1
|
Ruiz-Sobremazas D, Coca M, Morales-Navas M, Rodulfo-Cardenas R, Lopez-Granero C, Colomina MT, Perez-Fernandez C, Sanchez-Santed F. The effects of oral gestational particulate matter 10 exposure: Insights into neurodevelopmental milestones, inhibitory control, adult sociability, and object recognition. Neurotoxicology 2025; 108:231-245. [PMID: 40252736 DOI: 10.1016/j.neuro.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Air pollutants have been associated with various neurodevelopmental disorders, with several studies specifically linking Particulate Matter (PM) exposure to attentional and social deficits. This link is even more pronounced when exposure occurs during the prenatal period, as it can disrupt normal brain development. However, while social deficits have been extensively studied during adolescence, their impact on adult social behaviors remains largely unexplored. To investigate these effects, pregnant Wistar rats were exposed throughout gestation (GD1-GD21) to PM10 at a dosage of 200 μg/Kg/day diluted in PBS that was freely drunk. After birth, the pups were evaluated on developmental milestones such as weight progression, ocular opening, and muscular strength. In adulthood, inhibitory control was assessed using the Five Choice Serial Reaction Time Task (5-CSRTT), social behavior using the Three-Chambered Crawley's Test (3-CT), and object recognition using the Novelty Object Recognition test (NOR). The results indicated that prenatal PM10 exposure is associated with higher birth weight and poorer performance in neuromuscular tests. However, no significant differences were observed in inhibitory control (5-CSRTT) or social behavior (3-CT). Interestingly, prenatally exposed rodents showed heightened novelty responses in the NOR test. In conclusion, gestational exposure to PM10 is related to differences in neurodevelopmental milestones, including weight and muscular strength. While it does not impact adult inhibitory control or social behavior, it influences novelty recognition in later life.
Collapse
Affiliation(s)
- Diego Ruiz-Sobremazas
- Department of Psychology and Research Center for Well-Being and Social Inclusion (CIBIS), University of Almeria, Almeria 04120, Spain; Department of Psychology and Sociology, University of Zaragoza, Teruel, Aragón 44003, Spain
| | - Mario Coca
- Department of Psychology and Research Center for Well-Being and Social Inclusion (CIBIS), University of Almeria, Almeria 04120, Spain
| | - Miguel Morales-Navas
- Department of Health Sciences, Universidad de Burgos, Paseo de los Comendadores, Burgos 09001, Spain
| | - Rocío Rodulfo-Cardenas
- Universitat Rovira I Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Cataluña, Spain; Universitat Rovira I Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Cataluña, Spain; Universitat Rovira I Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Cataluña, Spain
| | - Caridad Lopez-Granero
- Department of Psychology and Sociology, University of Zaragoza, Teruel, Aragón 44003, Spain
| | - Maria-Teresa Colomina
- Universitat Rovira I Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Cataluña, Spain; Universitat Rovira I Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Cataluña, Spain; Universitat Rovira I Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Cataluña, Spain
| | - Cristian Perez-Fernandez
- Department of Health Sciences, Universidad de Burgos, Paseo de los Comendadores, Burgos 09001, Spain
| | - Fernando Sanchez-Santed
- Department of Psychology and Research Center for Well-Being and Social Inclusion (CIBIS), University of Almeria, Almeria 04120, Spain.
| |
Collapse
|
2
|
Vella VR, Holman PJ, Bodnar TS, Raineki C. Ontogenetic Neuroimmune Changes Following Prenatal Alcohol Exposure: Implications for Neurobehavioral Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:15-39. [PMID: 40128473 DOI: 10.1007/978-3-031-81908-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This chapter reviews the enduring effects of prenatal alcohol exposure (PAE) on neuroimmune function across the lifespan, including discussion of associated neurobehavioral alterations. Alcohol has potent teratogenic effects, with a large body of work linking PAE to perturbations in neuroimmune function. These PAE-related neuroimmune disturbances may have downstream effects on neurobehavioral function given the critical role of the neuroimmune system in central nervous system development. The neuroimmune system matures over time, playing distinct roles depending on the developmental processes occurring within that maturational stage. This chapter thus takes an ontogenetic approach to understanding how PAE induces unique neuroimmune changes across the lifespan, beginning with a review of changes in early life before moving into adolescence and ending in adulthood. The focus will be on work utilizing rodent models, which allow for more tightly controlled conditions than are possible in human research. The chapter concludes with a discussion of possible mechanisms underlying the developmental changes in neuroimmune function following PAE, with a specific focus on the role of the gut microbiota.
