1
|
Ganci CC, McKay L, Hunninck L, Sheriff MJ. Impacts of predation risk on learning and memory of free-living mice. Proc Biol Sci 2025; 292:20241978. [PMID: 39999888 PMCID: PMC11858748 DOI: 10.1098/rspb.2024.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 10/09/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
In predator-prey interactions, responses to predation risk typically involve behavioural, morphological or physiological changes. Laboratory-based studies have also shown changes in prey cognition (i.e. learning and memory), with individuals often showing impairment. However, an ecological perspective predicts that wild animals should conserve their cognitive ability, given that many risk responses require robust cognition. Here, we simulated predation risk and used a field-adapted version of the Morris Water Maze (MWM) to investigate how chronic predation risk affects cognition in wild white-footed mice (Peromyscus leucopus). We found that 24 days' exposure to predation risk did not impair learning. However, those exposed to risk had a 25% reduction of their short-term memory. Twelve days post-risk exposure, we found no performance differences between risk-exposed and control mice. Additionally, risk-exposed mice displayed greater exploration with a higher probability of completing the MWM in their initial trial. Given that prey integrate multiple pieces of information to shape their behaviour, the lack of learning impairment and altered exploration strategies may help mice respond to predation risk. However, the tendency of memory impairment suggests there are consequences for cognition when experiencing increased predation risk.
Collapse
Affiliation(s)
- Carolina C. Ganci
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA02747, USA
| | - Leah McKay
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA02747, USA
| | - Louis Hunninck
- Swiss Ornithological Institute, Sempach6204, Switzerland
| | - Michael J. Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA02747, USA
| |
Collapse
|
2
|
Speechley EM, Ashton BJ, Foo YZ, Simmons LW, Ridley AR. Meta-analyses reveal support for the Social Intelligence Hypothesis. Biol Rev Camb Philos Soc 2024; 99:1889-1908. [PMID: 38855980 DOI: 10.1111/brv.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
The Social Intelligence Hypothesis (SIH) is one of the leading explanations for the evolution of cognition. Since its inception a vast body of literature investigating the predictions of the SIH has accumulated, using a variety of methodologies and species. However, the generalisability of the hypothesis remains unclear. To gain an understanding of the robustness of the SIH as an explanation for the evolution of cognition, we systematically searched the literature for studies investigating the predictions of the SIH. Accordingly, we compiled 103 studies with 584 effect sizes from 17 taxonomic orders. We present the results of four meta-analyses which reveal support for the SIH across interspecific, intraspecific and developmental studies. However, effect sizes did not differ significantly between the cognitive or sociality metrics used, taxonomy or testing conditions. Thus, support for the SIH is similar across studies using neuroanatomy and cognitive performance, those using broad categories of sociality, group size and social interactions, across taxonomic groups, and for tests conducted in captivity or the wild. Overall, our meta-analyses support the SIH as an evolutionary and developmental explanation for cognitive variation.
Collapse
Affiliation(s)
- Elizabeth M Speechley
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Benjamin J Ashton
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- School of Natural Sciences, Macquarie University, 205b Culloden Road, Sydney, NSW, 2109, Australia
| | - Yong Zhi Foo
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Amanda R Ridley
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
3
|
Blackburn G, Ashton BJ, Thornton A, Hunter H, Woodiss-Field S, Ridley AR. Investigating the relationship between physical cognitive tasks and a social cognitive task in a wild bird. Anim Cogn 2024; 27:52. [PMID: 39060612 PMCID: PMC11281958 DOI: 10.1007/s10071-024-01892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Despite considerable research into the structure of cognition in non-human animal species, there is still much debate as to whether animal cognition is organised as a series of discrete domains or an overarching general cognitive factor. In humans, the existence of general intelligence is widely accepted, but less work has been undertaken in animal psychometrics to address this question. The relatively few studies on non-primate animal species that do investigate the structure of cognition rarely include tasks assessing social cognition and focus instead on physical cognitive tasks. In this study, we tested 36 wild Western Australian magpies (Gymnorhina tibicen dorsalis) on a battery of three physical (associative learning, spatial memory, and numerical assessment) and one social (observational spatial memory) cognitive task, to investigate if cognition in this species fits a general cognitive factor model, or instead one of separate physical and social cognitive domains. A principal component analysis (PCA) identified two principal components with eigenvalues exceeding 1; a first component onto which all three physical tasks loaded strongly and positively, and a second component onto which only the social task (observational spatial memory) loaded strongly and positively. These findings provide tentative evidence for separate physical and social cognitive domains in this species, and highlight the importance of including tasks assessing both social and physical cognition in cognitive test batteries.
