1
|
Bitar L, Isella B, Bertella F, Bettker Vasconcelos C, Harings J, Kopp A, van der Meer Y, Vaughan TJ, Bortesi L. Sustainable Bombyx mori's silk fibroin for biomedical applications as a molecular biotechnology challenge: A review. Int J Biol Macromol 2024; 264:130374. [PMID: 38408575 DOI: 10.1016/j.ijbiomac.2024.130374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Silk is a natural engineering material with a unique set of properties. The major constituent of silk is fibroin, a protein widely used in the biomedical field because of its mechanical strength, toughness and elasticity, as well as its biocompatibility and biodegradability. The domestication of silkworms allows large amounts of fibroin to be extracted inexpensively from silk cocoons. However, the industrial extraction process has drawbacks in terms of sustainability and the quality of the final medical product. The heterologous production of fibroin using recombinant DNA technology is a promising approach to address these issues, but the production of such recombinant proteins is challenging and further optimization is required due to the large size and repetitive structure of fibroin's DNA and amino acid sequence. In this review, we describe the structure-function relationship of fibroin, the current extraction process, and some insights into the sustainability of silk production for biomedical applications. We focus on recent advances in molecular biotechnology underpinning the production of recombinant fibroin, working toward a standardized, successful and sustainable process.
Collapse
Affiliation(s)
- Lara Bitar
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands; Fibrothelium GmbH, Philipsstraße 8, 52068 Aachen, Germany
| | - Benedetta Isella
- Fibrothelium GmbH, Philipsstraße 8, 52068 Aachen, Germany; Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Francesca Bertella
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands; B4Plastics, IQ Parklaan 2A, 3650 Dilsen-Stokkem, Belgium
| | - Carolina Bettker Vasconcelos
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands; Umlaut GmbH, Am Kraftversorgungsturm 3, 52070 Aachen, Germany
| | - Jules Harings
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| | - Alexander Kopp
- Fibrothelium GmbH, Philipsstraße 8, 52068 Aachen, Germany
| | - Yvonne van der Meer
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Luisa Bortesi
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands.
| |
Collapse
|
2
|
Morici E, Pecoraro G, Carroccio SC, Bruno E, Scarfato P, Filippone G, Dintcheva NT. Understanding the Effects of Adding Metal Oxides to Polylactic Acid and Polylactic Acid Blends on Mechanical and Rheological Behaviour, Wettability, and Photo-Oxidation Resistance. Polymers (Basel) 2024; 16:922. [PMID: 38611180 PMCID: PMC11013447 DOI: 10.3390/polym16070922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Biopolymers are of growing interest, but to improve some of their poor properties and performance, the formulation of bio-based blends and/or adding of nanoparticles is required. For this purpose, in this work, two different metal oxides, namely zinc oxide (ZnO) and titanium dioxide (TiO2), at different concentrations (0.5, 1, and 2%wt.) were added in polylactic acid (PLA) and polylactic acid/polyamide 11 (PLA/PA11) blends to establish their effects on solid-state properties, morphology, melt behaviour, and photo-oxidation resistance. It seems that the addition of ZnO in PLA leads to a significant reduction in its rigidity, probably due to an inefficient dispersion in the melt state, while the addition of TiO2 does not penalize PLA rigidity. Interestingly, the addition of both ZnO and TiO2 in the PLA/PA11 blend has a positive effect on the rigidity because of blend morphology refinement and leads to a slight increase in film hydrophobicity. The photo-oxidation resistance of the neat PLA and PLA/PA11 blend is significantly reduced due to the presence of both metal oxides, and this must be considered when designing potential applications. The last results suggest that both metal oxides could be considered photo-sensitive degradant agents for biopolymer and biopolymer blends.
