1
|
Lei X, Liu B, Di C, Wei Z, Deng P, Chen Z. Molecular interactions of surfactants with other chemicals in chemical flooding processes: A comprehensive review on molecular dynamics simulation studies. Adv Colloid Interface Sci 2025; 341:103498. [PMID: 40174373 DOI: 10.1016/j.cis.2025.103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/12/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Due to the growing demand for fossil fuels and the transition of many oil fields into a high water-cut stage, enhanced oil recovery (EOR) techniques have become more prevalent to meet this rising demand. Among these techniques, chemical flooding stands out as an effective method, supported by numerous experimental and simulation studies. However, the complexity of a chemical slug composition under harsh reservoir conditions makes the physicochemical phenomena involved in a chemical flooding process highly intricate. To comprehensively understand the microscopic mechanisms governing the phase behavior of complex fluid systems underground, molecular dynamics (MD) simulations have been increasingly employed in recent years to investigate the molecular interactions between various chemicals involved in chemical flooding processes. In this work, we have comprehensively reviewed the recent MD studies focusing on the molecular interactions between surfactants and other chemicals in the chemical flooding processes. Based on the molecular interactions within different chemicals, various nanoscale mechanisms have been proposed to shed light on the physicochemical flow in porous media. Additionally, the MD techniques used in these studies have been summarized, and challenges in the application of MD simulations in the field of chemical flooding have been identified for improving the quality of future MD studies.
Collapse
Affiliation(s)
- Xuantong Lei
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary T2N 1N4, Canada.
| | - Benjieming Liu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary T2N 1N4, Canada; Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo 315200, China.
| | - Chaojie Di
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary T2N 1N4, Canada
| | - Zixiang Wei
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary T2N 1N4, Canada
| | - Peng Deng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary T2N 1N4, Canada
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary T2N 1N4, Canada; Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo 315200, China.
| |
Collapse
|
2
|
Sharma A, Anand M, Chakraborty S. Influence of CTAB Reverse Micellar Confinement on the Tetrahedral Structure of Liquid Water. J Phys Chem B 2025; 129:1289-1300. [PMID: 39817321 DOI: 10.1021/acs.jpcb.4c04773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The effect of confinement on the tetrahedral ordering of liquid water plays a vital role in controlling their microscopic structure and dynamics as well as their spectroscopic properties. In this article, we have performed the classical molecular dynamics simulations of four different CTAB/water/chloroform reverse micelles with varied water content to study how the tetrahedral ordering of nanoscale water inside reverse micellar confinement influences the microscopic dynamics and the structural relaxation of water···water hydrogen bonds and its impact on the low-frequency intermolecular vibrational bands. We have noticed from the results obtained from simulated trajectories the lowering trends of tetrahedral ordering of water pools in reverse micellar confinements as we move from bulk to confined and strictly confined environments. We have observed that the order of confinements significantly altered the relaxation pattern of water···water hydrogen bonds present in the nanoscale water pool of reverse micelles. The recrossing related to hydrogen bond dynamics can effectively explain the relaxation pattern of C HB WW ( t ) under confinement. The Br-1···water hydrogen bond depicts a much slower relaxation compared to the water···water hydrogen bonds inside reverse micelles. We have also explored the correlation between the tetrahedral ordering of nanoscale water pools and the relaxation of water···water hydrogen bonds with the 50 cm-1 band for water inside reverse micelles. The computations reported that compared to bulk water, the band appearing at 50 cm-1 for O···O···O triplet bending is nonuniformly blue-shifted by 18-45 cm-1 for the nanoscale water pool inside reverse micelles, and the intensity of the band drops from bulk to confined and strictly confined environments, which indicates the reduced tendency of such triplet formation. It is observed that a significant intensity variation at the 200 cm-1 band correlates with the effect of confinement on the tetrahedral ordering of the water pool inside reverse micelles. So, our observations support the influence of strictly confined environments on the tetrahedral water structure to adopt the quasi-two-dimensional water network and experience restricted longitudinal translations. It is further noticed that the 500 cm-1 librational band is also found to be blue-shifted by 71-112 cm-1 for the water pool in reverse micelles, and the extent of the shift being more noticeable for strictly confined environments correlates excellently with the sluggish relaxation of water···water hydrogen bonds in such environments.