Collapse
Affiliation(s)
- Grace Blackburn
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia.
| | - Benjamin J Ashton
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Holly Hunter
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Sarah Woodiss-Field
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Amanda R Ridley
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
4
|
Goss K, Bueno-Junior LS, Stangis K, Ardoin T, Carmon H, Zhou J, Satapathy R, Baker I, Jones-Tinsley CE, Lim MM, Watson BO, Sueur C, Ferrario CR, Murphy GG, Ye B, Hu Y. Quantifying social roles in multi-animal videos using subject-aware deep-learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602350. [PMID: 39026890 PMCID: PMC11257443 DOI: 10.1101/2024.07.07.602350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Analyzing social behaviors is critical for many fields, including neuroscience, psychology, and ecology. While computational tools have been developed to analyze videos containing animals engaging in limited social interactions under specific experimental conditions, automated identification of the social roles of freely moving individuals in a multi-animal group remains unresolved. Here we describe a deep-learning-based system - named LabGym2 - for identifying and quantifying social roles in multi-animal groups. This system uses a subject-aware approach: it evaluates the behavioral state of every individual in a group of two or more animals while factoring in its social and environmental surroundings. We demonstrate the performance of subject-aware deep-learning in different species and assays, from partner preference in freely-moving insects to primate social interactions in the field. Our subject-aware deep learning approach provides a controllable, interpretable, and efficient framework to enable new experimental paradigms and systematic evaluation of interactive behavior in individuals identified within a group.
Collapse
Affiliation(s)
- Kelly Goss
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- These authors contributed equally
| | - Lezio S. Bueno-Junior
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- These authors contributed equally
| | - Katherine Stangis
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Théo Ardoin
- Master Biodiversité Ecologie et Evolution, Université Paris-Saclay, Orsay, France
- Magistère de Biologie, Université Paris-Saclay, Orsay, France
| | - Hanna Carmon
- Department of Pharmacology and Psychology Department (Biopsychology), University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Zhou
- Department of Computer Science, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rohan Satapathy
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isabelle Baker
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carolyn E. Jones-Tinsley
- Veterans Affairs VISN20 Northwest MIRECC, VA Portland Health Care System, Portland, OR 97239, USA
- Oregon Alzheimer’s Disease Research Center, Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Miranda M. Lim
- Veterans Affairs VISN20 Northwest MIRECC, VA Portland Health Care System, Portland, OR 97239, USA
- Oregon Alzheimer’s Disease Research Center, Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Brendon O. Watson
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cédric Sueur
- Université de Strasbourg, IPHC UMR7178, CNRS, Strasbourg, France
- ANTHROPO-LAB, ETHICS EA 7446, Université Catholique de Lille, Lille, France
| | - Carrie R. Ferrario
- Department of Pharmacology and Psychology Department (Biopsychology), University of Michigan, Ann Arbor, MI 48109, USA
| | - Geoffrey G. Murphy
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yujia Hu
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Harrington KJ, Folkertsma R, Auersperg AMI, Biondi L, Lambert ML. Innovative problem solving by wild falcons. Curr Biol 2024; 34:190-195.e3. [PMID: 37989310 DOI: 10.1016/j.cub.2023.10.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