Collapse
Affiliation(s)
- Elisabetta Morici
- ATEN Center, Università di Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo, Italy
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Giuseppe Pecoraro
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Sabrina Carola Carroccio
- CNR-IPCB, Unit of Catania, Via P. Gaifami 18, 95126 Catania, Italy;
- CNR-IMM, Via Santa Sofia 64, 95123 Catania, Italy;
| | - Elena Bruno
- CNR-IMM, Via Santa Sofia 64, 95123 Catania, Italy;
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, 95124 Catania, Italy
| | - Paola Scarfato
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy;
| | - Giovanni Filippone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, 80125 Naples, Italy;
| | - Nadka Tz. Dintcheva
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
- CNR-IPCB, Unit of Catania, Via P. Gaifami 18, 95126 Catania, Italy;
| |
Collapse
|
3
|
Torsello M, Ben-Zichri S, Pesenti L, Kunnath SM, Samorì C, Pasteris A, Bacchelli G, Prishkolnik N, Ben-Nun U, Righi S, Focarete ML, Kolusheva S, Jelinek R, Gualandi C, Galletti P. Carbon dot/polylactic acid nanofibrous membranes for solar-mediated oil absorption/separation: Performance, environmental sustainability, ecotoxicity and reusability. Heliyon 2024; 10:e25417. [PMID: 38420388 PMCID: PMC10900409 DOI: 10.1016/j.heliyon.2024.e25417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/13/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Carbon dots (CDs) are promising photothermal nanoparticles that can be utilized in environmental treatments. They exhibit favorable physicochemical properties, including low toxicity, physical and chemical stability, photo-dependant reversible behaviour, and environmentally friendly synthesis using benign building blocks. Here, we synthesized innovative CDs/polylactic acid (PLA) electrospun composite membranes for evaluating the removal of hydrophobic compounds like long-chain hydrocarbons or oils in biphasic mixtures with water. The ultimate goal was to develop innovative and sustainable solar-heated oil absorbents. Specifically, we fabricated PLA membranes with varying CD contents, characterized their morphology, thermal, and mechanical properties, and assessed the environmental impact of membrane production according to ISO 14040 and 14044 standards in a preliminary "cradle-to-gate" life cycle assessment study. Solar radiation experiments demonstrated that the CDs/PLA composites exhibited greater uptake of hydrophobic compounds compared to pure PLA membranes, ascribable to the CDs-induced photothermal effect. The adsorption and regeneration capacity of the new CDs/PLA membrane was demonstrated through multiple uptake/release cycles. Ecotoxicity analyses confirmed the safety profile of the new adsorbent system towards freshwater microalgae, further emphasizing its potential as an environmentally friendly solution for the removal of hydrophobic compounds in water treatment processes.
Collapse
Affiliation(s)
- Monica Torsello
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Shani Ben-Zichri
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Lucia Pesenti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Sisira M Kunnath
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Chiara Samorì
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Andrea Pasteris
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Greta Bacchelli
- Interdepartmental Centre for Research in Environmental Sciences (CIRSA), University of Bologna, Via S. Alberto, 163, 48123, Ravenna, Italy
| | - Noa Prishkolnik
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Uri Ben-Nun
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Serena Righi
- Interdepartmental Centre for Research in Environmental Sciences (CIRSA), University of Bologna, Via S. Alberto, 163, 48123, Ravenna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136, Bologna, Italy
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Viale Carlo Berti Pichat, 6/2, 40126, Bologna, Italy
| | - Maria Letizia Focarete
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
- Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum - Università di Bologna, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Sofiya Kolusheva
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
- Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum - Università di Bologna, 40064, Ozzano dell'Emilia, Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136, Bologna, Italy
| | - Paola Galletti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| |
Collapse
|
4
|
Drobne D, Ciornii D, Hodoroaba V, Bohmer N, Novak S, Kranjc E, Kononenko V, Reuther R. Knowledge, Information, and Data Readiness Levels (KaRLs) for Risk Assessment, Communication, and Governance of Nano-, New, and Other Advanced Materials. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200211. [PMID: 37483420 PMCID: PMC10362106 DOI: 10.1002/gch2.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/03/2023] [Indexed: 07/25/2023]
Abstract
The obvious benefits derived from the increasing use of engineered nano-, new, and advanced materials and associated products have to be weighed out by a governance process against their possible risks. Differences in risk perception (beliefs about potential harm) among stakeholders, in particular nonscientists, and low transparency of the underlying decision processes can lead to a lack of support and acceptance of nano-, new, and other advanced material enabled products. To integrate scientific outcomes with stakeholders needs, this work develops a new approach comprising a nine-level, stepwise categorization and guidance system entitled "Knowledge, Information, and Data Readiness Levels" (KaRLs), analogous to the NASA Technology Readiness Levels. The KaRL system assesses the type, extent, and usability of the available data, information, and knowledge and integrates the participation of relevant and interested stakeholders in a cocreation/codesign process to improve current risk assessment, communication, and governance. The novelty of the new system is to communicate and share all available and relevant elements on material related risks in a user/stakeholder-friendly, transparent, flexible, and holistic way and so stimulate reflection, awareness, communication, and a deeper understanding that ultimately enables the discursive process that is needed for the sustainable risk governance of new materials.