Collapse
Affiliation(s)
- Anupama Sharma
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| | - Mywish Anand
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| | - Sudip Chakraborty
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
3
|
Ginzburg VV. Mesoscale Modeling of Micellization and Adsorption of Surfactants and Surfactant-Like Polymers in Solution: Challenges and Opportunities. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Valeriy V. Ginzburg
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, Room 2100, East Lansing, Michigan 48824-1226, United States
| |
Collapse
|
4
|
Amani P, Karakashev SI, Grozev NA, Simeonova SS, Miller R, Rudolph V, Firouzi M. Effect of selected monovalent salts on surfactant stabilized foams. Adv Colloid Interface Sci 2021; 295:102490. [PMID: 34385000 DOI: 10.1016/j.cis.2021.102490] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
Surfactant-stabilized foams have been at the centre of scientific research for over a century due to their ubiquitous applications in different industries. Many of these applications involve inorganic salts either due to their natural presence (e.g. use of seawater in froth floatation) or their addition (e.g. in cosmetics) to manipulate foam characteristics for the best outcomes. This paper provides a clear understanding of the effect of salts on surfactant-stabilized foams through a critical literature survey of this topic. Available literature shows a double effect of salts (LiCl, NaCl and KCl) on foam characteristics in the presence of surfactants. To elucidate the underlying mechanisms of the stabilizing effect of salts on foams, the effect of salts on surfactant-free thin liquid films is first discussed, followed by a discussion on the effect of salts on surfactant-stabilized foams with the focus on anionic surfactants. We discuss two distinctive salt concentrations, salt transition concentration in surfactant-free solutions and salt critical concentration in surfactant-laden systems to explain their effects. Using the available data in literature supported by dedicated experiments, we demonstrate the destabilizing effect of salts on foams at and above their critical concentrations in the presence of anionic surfactants. This effect is attributed to retarding the adsorption of the surfactant molecules at the interface due to the formation of nano and micro-scale aggregates.
Collapse
Affiliation(s)
- Pouria Amani
- School of Chemical Engineering, The University of Queensland, St. Lucia 4072, Australia
| | | | - Nikolay A Grozev
- Department of Physical Chemistry, University of Sofia, Sofia 1164, Bulgaria
| | | | - Reinhard Miller
- Department of Physics, Technische Universität Darmstadt, Darmstadt 64289, Germany
| | - Victor Rudolph
- School of Chemical Engineering, The University of Queensland, St. Lucia 4072, Australia
| | - Mahshid Firouzi
- Newcastle Institute for Energy and Resources, The Uniersity of Newcastle, Callaghan 2308, Australia.