Collapse
Affiliation(s)
- Victoria R Vella
- Department of Psychology, Brock University, St. Catharines, ON, Canada
| | - Parker J Holman
- Department of Psychology, Brock University, St. Catharines, ON, Canada
| | - Tamara S Bodnar
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Charlis Raineki
- Department of Psychology, Brock University, St. Catharines, ON, Canada.
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
3
|
Brueggemann L, Singh P, Müller C. Life Stage- and Sex-Specific Sensitivity to Nutritional Stress in a Holometabolous Insect. Ecol Evol 2025; 15:e70764. [PMID: 39839333 PMCID: PMC11748456 DOI: 10.1002/ece3.70764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Over lifetime, organisms can be repeatedly exposed to stress, shaping their phenotype. At certain, so-called sensitive phases, individuals might be more receptive to such stress, for example, nutritional stress. However, little is known about how plastic responses differ between individuals experiencing nutritional stress early versus later in life or repeatedly, particularly in species with distinct ontogenetic niches. Moreover, there may be sex-specific differences due to distinct physiology. Larvae of the holometabolous turnip sawfly, Athalia rosae, consume leaves and flowers, while the adults take up nectar. We examined the effects of starvation experienced at different life stages on life-history, adult behavioural and metabolic traits to determine which stage may be more sensitive and how specific these traits respond. We exposed individuals to four nutritional regimes, either no, larval, adult starvation or starvation periods as larvae and adults. Larvae exposed to starvation had a prolonged development, and starved females reached a lower initial adult body mass than non-starved individuals. Males did not differ in initial adult body mass regardless of larval starvation, suggesting the ability to conform well to poor nutritional conditions. Adult behavioural activity was not significantly impacted by larval or adult starvation. Individuals starved as larvae had similar carbohydrate and lipid (i.e., fatty acid) contents as non-starved individuals, potentially due to building up energy reserves during development, while starvation during adulthood or at both stages led to reduced energy reserves in males. This study indicates that the sensitivity of a life stage to stress depends on the specific trait under consideration. Life-history traits were mainly affected by larval stress, while activity appeared to be more robust and metabolism mostly impacted by the adult conditions. Individuals differed in their ability to conform to the given environment, with the responses being life stage- and sex-specific.
Collapse
Affiliation(s)
- Leon Brueggemann
- Department of Chemical EcologyBielefeld UniversityBielefeldGermany
- Joint Institute for Individualisation in a Changing Environment (JICE)University of Münster and Bielefeld UniversityBielefeldGermany
| | - Pragya Singh
- Department of Chemical EcologyBielefeld UniversityBielefeldGermany
- Joint Institute for Individualisation in a Changing Environment (JICE)University of Münster and Bielefeld UniversityBielefeldGermany
| | - Caroline Müller
- Department of Chemical EcologyBielefeld UniversityBielefeldGermany
- Joint Institute for Individualisation in a Changing Environment (JICE)University of Münster and Bielefeld UniversityBielefeldGermany
| |
Collapse
|
4
|
Anzà S, Heistermann M, Ostner J, Schülke O. Early prenatal but not postnatal glucocorticoid exposure is associated with enhanced HPA axis activity into adulthood in a wild primate. Proc Biol Sci 2025; 292:20242418. [PMID: 39837517 PMCID: PMC11750380 DOI: 10.1098/rspb.2024.2418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/11/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis plays a dual role in the biology of developmental plasticity in mammals, including humans-HPA axis activity not only provides the input for, but is also a target of, offspring developmental plasticity. To investigate the understudied effects of exposure timing, this study quantified maternal HPA axis activity during each half of gestation as well as during early lactation and assessed its effect on offspring HPA axis activity in a cross-sectional sample of infant, juvenile and adult Assamese macaques (Macaca assamensis). To add ecological validity to experimental studies under laboratory conditions, macaques were studied in the wild. Increased maternal faecal glucocorticoid (GC) metabolite levels experienced early in gestation, but not postnatal exposure during lactation were associated with increased offspring HPA axis activity from infancy into adulthood. Building on prior findings, this study indicates that significant timing effects not only influence the presence, magnitude and direction, but also the consistency of maternal GC effects on offspring HPA axis function.