Collapse
Affiliation(s)
- Damjana Drobne
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaVečna pot 111Ljubljana1000Slovenia
| | - Dmitri Ciornii
- Bundesanstalt für Materialforschung und‐Prüfung (BAM)Division 6.1 Surface Analysis and Interfacial ChemistryUnter den Eichen 8712205BerlinGermany
| | - Vasile‐Dan Hodoroaba
- Bundesanstalt für Materialforschung und‐Prüfung (BAM)Division 6.1 Surface Analysis and Interfacial ChemistryUnter den Eichen 8712205BerlinGermany
| | - Nils Bohmer
- Evonik Operations GmbHRodenbacher Chaussee 463457Hanau‐WolfgangGermany
| | - Sara Novak
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaVečna pot 111Ljubljana1000Slovenia
| | - Eva Kranjc
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaVečna pot 111Ljubljana1000Slovenia
| | - Veno Kononenko
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaVečna pot 111Ljubljana1000Slovenia
| | - Rudolf Reuther
- Environmental AssessmentsOberes Lautenbächle 377886LaufGermany
| |
Collapse
|
5
|
Mapping GHG emissions and prospects for renewable energy in the chemical industry. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2022.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
McElhinney JMWR, Catacutan MK, Mawart A, Hasan A, Dias J. Interfacing Machine Learning and Microbial Omics: A Promising Means to Address Environmental Challenges. Front Microbiol 2022; 13:851450. [PMID: 35547145 PMCID: PMC9083327 DOI: 10.3389/fmicb.2022.851450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial communities are ubiquitous and carry an exceptionally broad metabolic capability. Upon environmental perturbation, microbes are also amongst the first natural responsive elements with perturbation-specific cues and markers. These communities are thereby uniquely positioned to inform on the status of environmental conditions. The advent of microbial omics has led to an unprecedented volume of complex microbiological data sets. Importantly, these data sets are rich in biological information with potential for predictive environmental classification and forecasting. However, the patterns in this information are often hidden amongst the inherent complexity of the data. There has been a continued rise in the development and adoption of machine learning (ML) and deep learning architectures for solving research challenges of this sort. Indeed, the interface between molecular microbial ecology and artificial intelligence (AI) appears to show considerable potential for significantly advancing environmental monitoring and management practices through their application. Here, we provide a primer for ML, highlight the notion of retaining biological sample information for supervised ML, discuss workflow considerations, and review the state of the art of the exciting, yet nascent, interdisciplinary field of ML-driven microbial ecology. Current limitations in this sphere of research are also addressed to frame a forward-looking perspective toward the realization of what we anticipate will become a pivotal toolkit for addressing environmental monitoring and management challenges in the years ahead.
Collapse
Affiliation(s)
- James M. W. R. McElhinney
- Applied Genomics Laboratory, Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Aurelie Mawart
- Applied Genomics Laboratory, Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ayesha Hasan
- Applied Genomics Laboratory, Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jorge Dias
- EECS, Center for Autonomous Robotic Systems, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Life Cycle Assessment of Nitrogen Circular Economy-Based NOx Treatment Technology. SUSTAINABILITY 2021. [DOI: 10.3390/su13147826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Humans are significantly perturbing the global nitrogen cycle, leading to excess reactive nitrogen in the environment. Nitrogen oxides as a key reactive nitrogen species are mainly controlled by selective non-catalytic reduction and selective catalytic reduction. Converting nitrogen oxides to ammonia, defined as ReNOx, emerges as an alternative method under a disparate design concept. However, little is known about its overall environmental performance. In this study, we conducted for the first time a life cycle assessment of ReNOx. Compared with the eco-index in the condition of 200 °C with a conversion rate of 95%, it would increase substantially in the condition of 160 °C with a conversion rate of 80% and in the case without a sound NH3 treatment. Feedstock format change, adsorption material performance deterioration, and recovery rate decline would increase the eco-index by 8%, 12%, and 18%, respectively. The eco-index was decreased by 31% in the optimized scenario with a renewable energy source and an increased conversion rate. The environmental impacts were compared with traditional methods at impact, damage, and eco-index levels. Finally, the implications on process arrangement in the flue gas system, the externality for power generation, and the contribution to the nitrogen circular economy were examined. The results can serve as a reference for its developers to improve the technology from the environmental perspective.
Collapse
|
8
|
LCA Practices of Plastics and Their Recycling: A Critical Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In a bid to help address the environmental footprints associated with products and services, life cycle assessment (LCA) applications have become increasingly popular throughout the years. This review summarizes some important methodological developments in recent years, such as the advent of dynamic LCA, as well as highlighting recent LCA applications in the context of plastics/recycling with a focus on their methodological choices. Furthermore, this review aims to offer a set of possible research lines to improve the gap between LCA and decision-making (policy). It was found that the majority of reviewed papers are mostly conservative in their methodological practice, employing mostly static analyses and making little use of other methods. In order to bridge the gap between LCA and policy, it is suggested to broaden system boundaries through the integration of dynamic modelling methods, incorporating interactions between fore- and background systems, and including behavioral components where relevant. In addition, advanced sampling routines to further explore and assess the policy space are recommended. This is of paramount importance when dealing with recycling processes as the molecules/polymers constituting the output of those processes have to be benchmarked in terms of costs and, crucially, their sustainability character against virgin ones.
Collapse
|