| |
Collapse
|
5
|
Volkov NA, Eroshkin YA, Shchekin AK, Koltsov IN, Tretyakov NY, Turnaeva EA, Volkova SS, Groman AA. Molecular Dynamics of Decane Solubilization and Diffusion of Aggregates Consisting of Surfactant and Decane Molecules in Aqueous Solutions. COLLOID JOURNAL 2021. [DOI: 10.1134/s1061933x21040141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Seweryn A, Wasilewski T, Bocho-Janiszewska A. Correlations between the Type of Aggregates in the Bulk Phase and the Functionality and Safety of All-Purpose Cleaners. Int J Mol Sci 2021; 22:ijms22126592. [PMID: 34205441 PMCID: PMC8234690 DOI: 10.3390/ijms22126592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
The article shows that the type and concentration of inorganic salt can be translated into the structure of the bulk phase and the performance properties of ecological all-purpose cleaners (APC). A base APC formulation was developed. Thereafter, two types of salt (sodium chloride and magnesium chloride) were added at various concentrations to obtain different structures in the bulk phase. The salt addition resulted in the formation of spherical micelles and-upon addition of more electrolyte-of aggregates having a lamellar structure. The formulations had constant viscosities (ab. 500 mPa·s), comparable to those of commercial products. Essential physical-chemical and performance properties of the four formulations varying in salt types and concentrations were evaluated. It was found that the addition of magnesium salt resulted in more favorable characteristics due to the surface activity of the formulations, which translated into adequately high wettability of the investigated hydrophobic surfaces, and their ability to emulsify fat. A decreasing relationship was observed in foaming properties: higher salt concentrations lead to worse foaming properties and foam stability of the solutions. For the magnesium chloride composition, the effect was significantly more pronounced, as compared to the sodium chloride-based formulations. As far as safety of use is concerned, the formulations in which magnesium salt was used caused a much lesser irritation compared with the other investigated formulations. The zein value was observed to decrease with increasing concentrations of the given type of salt in the composition.
Collapse
|
7
|
Gradzielski M, Duvail M, de Molina PM, Simon M, Talmon Y, Zemb T. Using Microemulsions: Formulation Based on Knowledge of Their Mesostructure. Chem Rev 2021; 121:5671-5740. [PMID: 33955731 DOI: 10.1021/acs.chemrev.0c00812] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microemulsions, as thermodynamically stable mixtures of oil, water, and surfactant, are known and have been studied for more than 70 years. However, even today there are still quite a number of unclear aspects, and more recent research work has modified and extended our picture. This review gives a short overview of how the understanding of microemulsions has developed, the current view on their properties and structural features, and in particular, how they are related to applications. We also discuss more recent developments regarding nonclassical microemulsions such as surfactant-free (ultraflexible) microemulsions or ones containing uncommon solvents or amphiphiles (like antagonistic salts). These new findings challenge to some extent our previous understanding of microemulsions, which therefore has to be extended to look at the different types of microemulsions in a unified way. In particular, the flexibility of the amphiphilic film is the key property to classify different microemulsion types and their properties in this review. Such a classification of microemulsions requires a thorough determination of their structural properties, and therefore, the experimental methods to determine microemulsion structure and dynamics are reviewed briefly, with a particular emphasis on recent developments in the field of direct imaging by means of electron microscopy. Based on this classification of microemulsions, we then discuss their applications, where the application demands have to be met by the properties of the microemulsion, which in turn are controlled by the flexibility of their amphiphilic interface. Another frequently important aspect for applications is the control of the rheological properties. Normally, microemulsions are low viscous and therefore enhancing viscosity has to be achieved by either having high concentrations (often not wished for) or additives, which do not significantly interfere with the microemulsion. Accordingly, this review gives a comprehensive account of the properties of microemulsions, including most recent developments and bringing them together from a united viewpoint, with an emphasis on how this affects the way of formulating microemulsions for a given application with desired properties.
Collapse
Affiliation(s)
- Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Magali Duvail
- ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| | - Paula Malo de Molina
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain.,IKERBASQUE - Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Miriam Simon
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Thomas Zemb
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| |
Collapse
|
8
|
Epure EL, Vasiliu T, Hurduc N, Neamțu A. Molecular modeling study concerning the self-assembly capacity of some photosensitive amphiphilic polysiloxanes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Zhou D, Wei Q, Wang S, Li X, Bian H. Counterion Effect on Vibrational Relaxation and the Rotational Dynamics of Interfacial Water and an Anionic Vibrational Probe in the Confined Reverse Micelles Environment. J Phys Chem Lett 2019; 10:176-182. [PMID: 30582817 DOI: 10.1021/acs.jpclett.8b03389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vibrational relaxation and the rotational dynamics of water molecules encapsulated in reverse micelles (RMs) have been investigated by ultrafast infrared (IR) spectroscopy and two-dimensional IR (2D IR) spectroscopy. By changing the counterion of the hydrophilic headgroup in the RMs formed by Aerosol-OT (AOT) from Na+ to K+, Cs+ and Ca2+, we could determine the specific counterion effects on the rotational dynamics of water molecules. The orientational relaxation time constant of water decreases in the order Ca2+ > Na+ > K+ > Cs+. The SCN- anionic probe and counterion can form ion pairs at the interfacial region of the RMs. The rotational dynamics of SCN- anion significantly decreases because of the synergistic effects of confinement and the surface interactions in the interfacial region of the RMs. The results can provide a new understanding of the cationic Hofmeister effect at the molecular level observed in biological studies.