Collapse
Affiliation(s)
- Simone Anzà
- Department of Medicine, Infectious Diseases Division, Washington University School of Medicine, St Louis, MO, USA
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Julia Ostner
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Oliver Schülke
- Behavioral Ecology Department, University of Goettingen, Goettingen, Germany
- Primate Social Evolution Group, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| |
Collapse
|
5
|
Zucca S, La Rosa C, Fellin T, Peretto P, Bovetti S. Developmental encoding of natural sounds in the mouse auditory cortex. Cereb Cortex 2024; 34:bhae438. [PMID: 39503245 PMCID: PMC11538960 DOI: 10.1093/cercor/bhae438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/09/2024] Open
Abstract
Mice communicate through high-frequency ultrasonic vocalizations, which are crucial for social interactions such as courtship and aggression. Although ultrasonic vocalization representation has been found in adult brain areas along the auditory pathway, including the auditory cortex, no evidence is available on the neuronal representation of ultrasonic vocalizations early in life. Using in vivo two-photon calcium imaging, we analyzed auditory cortex layer 2/3 neuronal responses to USVs, pure tones (4 to 90 kHz), and high-frequency modulated sweeps from postnatal day 12 (P12) to P21. We found that ACx neurons are tuned to respond to ultrasonic vocalization syllables as early as P12 to P13, with an increasing number of responsive cells as the mouse age. By P14, while pure tone responses showed a frequency preference, no syllable preference was observed. Additionally, at P14, USVs, pure tones, and modulated sweeps activate clusters of largely nonoverlapping responsive neurons. Finally, we show that while cell correlation decreases with increasing processing of peripheral auditory stimuli, neurons responding to the same stimulus maintain highly correlated spontaneous activity after circuits have attained mature organization, forming neuronal subnetworks sharing similar functional properties.
Collapse
Affiliation(s)
- Stefano Zucca
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Chiara La Rosa
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| |
Collapse
|
6
|
Gnanadesikan GE, Bray EE, Cook EN, Levy KM, Douglas LELC, Kennedy BS, Tecot SR, MacLean EL. Basal plasma oxytocin & fecal cortisol concentrations are highly heritable and associated with individual differences in behavior & cognition in dog puppies. Horm Behav 2024; 165:105612. [PMID: 39116461 DOI: 10.1016/j.yhbeh.2024.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Oxytocin and cortisol are hormones that can influence cognition and behavior, but the relationships between endogenous concentrations and individual differences in cognitive and behavioral phenotypes remain poorly understood. Across mammals, oxytocin has important roles in diverse social behaviors, and in dogs, it has been implicated in human-oriented behaviors such as social gaze and point-following. Cortisol, an end-product of the hypothalamic-pituitary-adrenal (HPA) axis, is often studied in relation to temperament and emotional reactivity, but it is also known to modulate executive functions. In this study, we measured basal fecal cortisol (n = 247) and plasma oxytocin (n = 249) in dog puppies from a pedigreed population (Canine Companions ®). We collected cognitive and behavioral data from these subjects (n = 247), including measures of human-oriented social cognition, memory, inhibitory control, perceptual discriminations, and temperament. Oxytocin concentrations were estimated to be very highly heritable (h2 = 0.90-0.99) and cortisol concentrations were estimated to be moderately-highly heritable (h2 = 0.43-0.47). Bayesian mixed models controlling for relatedness revealed that oxytocin concentrations were positively associated with spatial working memory and displayed a negative quadratic relationship with behavioral laterality, but no credible associations were seen for social measures. Cortisol concentrations exhibited a negative linear relationship with performance on an inhibitory control task and a negative quadratic relationship with bold behavioral reactions to a novel object. Collectively, our results suggest that individual differences in oxytocin and cortisol concentrations are under strong genetic control in dogs and are associated with phenotypic variation in aspects of temperament, behavioral laterality, and executive function.