Innovation (i.e., a new solution to a familiar problem, or applying an existing behavior to a novel problem1,2) plays a fundamental role in species' ecology and evolution. It can be a useful measure for cross-group comparisons of behavioral and cognitive flexibility and a proxy for general intelligence.3,4,5 Among birds, experimental studies of innovation (and cognition more generally) are largely from captive corvids and parrots,6,7,8,9,10,11,12 though we lack serious models for avian technical intelligence outside these taxa. Striated caracaras (Phalcoboenus australis) are Falconiformes, sister clade to parrots and passerines,13,14,15 and those endemic to the Falkland Islands (Malvinas) show curiosity and neophilia similar to notoriously neophilic kea parrots16,17 and face similar socio-ecological pressures to corvids and parrots.18,19 We tested wild striated caracaras as a new avian model for technical cognition and innovation using a field-applicable 8-task comparative paradigm (adapted from Rössler et al.20 and Auersperg et al.21). The setup allowed us to assess behavior, rate, and flexibility of problem solving over repeated exposure in a natural setting. Like other generalist species with low neophobia,21,22 we predicted caracaras to demonstrate a haptic approach to solving tasks, flexibly switching to new, unsolved problems and improving their performance over time. Striated caracaras performed comparably to tool-using parrots,20 nearly reaching ceiling levels of innovation in few trials, repeatedly and flexibly solving tasks, and rapidly learning. We attribute our findings to the birds' ecology, including geographic restriction, resource unpredictability, and opportunistic generalism,23,24,25 and encourage future work investigating their cognitive abilities in the wild. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Katie J Harrington
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Remco Folkertsma
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Alice M I Auersperg
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Laura Biondi
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP - CONICET, Juan B. Justo 2550, Mar del Plata B7602GSD, Argentina
| | - Megan L Lambert
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
6
|
Soravia C, Ashton BJ, Thornton A, Ridley AR. High temperatures are associated with reduced cognitive performance in wild southern pied babblers. Proc Biol Sci 2023; 290:20231077. [PMID: 37989242 PMCID: PMC10688443 DOI: 10.1098/rspb.2023.1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
Global temperatures are increasing rapidly. While considerable research is accumulating regarding the lethal and sublethal effects of heat on wildlife, its potential impact on animal cognition has received limited attention. Here, we tested wild southern pied babblers (Turdoides bicolor) on three cognitive tasks (associative learning, reversal learning and inhibitory control) under naturally occurring heat stress and non-heat stress conditions. We determined whether cognitive performance was explained by temperature, heat dissipation behaviours, individual and social attributes, or proxies of motivation. We found that temperature, but not heat dissipation behaviours, predicted variation in associative learning performance. Individuals required on average twice as many trials to learn an association when the maximum temperature during testing exceeded 38°C compared with moderate temperatures. Higher temperatures during testing were also associated with reduced inhibitory control performance, but only in females. By contrast, we found no temperature-related decline in performance in the reversal learning task, albeit individuals reached learning criterion in only 14 reversal learning tests. Our findings provide novel evidence of temperature-mediated cognitive impairment in a wild animal and indicate that its occurrence depends on the cognitive trait examined and individual sex.