Collapse
Affiliation(s)
- Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , 710119 , China
| | - Qianshun Wei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , 710119 , China
| | - Shuyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , 710119 , China
| | - Xiaoqian Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , 710119 , China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , 710119 , China
| |
Collapse
|
10
|
Shi P, Zhang H, Lin L, Song C, Chen Q, Li Z. Molecular dynamics study of the effect of inorganic salts on the monolayer of four surfactants at the oil/water interface. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1462200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Peng Shi
- Key Laboratory of Engineering Dielectrics and Its Application of Ministry of Education & College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
- College of Chemical Engineering, Harbin Institute of Petroleum, Harbin, People's Republic of China
| | - Hui Zhang
- Key Laboratory of Engineering Dielectrics and Its Application of Ministry of Education & College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Lin Lin
- Key Laboratory of Engineering Dielectrics and Its Application of Ministry of Education & College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Chunhui Song
- Key Laboratory of Engineering Dielectrics and Its Application of Ministry of Education & College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Qingguo Chen
- Key Laboratory of Engineering Dielectrics and Its Application of Ministry of Education & College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Zesheng Li
- Key Laboratory of Cluster Science of Ministry of Education & School of Chemistry, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
11
|
Danov KD, Kralchevsky PA, Stoyanov SD, Cook JL, Stott IP, Pelan EG. Growth of wormlike micelles in nonionic surfactant solutions: Quantitative theory vs. experiment. Adv Colloid Interface Sci 2018; 256:1-22. [PMID: 29804690 DOI: 10.1016/j.cis.2018.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022]
Abstract
Despite the considerable advances of molecular-thermodynamic theory of micelle growth, agreement between theory and experiment has been achieved only in isolated cases. A general theory that can provide self-consistent quantitative description of the growth of wormlike micelles in mixed surfactant solutions, including the experimentally observed high peaks in viscosity and aggregation number, is still missing. As a step toward the creation of such theory, here we consider the simplest system - nonionic wormlike surfactant micelles from polyoxyethylene alkyl ethers, CiEj. Our goal is to construct a molecular-thermodynamic model that is in agreement with the available experimental data. For this goal, we systematized data for the micelle mean mass aggregation number, from which the micelle growth parameter was determined at various temperatures. None of the available models can give a quantitative description of these data. We constructed a new model, which is based on theoretical expressions for the interfacial-tension, headgroup-steric and chain-conformation components of micelle free energy, along with appropriate expressions for the parameters of the model, including their temperature and curvature dependencies. Special attention was paid to the surfactant chain-conformation free energy, for which a new more general formula was derived. As a result, relatively simple theoretical expressions are obtained. All parameters that enter these expressions are known, which facilitates the theoretical modeling of micelle growth for various nonionic surfactants in excellent agreement with the experiment. The constructed model can serve as a basis that can be further upgraded to obtain quantitative description of micelle growth in more complicated systems, including binary and ternary mixtures of nonionic, ionic and zwitterionic surfactants, which determines the viscosity and stability of various formulations in personal-care and house-hold detergency.