Collapse
Affiliation(s)
- Gitanjali E Gnanadesikan
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA; Department of Anthropology, Emory University, Atlanta, GA 30322, USA.
| | - Emily E Bray
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Canine Companions for Independence, Santa Rosa, CA 95402, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA; Psychology Department, University of Arizona, Tucson, AZ 85721, USA
| | - Erica N Cook
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA
| | - Kerinne M Levy
- Canine Companions for Independence, Santa Rosa, CA 95402, USA
| | | | | | - Stacey R Tecot
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA; Psychology Department, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Rystrom TL, Richter SH, Sachser N, Kaiser S. Social niche shapes social behavior and cortisol concentrations during adolescence in female guinea pigs. Horm Behav 2024; 162:105539. [PMID: 38608380 DOI: 10.1016/j.yhbeh.2024.105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Individualized social niches arise in social groups, resulting in divergent social behavior profiles among group members. During sensitive life phases, the individualized social niche can profoundly impact the development of social behavior and associated phenotypes such as hormone (e.g. cortisol) concentrations. Focusing on adolescence, we investigated the relationship between the individualized social niche, social behavior, and cortisol concentrations (baseline and responsiveness) in female guinea pigs. Females were pair-housed in early adolescence (initial social pair formation), and a social niche transition was induced after six weeks by replacing the partner with either a larger or smaller female. Regarding social behavior, dominance status was associated with aggression in both the initial social pairs and after the social niche transition, and the results suggest that aggression was rapidly and completely reshaped after the social niche transition. Meanwhile, submissive behavior was rapidly reshaped after the social niche transition, but this was incomplete. The dominance status attained in the initial social pair affected the extent of submissive behavior after the social niche transition, and this effect was still detected three weeks after the social niche transition. Regarding cortisol concentrations, higher baseline cortisol concentrations were measured in dominant females in the initial social pairs. After the social niche transition, cortisol responsiveness significantly increased for the females paired with a larger, older female relative to those paired with a smaller, younger female. These findings demonstrate that the social niche during adolescence plays a significant role in shaping behavior and hormone concentrations in females.
Collapse
Affiliation(s)
- Taylor L Rystrom
- Department of Behavioural Biology, University of Münster, Münster, Germany; Münster Graduate School of Evolution, University of Münster, Münster, Germany.
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany; Münster Graduate School of Evolution, University of Münster, Münster, Germany.
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Münster, Germany; Münster Graduate School of Evolution, University of Münster, Münster, Germany.
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Münster, Germany; Münster Graduate School of Evolution, University of Münster, Münster, Germany.
| |
Collapse
|
8
|
Premachandran H, Wilkin J, Arruda-Carvalho M. Minimizing Variability in Developmental Fear Studies in Mice: Toward Improved Replicability in the Field. Curr Protoc 2024; 4:e1040. [PMID: 38713136 DOI: 10.1002/cpz1.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In rodents, the first weeks of postnatal life feature remarkable changes in fear memory acquisition, retention, extinction, and discrimination. Early development is also marked by profound changes in brain circuits underlying fear memory processing, with heightened sensitivity to environmental influences and stress, providing a powerful model to study the intersection between brain structure, function, and the impacts of stress. Nevertheless, difficulties related to breeding and housing young rodents, preweaning manipulations, and potential increased variability within that population pose considerable challenges to developmental fear research. Here we discuss several factors that may promote variability in studies examining fear conditioning in young rodents and provide recommendations to increase replicability. We focus primarily on experimental conditions, design, and analysis of rodent fear data, with an emphasis on mouse studies. The convergence of anatomical, synaptic, physiological, and behavioral changes during early life may increase variability, but careful practice and transparency in reporting may improve rigor and consensus in the field. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Hanista Premachandran
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
- These authors contributed equally to this work
| | - Jennifer Wilkin
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
- These authors contributed equally to this work
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Desmarchelier MR. Behavioral Development of Pediatric Exotic Pets and Practical Applications. Vet Clin North Am Exot Anim Pract 2024; 27:431-448. [PMID: 38103997 DOI: 10.1016/j.cvex.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The discovery of epigenetics and the interaction between genes and the environment have moved our understanding of how animal behavior develops from gestation to adulthood, and even throughout generations, to a new level. Studying the natural biology of exotic pets is key to providing them with a rich social and physical environment that will encourage species-specific behaviors. Combining parent-raising with appropriately timed human handling is likely to result in individuals with more resilience to stress. Using operant conditioning techniques early in life to train the animals' basic behaviors gives them control over their environment, empowering them through their social interactions.