Collapse
Affiliation(s)
- Camilla Soravia
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| | - Benjamin J. Ashton
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia 2109
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa, 7701
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Amanda R. Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa, 7701
| |
Collapse
|
7
|
Schuppli C, Nellissen L, Carvajal L, Ashbury AM, Oliver-Caldwell N, Rahmaeti T, Laumer I, Haun D. Ecological, social, and intrinsic factors affecting wild orangutans' curiosity, assessed using a field experiment. Sci Rep 2023; 13:13184. [PMID: 37580333 PMCID: PMC10425418 DOI: 10.1038/s41598-023-39214-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 07/21/2023] [Indexed: 08/16/2023] Open
Abstract
The readiness to interact with and explore novel stimuli-i.e., curiosity-is the cornerstone of innovation. Great apes show broad and complex innovation repertoires. However, little is known about the factors that affect curiosity in wild apes. To shed light on wild apes' curiosity, we measured the reactions of wild Sumatran orangutans (Pongo abelii) to an experiment apparatus. Overall, individuals were reluctant to touch the apparatus. However, compared to adults, immatures showed higher tendencies to explore (measured through looking durations and the probability of touching the apparatus) and to approach (measured through approach latencies and approach distances) the apparatus but were more likely to show behavioral signs of agitation. The presence of conspecifics who approached the apparatus increased visual exploration and approach tendencies. Prevailing habitat food availability positively affected visual exploration but had a negative effect on approach tendencies. These findings indicate that intrinsic, social, and ecological factors affect reactions to novelty in wild orangutans and suggest that exploration, neophobia and neophilia are independently regulated. Because reactions to novelty can be an essential pathway to innovation, our results suggest that factors acting on different elements of curiosity must be considered to understand the evolution of innovative tendencies.
Collapse
Affiliation(s)
- Caroline Schuppli
- Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5, 78467, Konstanz, Germany.
- Leipzig Research Center for Early Child Development, Leipzig University, Jahnallee 59, 04109, Leipzig, Germany.
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| | - Lara Nellissen
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Department of Éco-Anthropologie et Ethnobiologie, Muséum National d'Histoire Naturelle, CP 135, Rue Cuvier, 75 231, Paris Cedex 5, France
- Institute of Biology, Department of Comparative Cognition, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchatel, Switzerland
| | - Luz Carvajal
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Alison M Ashbury
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Bücklestrasse 5, 78467, Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Natalie Oliver-Caldwell
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Tri Rahmaeti
- Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5, 78467, Konstanz, Germany
- Department of Biology, Graduate School, Universitas Nasional, Jalan Sawo Manila, RT.14/RW.3, Jakarta, 12550, Indonesia
| | - Isabelle Laumer
- Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5, 78467, Konstanz, Germany
| | - Daniel Haun
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| |
Collapse
|
8
|
Fei H, de Guinea M, Yang L, Garber PA, Zhang L, Chapman CA, Fan P. Wild gibbons plan their travel pattern according to food types of breakfast. Proc Biol Sci 2023; 290:20230430. [PMID: 37192666 PMCID: PMC10188241 DOI: 10.1098/rspb.2023.0430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
Planning for the future is a complex skill that is often considered uniquely human. This cognitive ability has never been investigated in wild gibbons (Hylobatidae). Here we evaluated the movement patterns from sleeping trees to out-of-sight breakfast trees in two groups of endangered skywalker gibbons (Hoolock tianxing). These Asian apes inhabit a cold seasonal montane forest in southwestern China. After controlling for possible confounding variables including group size, sleeping pattern (sleep alone or huddle together), rainfall and temperature, we found that food type (fruits or leaves) of the breakfast tree was the most important factor affecting gibbon movement patterns. Fruit breakfast trees were more distant from sleeping trees compared with leaf trees. Gibbons left sleeping trees and arrived at breakfast trees earlier when they fed on fruits compared with leaves. They travelled fast when breakfast trees were located further away from the sleeping trees. Our study suggests that gibbons had foraging goals in mind and plan their departure times accordingly. This ability may reflect a capacity for route-planning, which would enable them to effectively exploit highly dispersed fruit resources in high-altitude montane forests.
