1
|
He B, Gu Y, Yang Z, Ling Z, Hu H, Chen Z. Bridge-oxygen bonding modulates Ru single atoms for peroxymonosulfate activation: Importance of high-valent Ru species and 1O 2. J Colloid Interface Sci 2024; 676:435-444. [PMID: 39033678 DOI: 10.1016/j.jcis.2024.07.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
The application of single-atom catalysts (SACs) to advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) has attracted considerable attention. However, the catalytic pathways and mechanisms underlying these processes remain unclear. In this study, NiFe-LDH was synthesized and single Ru atoms were stably loaded onto it by forming Ru-O-M (M=Ni or Fe) bonds (Ru@NiFe-LDH). This was demonstrated using high-angle annular dark-field scanning TEM (HAADF-STEM) and X-ray absorption fine structure spectra (XANES). The Ru@NiFe-LDH/PMS system showed a high catalytic reactivity (100 % sulfamethoxazole degradation in only 30 min), high stability (97 % reactivity was maintained after continuous operation for 400 min), and wide pH suitability (working pH range 3-11) for AOPs. The crucial roles of the high-valent species (Ru(V) = O) and 1O2 in this reaction were verified. Density functional theory (DFT) calculations revealed that electron transfer produced a positively charged Ru. This enhances the adsorption of negatively charged PMS anions onto the Ru monoatomic sites, thereby, causing the formation of Ru-PMS* complexes. This study implies that the structure-function relationship between organic compounds and SACs plays a significant role in PMS-based AOPs, and provides a comprehensive mechanism for the role of high-valent species in heterogeneous Fenton-like systems.
Collapse
Affiliation(s)
- Bo He
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Yanling Gu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhaoxiang Ling
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Huamin Hu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Zhaoyong Chen
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| |
Collapse
|
2
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
3
|
Wang Z, Zeng Y, Deng J, Wang Z, Guo Z, Yang Y, Xu X, Song B, Zeng G, Zhou C. Preparation and Application of Single-Atom Cobalt Catalysts in Organic Synthesis and Environmental Remediation. SMALL METHODS 2024; 8:e2301363. [PMID: 38010986 DOI: 10.1002/smtd.202301363] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/04/2023] [Indexed: 11/29/2023]
Abstract
The development of high-performance catalysts plays a crucial role in facilitating chemical production and reducing environmental contamination. Single-atom catalysts (SACs), a class of catalysts that bridge the gap between homogeneous and heterogeneous catalysis, have garnered increasing attention because of their unique activity, selectivity, and stability in many pivotal reactions. Meanwhile, the scarcity of precious metal SACs calls for the arrival of cost-effective SACs. Cobalt, as a common non-noble metal, possesses tremendous potential in the field of single-atom catalysis. Despite their potential, reviews about single-atom Co catalysts (Co-SACs) are lacking. Accordingly, this review thoroughly summarized various preparation methodologies of Co-SACs, particularly pyrolysis; its application in the specific domain of organic synthesis and environmental remediation is discussed as well. The structure-activity relationship and potential catalytic mechanism of Co-SACs are elucidated through some representative reactions. The imminent challenges and development prospects of Co-SACs are discussed in detail. The findings and insights provided herein can guide further exploration and development in this charming area of catalyst design, leading to the realization of efficient and sustainable catalytic processes.
Collapse
Affiliation(s)
- Zihao Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Jie Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Ziwei Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Zicong Guo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
- Jiangxi Province Key Laboratory of Drinking Water Safety, Nanchang, Jiangxi Province, 330013, P. R. China
| |
Collapse
|
4
|
Zeng Y, Almatrafi E, Xia W, Song B, Xiong W, Cheng M, Wang Z, Liang Y, Zeng G, Zhou C. Nitrogen-doped carbon-based single-atom Fe catalysts: Synthesis, properties, and applications in advanced oxidation processes. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Cui P, Liu C, Su X, Yang Q, Ge L, Huang M, Dang F, Wu T, Wang Y. Atomically Dispersed Manganese on Biochar Derived from a Hyperaccumulator for Photocatalysis in Organic Pollution Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8034-8042. [PMID: 35584092 DOI: 10.1021/acs.est.2c00992] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Phytoremediation is a potentially cost-effective and environmentally friendly remediation method for environmental pollution. However, the safe treatment and resource utilization of harvested biomass has become a limitation in practical applications. To address this, a novel manganese-carbon-based single-atom catalyst (SAC) method has been developed based on the pyrolysis of a manganese hyperaccumulator, Phytolacca americana. In this method, manganese atoms are dispersed atomically in the carbon matrix and coordinate with N atoms to form a Mn-N4 structure. The SAC developed exhibited a high photooxidation efficiency and excellent stability during the degradation of a common organic pollutant, rhodamine B. The Mn-N4 site was the active center in the transformation of photoelectrons via the transfer of photoelectrons between adsorbed O2 and Mn to produce reactive oxygen species, identified by in situ X-ray absorption fine structure spectroscopy and density functional theory calculations. This work demonstrates an approach that increases potential utilization of biomass during phytoremediation and provides a promising design strategy to synthesize cost-effective SACs for environmental applications.
Collapse
Affiliation(s)
- Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, PR China
| | - Qiang Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
- University of Chinese Academy of Science, Beijing 100049, PR China
| | - Liqiang Ge
- Technical Innovation Center of Ecological Monitoring & Restoration Project on Land (Arable), Ministry of Natural Resources, Geological Survey of Jiangsu Province, Nanjing 210018, PR China
| | - Meiying Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
- University of Chinese Academy of Science, Beijing 100049, PR China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Tongliang Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
- University of Chinese Academy of Science, Beijing 100049, PR China
| |
Collapse
|