Collapse
Affiliation(s)
- Marion R Desmarchelier
- Department of Clinical Sciences, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, J2S 2M2 Saint-Hyacinthe, Québec, Canada.
| |
Collapse
|
10
|
Nuño de la Rosa L. Agency in Reproduction. Evol Dev 2023; 25:418-429. [PMID: 37243316 DOI: 10.1111/ede.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/22/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
While niche construction theory and developmental approaches to evolution have brought to the front the active role of organisms as ecological and developmental agents, respectively, the role of agents in reproduction has been widely neglected by organismal perspectives of evolution. This paper addresses this problem by proposing an agential view of reproduction and shows that such a perspective has implications for the explanation of the origin of modes of reproduction, the evolvability of reproductive modes, and the coevolution between reproduction and social behavior. After introducing the two prevalent views of agency in evolutionary biology, namely those of organismal agency and selective agency, I contrast these two perspectives as applied to the evolution of animal reproduction. Taking eutherian pregnancy as a case study, I wonder whether organismal approaches to agency forged in the frame of niche construction and developmental plasticity theories can account for the goal-directed activities involved in reproductive processes. I conclude that the agential role of organisms in reproduction is irreducible to developmental and ecological agency, and that reproductive goals need to be included into our definitions of organismal agency. I then explore the evolutionary consequences of endorsing an agential approach to reproduction, showing how such an approach might illuminate our understanding of the evolutionary origination and developmental evolvability of reproductive modes. Finally, I analyze recent studies on the coevolution between viviparity and social behavior in vertebrates to suggest that an agential notion of reproduction can provide unforeseen links between developmental and ecological agency.
Collapse
Affiliation(s)
- Laura Nuño de la Rosa
- Department of Logic and Theoretical Philosophy, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Zeid D, Toussaint AB, Dressler CC, Schumacher SP, Do C, Desalvo H, Selamawi D, Bongiovanni AR, Mayberry HL, Carr GV, Wimmer ME. Paternal morphine exposure in rats reduces social play in adolescent male progeny without affecting drug-taking behavior in juvenile males or female offspring. Mol Cell Neurosci 2023; 126:103877. [PMID: 37385516 PMCID: PMC10528482 DOI: 10.1016/j.mcn.2023.103877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023] Open
Abstract
The ongoing opioid addiction crisis necessitates the identification of novel risk factors to improve prevention and treatment of opioid use disorder. Parental opioid exposure has recently emerged as a potential regulator of offspring vulnerability to opioid misuse, in addition to heritable genetic liability. An understudied aspect of this "missing heritability" is the developmental presentation of these cross-generational phenotypes. This is an especially relevant question in the context of inherited addiction-related phenotypes, given the prominent role of developmental processes in the etiology of psychiatric disorders. Paternal morphine self-administration was previously shown to alter the sensitivity to the reinforcing and antinociceptive properties of opioids in the next generation. Here, phenotyping was expanded to include the adolescent period, with a focus on endophenotypes related to opioid use disorders and pain. Paternal morphine exposure did not alter heroin or cocaine self-administration in male and female juvenile progeny. Further, baseline sensory reflexes related to pain were unaltered in morphine-sired adolescent rats of either sex. However, morphine-sired adolescent males exhibited a reduction in social play behavior. Our findings suggest that, in morphine-sired male offspring, paternal opioid exposure does not affect opioid intake during adolescence, suggesting that this phenotype does not emerge until later in life. Altered social behaviors in male morphine-sired adolescents indicate that the changes in drug-taking behavior in adults sired by morphine-exposed sires may be due to more complex factors not yet fully assessed.
Collapse
Affiliation(s)
- Dana Zeid
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Andre B Toussaint
- Zuckerman Mind Brain Behavior Institute, Columbia University, United States of America
| | - Carmen C Dressler
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Samuel P Schumacher
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Chau Do
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Heather Desalvo
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Danait Selamawi
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Angela R Bongiovanni
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Hannah L Mayberry
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America
| | - Gregory V Carr
- Lieber Institute of Brain Development, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, United States of America
| | - Mathieu E Wimmer
- Department of Psychology and Neuroscience, College of Liberal Arts, Temple University, United States of America.