Collapse
|
12
|
Volkov NA, Posysoev MV, Shchekin AK. The Effect of Simulation Cell Size on the Diffusion Coefficient of an Ionic Surfactant Aggregate. COLLOID JOURNAL 2018. [DOI: 10.1134/s1061933x1803016x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Mantha S, Jackson GL, Mahanthappa MK, Yethiraj A. Counterion-Regulated Dynamics of Water Confined in Lyotropic Liquid Crystalline Morphologies. J Phys Chem B 2018; 122:2408-2413. [PMID: 29397720 DOI: 10.1021/acs.jpcb.7b12034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of confined water is of fundamental and long-standing interest. In technologically important forms of confinement, such as proton-exchange membranes, electrostatic interactions with the confining matrix and counterions play significant roles on the properties of water. There has been recent interest on the dynamics of water confined to the lyotropic liquid crystalline (LLC) morphologies of Gemini dicarboxylate surfactants. These systems are exciting because the nature of confinement, for example, size and curvature of channels and surface functionality is dictated by the chemistry of the self-assembling surfactant molecules. Quasielastic neutron scattering experiments have shown an interesting dependence of the water self-diffusion constant, Dα, on the identity (denoted α) of the counterion: at high hydration, the magnitude of the water self-diffusion constant is in the order DTMA < DNa < DK, where TMA, Na, and K refer to tetramethyl ammonium, sodium, and potassium counterions, respectively. This sequence is similar to what is seen in bulk electrolyte solutions. At low hydrations, however, the order of water self-diffusion is different, that is, DNa < DTMA < DK. In this work, we present molecular dynamics simulations for the dynamics of water in the LLC phases of dicarboxylate Gemini surfactants. The simulations reproduce the trends seen in experiments. From an analysis of the trajectories, we hypothesize that two competing factors play a role: the volume accessible to the water molecules and the correlations between the water and the counterion. The excluded volume effect is the largest with TMA+, and the electrostatic correlation is the strongest with Na+. The observed trend is a result of which of these two effects is dominant at a given water to surfactant ratio.
Collapse
Affiliation(s)
- Sriteja Mantha
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Grayson L Jackson
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Arun Yethiraj
- Department of Chemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| |
Collapse
|
14
|
Biswas R, Bagchi B. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:013001. [PMID: 29205175 DOI: 10.1088/1361-648x/aa9b1d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the same due to interaction with the surfaces.
Collapse
|
15
|
Wang P, Tan J, Pei S, Wang J, Zhang Y, Sun X, Zhang J. Dual effects of cationic surfactant on the wormlike micelle formation of catanionic surfactants mixtures: An experiment and simulation study. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
|
17
|
Indelicato S, Bongiorno D, Calabrese V, Perricone U, Almerico AM, Ceraulo L, Piazzese D, Tutone M. Micelles, Rods, Liposomes, and Other Supramolecular Surfactant Aggregates: Computational Approaches. Interdiscip Sci 2017; 9:392-405. [PMID: 28478537 DOI: 10.1007/s12539-017-0234-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/31/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
Surfactants are an interesting class of compounds characterized by the segregation of polar and apolar domains in the same molecule. This peculiarity makes possible a whole series of microscopic and macroscopic effects. Among their features, their ability to segregate particles (fluids or entire domains) and to reduce the surface/interfacial tension is the utmost important. The interest in the chemistry of surfactants never weakened; instead, waves of increasing interest have occurred every time a new field of application of these molecules has been discovered. All these special characteristics depend largely on the ability of surfactants to self-assemble and constitute supramolecular structures where their chemical properties are amplified. The possibility to obtain structural and energy information and, above all, the possibility of forecast the self-organizing mechanisms of surfactants have had a significant boost via computational chemistry. The molecular dynamics models, initially coarse-grained and subsequently (with the increasing computer power) using more accurate models, allowed, over the years, to better understand different aspects of the processes of dispersion, self-assembly, segregation of surfactant. Moreover, several other aspects have been investigated as the effect of the counterions of many ionic surfactants in defining the final supramolecular structures, the mobility of side chains, and the capacity of some surfactant to envelope entire proteins. This review constitutes a perspective/prospective view of these results. On the other hand, some comparison of in silico results with experimental information recently acquired through innovative analytical techniques such as ion mobility mass spectrometry which have been introduced.