Collapse
Affiliation(s)
- Hanlan Fei
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- College of Life Science, China West Normal University, Nanchong 637002, People's Republic of China
| | - Miguel de Guinea
- Movement Ecology Lab, Department of Ecology Evolution and Behavior, Alexander Silverman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Li Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Paul A. Garber
- Department of Anthropology, Program in Ecology and Evolutionary Biology, University of Illinois, Urbana, IL 61801, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671000, People's Republic of China
| | - Lu Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Colin A. Chapman
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, Canada V9R 5S5
- Wilson Center, 1300 Pennsylvania Avenue NW, Washington, DC 20004, USA
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710127, People's Republic of China
| | - Pengfei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
9
|
Sarabian C, Wilkinson A, Sigaud M, Kano F, Tobajas J, Darmaillacq AS, Kalema-Zikusoka G, Plotnik JM, MacIntosh AJJ. Disgust in animals and the application of disease avoidance to wildlife management and conservation. J Anim Ecol 2023. [PMID: 36914973 DOI: 10.1111/1365-2656.13903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/31/2023] [Indexed: 03/16/2023]
Abstract
Disgust is an adaptive system hypothesized to have evolved to reduce the risk of becoming sick. It is associated with behavioural, cognitive and physiological responses tuned to allow animals to avoid and/or get rid of parasites, pathogens and toxins. Little is known about the mechanisms and outcomes of disease avoidance in wild animals. Furthermore, given the escalation of negative human-wildlife interactions, the translation of such knowledge into the design of evolutionarily relevant conservation and wildlife management strategies is becoming urgent. Contemporary methods in animal ecology and related fields, using direct (sensory cues) or indirect (remote sensing technologies and machine learning) means, provide a flexible toolbox for testing and applying disgust at individual and collective levels. In this review/perspective paper, we provide an empirical framework for testing the adaptive function of disgust and its associated disease avoidance behaviours across species, from the least to the most social, in different habitats. We predict various trade-offs to be at play depending on the social system and ecology of the species. We propose five contexts in which disgust-related avoidance behaviours could be applied, including endangered species rehabilitation, invasive species, crop-raiding, urban pests and animal tourism. We highlight some of the perspectives and current challenges of testing disgust in the wild. In particular, we recommend future studies to consider together disease, predation and competition risks. We discuss the ethics associated with disgust experiments in the above contexts. Finally, we promote the creation of a database gathering disease avoidance evidence in animals and its applications.
Collapse
Affiliation(s)
- Cécile Sarabian
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Anna Wilkinson
- School of Life Sciences, University of Lincoln, Lincoln, UK
| | - Marie Sigaud
- Centre d'Écologie et des Sciences de la Conservation, Muséum National d'Histoire Naturelle, Paris, France
| | - Fumihiro Kano
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Jorge Tobajas
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain
| | | | | | - Joshua M Plotnik
- Department of Psychology, Hunter College and the Graduate Center, City University of New York, New York, USA
| | | |
Collapse
|
10
|
Soravia C, Ashton BJ, Thornton A, Ridley AR. General cognitive performance declines with female age and is negatively related to fledging success in a wild bird. Proc Biol Sci 2022; 289:20221748. [PMID: 36541175 PMCID: PMC9768653 DOI: 10.1098/rspb.2022.1748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Identifying the causes and fitness consequences of intraspecific variation in cognitive performance is fundamental to understand how cognition evolves. Selection may act on different cognitive traits separately or jointly as part of the general cognitive performance (GCP) of the individual. To date, few studies have examined simultaneously whether individual cognitive performance covaries across different cognitive tasks, the relative importance of individual and social attributes in determining cognitive variation, and its fitness consequences in the wild. Here, we tested 38 wild southern pied babblers (Turdoides bicolor) on a cognitive test battery targeting associative learning, reversal learning and inhibitory control. We found that a single factor explained 59.5% of the variation in individual cognitive performance across tasks, suggestive of a general cognitive factor. GCP varied by age and sex; declining with age in females but not males. Older females also tended to produce a higher average number of fledglings per year compared to younger females. Analysing over 10 years of breeding data, we found that individuals with lower general cognitive performance produced more fledglings per year. Collectively, our findings support the existence of a trade-off between cognitive performance and reproductive success in a wild bird.