| |
Collapse
|
12
|
Mutwill AM, Schielzeth H, Richter SH, Kaiser S, Sachser N. Conditional on the social environment? Roots of repeatability in hormone concentrations of male guinea pigs. Horm Behav 2023; 155:105423. [PMID: 37713739 DOI: 10.1016/j.yhbeh.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023]
Abstract
Individual differences in behavioral and physiological traits among members of the same species are increasingly being recognized as important in animal research. On the group level, shaping of behavioral and hormonal phenotypes by environmental factors has been reported in different taxa. The extent to which the environment impacts behavior and hormones on the individual level, however, is rather unexplored. Hormonal phenotypes of guinea pigs can be shaped by the social environment on the group level: pair-housed and colony-housed males differ systematically in average testosterone and stressor-induced cortisol levels (i.e. cortisol responsiveness). The aim of the present study was to evaluate whether repeatability and individual variance components (i.e. between- and within-individual variation) of hormonal phenotypes also differ in different social environments. To test this, we determined baseline testosterone, baseline cortisol, and cortisol responsiveness after challenge in same-aged pair-housed and colony-housed guinea pig males over a period of four months. We found comparable repeatability for baseline cortisol and cortisol responsiveness in males from both social conditions. In contrast, baseline testosterone was repeatable only in males from colonies. Interestingly, this result was brought about by significantly larger between-individual variation of testosterone, that was not explained by differences in dominance rank. Individualized social niches differentiated under complex colony, but not pair housing, could be an explanation for this finding.
Collapse
Affiliation(s)
- Alexandra M Mutwill
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany.
| | - Holger Schielzeth
- Population Ecology Group, Institute of Ecology, Friedrich Schiller University, Dornburgerstr. 159, 07743 Jena, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| |
Collapse
|
13
|
Matthiesen M, Khlaifia A, Steininger CFD, Dadabhoy M, Mumtaz U, Arruda-Carvalho M. Maturation of nucleus accumbens synaptic transmission signals a critical period for the rescue of social deficits in a mouse model of autism spectrum disorder. Mol Brain 2023; 16:46. [PMID: 37226266 DOI: 10.1186/s13041-023-01028-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023] Open
Abstract
Social behavior emerges early in development, a time marked by the onset of neurodevelopmental disorders featuring social deficits, including autism spectrum disorder (ASD). Although social deficits are at the core of the clinical diagnosis of ASD, very little is known about their neural correlates at the time of clinical onset. The nucleus accumbens (NAc), a brain region extensively implicated in social behavior, undergoes synaptic, cellular and molecular alterations in early life, and is particularly affected in ASD mouse models. To explore a link between the maturation of the NAc and neurodevelopmental deficits in social behavior, we compared spontaneous synaptic transmission in NAc shell medium spiny neurons (MSNs) between the highly social C57BL/6J and the idiopathic ASD mouse model BTBR T+Itpr3tf/J at postnatal day (P) 4, P6, P8, P12, P15, P21 and P30. BTBR NAc MSNs display increased spontaneous excitatory transmission during the first postnatal week, and increased inhibition across the first, second and fourth postnatal weeks, suggesting accelerated maturation of excitatory and inhibitory synaptic inputs compared to C57BL/6J mice. BTBR mice also show increased optically evoked medial prefrontal cortex-NAc paired pulse ratios at P15 and P30. These early changes in synaptic transmission are consistent with a potential critical period, which could maximize the efficacy of rescue interventions. To test this, we treated BTBR mice in either early life (P4-P8) or adulthood (P60-P64) with the mTORC1 antagonist rapamycin, a well-established intervention for ASD-like behavior. Rapamycin treatment rescued social interaction deficits in BTBR mice when injected in infancy, but did not affect social interaction in adulthood.
Collapse
Affiliation(s)
- Melina Matthiesen
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | | | - Maryam Dadabhoy
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Unza Mumtaz
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
14
|
Stamps JA, Luttbeg B. Sensitive Period Diversity: Insights From Evolutionary Models. THE QUARTERLY REVIEW OF BIOLOGY 2022. [DOI: 10.1086/722637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
15
|
Butler-Struben HM, Kentner AC, Trainor BC. What's wrong with my experiment?: The impact of hidden variables on neuropsychopharmacology research. Neuropsychopharmacology 2022; 47:1285-1291. [PMID: 35338255 PMCID: PMC9117327 DOI: 10.1038/s41386-022-01309-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022]
Abstract
The field of neuropsychopharmacology relies on behavioral assays to quantify behavioral processes related to mental illness and substance use disorders. Although these assays have been highly informative, sometimes laboratories have unpublished datasets from experiments that "didn't work". Often this is because expected outcomes were not observed in positive or negative control groups. While this can be due to experimenter error, an important alternative is that under-appreciated environmental factors can have a major impact on results. "Hidden variables" such as circadian cycles, husbandry, and social environments are often omitted in methods sections, even though there is a strong body of literature documenting their impact on physiological and behavioral outcomes. Applying this knowledge in a more critical manner could provide behavioral neuroscientists with tools to develop better testing methods, improve the external validity of behavioral techniques, and make better comparisons of experimental data across institutions. Here we review the potential impact of "hidden variables" that are commonly overlooked such as light-dark cycles, transport stress, cage ventilation, and social housing structure. While some of these conditions may not be under direct control of investigators, it does not diminish the potential impact of these variables on experimental results. We provide recommendations to investigators on which variables to report in publications and how to address "hidden variables" that impact their experimental results.
