, other individuals, or social networks are assimilated within a single frame of reference. We argue that hippocampal-entorhinal coordinate transformations, known to integrate egocentric and allocentric spatial cues, inform social perspective switching between the self and others. We present evidence that the hippocampal formation helps inform social interactions by relating self versus other social attribute comparisons to society in general, which can afford rapid and flexible assimilation of knowledge about the relationship between the self and social networks of varying proximities. We conclude by discussing the ramifications of cognitive maps in aiding this social perspective transformation process in states of health and disease.
Collapse
Affiliation(s)
- Shahar Arzy
- Faculty of Medicine and the Department of Cognitive Sciences, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 91120, Israel
| | - Raphael Kaplan
- Correspondence should be addressed to Raphael Kaplan, Department of Basic Psychology, Clinical Psychology, and Psychobiology, Universitat Jaume I, Avinguda de Vicent Sos Baynat, Castelló de la Plana, Spain. E-mail:
| |
Collapse
|
8
|
Lian J, Wang K, Luo Y. Investigation of Sleep-Dependent Activation-Interaction Association Network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5991-5994. [PMID: 34892483 DOI: 10.1109/embc46164.2021.9629635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The cortical activation and the interaction between cortical regions were considered to exist a strong correlation in recent neuroscience researches. However, such association during sleep was still unclear. The aim of the present work was to further investigate this association according to an activation-interaction association network. This study included 24 healthy individuals and all of them underwent overnight polysomnography. The absolute spectral powers of three frequency bands and the phase transfer entropy were extracted from six electroencephalogram channels. For each frequency band and sleep stage, activation-interaction association networks were built and correlation analysis was conducted by using Pearson correlation test. Results revealed the evident association between features derived from the two approaches during sleep, and as the sleep deepened, these correlation values attenuated in the alpha band, whereas the inversion happened in the delta band. This study exposed more detailed information of cortical activity during sleep, which will facilitate us to conduct research from a more comprehensive perspective, helping us make a more appropriate evaluation and explanation.
Collapse
|
9
|
Samanta A, van Rongen LS, Rossato JI, Jacobse J, Schoenfeld R, Genzel L. Sleep Leads to Brain-Wide Neural Changes Independent of Allocentric and Egocentric Spatial Training in Humans and Rats. Cereb Cortex 2021; 31:4970-4985. [PMID: 34037203 PMCID: PMC8491695 DOI: 10.1093/cercor/bhab135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022] Open
Abstract
Sleep is important for memory consolidation and systems consolidation in particular, which is thought to occur during sleep. While there has been a significant amount of research regarding the effect of sleep on behavior and certain mechanisms during sleep, evidence that sleep leads to consolidation across the system has been lacking until now. We investigated the role of sleep in the consolidation of spatial memory in both rats and humans using a watermaze task involving allocentric- and egocentric-based training. Analysis of immediate early gene expression in rodents, combined with functional magnetic resonance imaging in humans, elucidated similar behavioral and neural effects in both species. Sleep had a beneficial effect on behavior in rats and a marginally significant effect in humans. Interestingly, sleep led to changes across multiple brain regions at the time of retrieval in both species and in both training conditions. In rats, sleep led to increased gene expression in the hippocampus, striatum, and prefrontal cortex. In the humans, sleep led to an activity increase in brain regions belonging to the executive control network and a decrease in activity in regions belonging to the default mode network. Thus, we provide cross-species evidence for system-level memory consolidation occurring during sleep.
Collapse
Affiliation(s)
- Anumita Samanta
- Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands
| | - Laurens S van Rongen
- Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands
| | - Janine I Rossato
- Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | - Justin Jacobse
- Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | - Robby Schoenfeld
- Institute of Psychology, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Lisa Genzel
- Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands.,Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Navarro-Lobato I, Genzel L. Anterior to Posterior Whole-Brain Gradient for Different Types of Memories? Trends Neurosci 2020; 43:451-453. [PMID: 32409016 DOI: 10.1016/j.tins.2020.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Memories are consolidated from hippocampus to cortex, and recent evidence points to an anterior-posterior/ventral-dorsal gradient (in humans/rodents, respectively) across the brain that may be specialized for different types of memories. In a recent article, Cowan et al. provided evidence for this functional difference and gradient, which is also associated with sleep spindles.
Collapse
Affiliation(s)
- Irene Navarro-Lobato
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lisa Genzel
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Alonso A, van der Meij J, Tse D, Genzel L. Naïve to expert: Considering the role of previous knowledge in memory. Brain Neurosci Adv 2020; 4:2398212820948686. [PMID: 32954007 PMCID: PMC7479862 DOI: 10.1177/2398212820948686] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022] Open
Abstract
In humans, most of our new memories are in some way or another related to what we have already experienced. However, in memory research, especially in non-human animal research, subjects are often mostly naïve to the world. But we know that previous knowledge will change how memories are processed and which brain areas are critical at which time point. Each process from encoding, consolidation, to memory retrieval will be affected. Here, we summarise previous knowledge effects on the neurobiology of memory in both humans and non-human animals, with a special focus on schemas - associative network structures. Furthermore, we propose a new theory on how there may be a continuous gradient from naïve to expert, which would modulate the importance and role of brain areas, such as the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Alejandra Alonso
- Donders Centre for Brain,
Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jacqueline van der Meij
- Donders Centre for Brain,
Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Dorothy Tse
- Center for Discovery Brain
Sciences, Edinburgh Neuroscience, The University of Edinburgh, Edinburgh,
UK
| | - Lisa Genzel
- Donders Centre for Brain,
Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|