Collapse
Affiliation(s)
- Camilla Soravia
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Benjamin J. Ashton
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Amanda R. Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
De Meester G, Van Linden L, Torfs J, Pafilis P, Šunje E, Steenssens D, Zulčić T, Sassalos A, Van Damme R. Learning with lacertids: Studying the link between ecology and cognition within a comparative framework. Evolution 2022; 76:2531-2552. [PMID: 36111365 DOI: 10.1111/evo.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 01/22/2023]
Abstract
Cognition is an essential tool for animals to deal with environmental challenges. Nonetheless, the ecological forces driving the evolution of cognition throughout the animal kingdom remain enigmatic. Large-scale comparative studies on multiple species and cognitive traits have been advanced as the best way to facilitate our understanding of cognitive evolution, but such studies are rare. Here, we tested 13 species of lacertid lizards (Reptilia: Lacertidae) using a battery of cognitive tests measuring inhibitory control, problem-solving, and spatial and reversal learning. Next, we tested the relationship between species' performance and (a) resource availability (temperature and precipitation), habitat complexity (Normalized Difference Vegetation Index), and habitat variability (seasonality) in their natural habitat and (b) their life history (size at hatching and maturity, clutch size, and frequency). Although species differed markedly in their cognitive abilities, such variation was mostly unrelated to their ecology and life history. Yet, species living in more variable environments exhibited lower behavioral flexibility, likely due to energetic constrains in such habitats. Our standardized protocols provide opportunities for collaborative research, allowing increased sample sizes and replication, essential for moving forward in the field of comparative cognition. Follow-up studies could include more detailed measures of habitat structure and look at other potential selective drivers such as predation.
Collapse
Affiliation(s)
- Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Lisa Van Linden
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Jonas Torfs
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Emina Šunje
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Department of Biology, Faculty of Natural Sciences, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina.,Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Dries Steenssens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Tea Zulčić
- Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Athanasios Sassalos
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| |
Collapse
|
12
|
Henaut Y, Charles A, Delfour F. Cognition of the manatee: past research and future developments. Anim Cogn 2022; 25:1049-1058. [PMID: 36002602 DOI: 10.1007/s10071-022-01676-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
In this paper, we present a review of the current knowledge related to the cognitive abilities of the manatee, with a focus on the Antillean manatee in situ and ex situ. Following a biocentric approach, we consider the animals' ecology, perception and sociality and we introduce future perspectives on their cognition. Scientific literature on the cognitive abilities of Antillean manatees' is limited and mainly linked to medical training and veterinary manipulations. To perceive and to interact with their social and natural environment (e.g. social interactions, foraging and traveling), manatees use visual, acoustic and tactile modalities that may be involved in a large range of cognitive abilities. Research on stimuli perception in manatees is scarce; however, these animals demonstrate abilities to learn and appear to show long-term memory. For example, to mate and/or to forage manatees travel at medium and large geographical scales; without doubt their movements entail the use of a set of stimuli and learning processes. Furthermore, their social skills (e.g. social organization, tactile and acoustic communications) are also poorly understood although their social interactions appear to be more complex than previously thought. Finally, as for many animals, temperament/personality may play a key role during their interactions with conspecifics and the environment. These aspects on manatee behavior and cognition are important for management and conservation purposes and help us understand the evolution of these marine mammals.
Collapse
Affiliation(s)
- Yann Henaut
- Laboratorio de Conducta Animal, GAIA-BIO, El Colegio de la Frontera Sur (ECOSUR), Av. del Centenario Km. 5.5, C.P. 77014, Chetumal, Quintana Roo, Mexico.
| | - Aviva Charles
- Centre d'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204, CNRS, MNHN, Sorbonne-Université, MNHN), Paris, France
- ZooParc de Beauval and Beauval Nature, 41110, Saint Aignan, France
| | | |
Collapse
|