Collapse
Affiliation(s)
| | - Amanda C Kentner
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, 02115, USA
| | - Brian C Trainor
- Animal Behavior Graduate Group, University of California, Davis, CA, 95616, USA.
- Department of Psychology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
16
|
Cusick JA, Wellman CL, Demas GE. Maternal stress and the maternal microbiome have sex-specific effects on offspring development and aggressive behavior in Siberian hamsters (Phodopus sungorus). Horm Behav 2022; 141:105146. [PMID: 35276524 DOI: 10.1016/j.yhbeh.2022.105146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
The gut microbiome, a community of commensal, symbiotic and pathogenic bacteria, fungi, and viruses, interacts with many physiological systems to affect behavior. Prenatal experiences, including exposure to maternal stress and different maternal microbiomes, are important sources of organismal variation that can affect offspring development. These physiological systems do not act in isolation and can have long-term effects on offspring development and behavior. Here we investigated the interactive effects of maternal stress and manipulations of the maternal microbiome on offspring development and social behavior using Siberian hamsters, Phodopus sungorus. We exposed pregnant females to either a social stressor, antibiotics, both the social stressor and antibiotics, or no treatment (i.e., control) over the duration of their pregnancy and quantified male and female offspring growth, gut microbiome composition and diversity, stress-induced cortisol concentrations, and social behavior. Maternal antibiotic exposure altered the gut microbial communities of male and female offspring. Maternal treatment also had sex-specific effects on aspects of offspring development and aggressive behavior. Female offspring produced by stressed mothers were more aggressive than other female offspring. Female, but not male, offspring produced by mothers exposed to the combined treatment displayed low levels of aggression, suggesting that alteration of the maternal microbiome attenuated the effects of prenatal stress in a sex-specific manner. Maternal treatment did not affect non-aggressive behavior in offspring. Collectively, our study offers insight into how maternal systems can interact to affect offspring in sex-specific ways and highlights the important role of the maternal microbiome in mediating offspring development and behavior.
Collapse
Affiliation(s)
- Jessica A Cusick
- Department of Biology, Utah Valley University, United States of America; Department of Biology, Indiana University, United States of America; Animal Behavior Program, Indiana University, United States of America.
| | - Cara L Wellman
- Animal Behavior Program, Indiana University, United States of America; Department of Psychological and Brain Sciences, Indiana University, United States of America; Program in Neuroscience, Indiana University, United States of America
| | - Gregory E Demas
- Department of Biology, Indiana University, United States of America; Animal Behavior Program, Indiana University, United States of America; Program in Neuroscience, Indiana University, United States of America
| |
Collapse
|
17
|
Walasek N, Frankenhuis WE, Panchanathan K. An evolutionary model of sensitive periods when the reliability of cues varies across ontogeny. Behav Ecol 2022; 33:101-114. [PMID: 35197808 PMCID: PMC8857937 DOI: 10.1093/beheco/arab113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Sensitive periods are widespread in nature, but their evolution is not well understood. Recent mathematical modeling has illuminated the conditions favoring the evolution of sensitive periods early in ontogeny. However, sensitive periods also exist at later stages of ontogeny, such as adolescence. Here, we present a mathematical model that explores the conditions that favor sensitive periods at later developmental stages. In our model, organisms use environmental cues to incrementally construct a phenotype that matches their environment. Unlike in previous models, the reliability of cues varies across ontogeny. We use stochastic dynamic programming to compute optimal policies for a range of evolutionary ecologies and then simulate developmental trajectories to obtain mature phenotypes. We measure changes in plasticity across ontogeny using study paradigms inspired by empirical research: adoption and cross-fostering. Our results show that sensitive periods only evolve later in ontogeny if the reliability of cues increases across ontogeny. The onset, duration, and offset of sensitive periods-and the magnitude of plasticity-depend on the specific parameter settings. If the reliability of cues decreases across ontogeny, sensitive periods are favored only early in ontogeny. These results are robust across different paradigms suggesting that empirical findings might be comparable despite different experimental designs.
Collapse
Affiliation(s)
- Nicole Walasek
- Behavioral Science Institute, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, the Netherlands
| | - Willem E Frankenhuis
- Behavioral Science Institute, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, the Netherlands
- Department of Psychology, Utrecht University, Heidelberglaan 1, 3584 CS Utrecht, the Netherlands
- Max Planck Institute for the Study of Crime, Security and Law, Günterstalstraße 73, 79100 Freiburg, Germany
| | - Karthik Panchanathan
- Department of Anthropology, University of Missouri, 225 Swallow Hall Columbia, MO 65211, USA
| |
Collapse
|
18
|
Schneeberger K, Eccard JA. Experience of social density during early life is associated with attraction to conspecific odour in the common vole (
Microtus arvalis
). Ethology 2021. [DOI: 10.1111/eth.13211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Karin Schneeberger
- Animal Ecology group University of Potsdam Potsdam Germany
- Applied Zoology and Nature Conservation University of Greifswald Greifswald Germany
| | - Jana A. Eccard
- Animal Ecology group University of Potsdam Potsdam Germany
| |
Collapse
|
19
|
Cusick JA, Wellman CL, Demas GE. The call of the wild: using non-model systems to investigate microbiome-behaviour relationships. J Exp Biol 2021; 224:jeb224485. [PMID: 33988717 PMCID: PMC8180253 DOI: 10.1242/jeb.224485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On and within most sites across an animal's body live complex communities of microorganisms. These microorganisms perform a variety of important functions for their hosts, including communicating with the brain, immune system and endocrine axes to mediate physiological processes and affect individual behaviour. Microbiome research has primarily focused on the functions of the microbiome within the gastrointestinal tract (gut microbiome) using biomedically relevant laboratory species (i.e. model organisms). These studies have identified important connections between the gut microbiome and host immune, neuroendocrine and nervous systems, as well as how these connections, in turn, influence host behaviour and health. Recently, the field has expanded beyond traditional model systems as it has become apparent that the microbiome can drive differences in behaviour and diet, play a fundamental role in host fitness and influence community-scale dynamics in wild populations. In this Review, we highlight the value of conducting hypothesis-driven research in non-model organisms and the benefits of a comparative approach that assesses patterns across different species or taxa. Using social behaviour as an intellectual framework, we review the bidirectional relationship between the gut microbiome and host behaviour, and identify understudied mechanisms by which these effects may be mediated.
Collapse
Affiliation(s)
- Jessica A. Cusick
- Department of Biology, Indiana University, Biology Building 142, 1001 East Third Street, Bloomington, IN 47405, USA
- Animal Behavior Program, Indiana University, 409 N. Park Avenue, Bloomington, IN 47405, USA
| | - Cara L. Wellman
- Animal Behavior Program, Indiana University, 409 N. Park Avenue, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405-7007, USA
- Program in Neuroscience, Indiana University, Psychology Building, 1101 E 10th Street Bloomington, IN 47405-2204, USA
| | - Gregory E. Demas
- Department of Biology, Indiana University, Biology Building 142, 1001 East Third Street, Bloomington, IN 47405, USA
- Animal Behavior Program, Indiana University, 409 N. Park Avenue, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Psychology Building, 1101 E 10th Street Bloomington, IN 47405-2204, USA
| |
Collapse
|
20
|
Lihoreau M, Kaiser S, Resende B, Rödel HG, Châline N. Editorial: Context-Dependent Plasticity in Social Species: Feedback Loops Between Individual and Social Environment. Front Psychol 2021; 12:645191. [PMID: 33597911 PMCID: PMC7882478 DOI: 10.3389/fpsyg.2021.645191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 01/28/2023] Open
Affiliation(s)
- Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier-Toulouse III, Toulouse, France
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Briseida Resende
- LEDIS, Department of Experimental Psychology, Instituto de Psicologia, University of São Paulo, São Paulo, Brazil
- Programa de pós-graduação em Psicologia Experimental, University of São Paulo, São Paulo, Brazil
| | - Heiko G. Rödel
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Nicolas Châline
- Programa de pós-graduação em Psicologia Experimental, University of São Paulo, São Paulo, Brazil
- LEEEIS, Department of Experimental Psychology, Instituto de Psicologia, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
|