Collapse
Affiliation(s)
- Serena Indelicato
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università degli Studi di Palermo, Palermo, Italy
| | - David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Valentina Calabrese
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Ugo Perricone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Leopoldo Ceraulo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Daniela Piazzese
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università degli Studi di Palermo, Palermo, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy.
| |
Collapse
|
18
|
Study on the transformation from linear to branched wormlike micelles: An insight from molecular dynamics simulation. J Colloid Interface Sci 2017; 494:47-53. [DOI: 10.1016/j.jcis.2017.01.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 11/17/2022]
|
19
|
Volkov NA, Tuzov NV, Shchekin AK. All-atom molecular dynamics analysis of kinetic and structural properties of ionic micellar solutions. COLLOID JOURNAL 2017. [DOI: 10.1134/s1061933x17020156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Wang P, Pei S, Wang M, Yan Y, Sun X, Zhang J. Coarse-grained molecular dynamics study on the self-assembly of Gemini surfactants: the effect of spacer length. Phys Chem Chem Phys 2017; 19:4462-4468. [DOI: 10.1039/c6cp07690d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This work provides a molecular-level understanding of the underlying mechanism of the self-assembly of Gemini surfactants.
Collapse
Affiliation(s)
- Pan Wang
- College of Science
- China University of Petroleum
- 266580 Qingdao
- People's Republic of China
- Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong
| | - Shuai Pei
- College of Science
- China University of Petroleum
- 266580 Qingdao
- People's Republic of China
- Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong
| | - Muhan Wang
- College of Science
- China University of Petroleum
- 266580 Qingdao
- People's Republic of China
- Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong
| | - Youguo Yan
- College of Science
- China University of Petroleum
- 266580 Qingdao
- People's Republic of China
- Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong
| | - Xiaoli Sun
- College of Science
- China University of Petroleum
- 266580 Qingdao
- People's Republic of China
| | - Jun Zhang
- College of Science
- China University of Petroleum
- 266580 Qingdao
- People's Republic of China
- Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong
| |
Collapse
|
21
|
|
22
|
Lépori CMO, Correa NM, Silber JJ, Falcone RD. How the cation 1-butyl-3-methylimidazolium impacts the interaction between the entrapped water and the reverse micelle interface created with an ionic liquid-like surfactant. SOFT MATTER 2016; 12:830-844. [PMID: 26542472 DOI: 10.1039/c5sm02421h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The behavior of the interfacial water entrapped in reverse micelles (RMs) formed by the ionic liquid-like surfactant 1-butyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate (bmim-AOT) dissolved in benzene (or chlorobenzene) was investigated using noninvasive techniques such as dynamic light scattering (DLS), static light scattering (SLS), FT-IR and (1)H NMR. The DLS and SLS results reveal the formation of discrete spherical and non-interacting water droplets stabilized by the bmim-AOT surfactant. Moreover, since the droplet size increases as the W0 (W0 = [water]/[surfactant]) value increases, water interacts with the RM interface. From FT-IR and (1)H NMR data, a weaker water-surfactant interaction in bmim-AOT RMs in comparison with the RMs created by sodium 1,4-bis-2-ethylhexylsulfosuccinate (Na-AOT) is detected. Consequently, there are less water molecules interacting with the interface in bmim-AOT RMs, and their hydrogen bond network is not completely disrupted as they are in Na-AOT RMs. The results show how the nature of the new cation impacts the interaction between the entrapped water and the RM interface, modifying the interfacial water structure in comparison with the results known for Na-AOT.
Collapse
Affiliation(s)
- Cristian M O Lépori
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina.
| | | | | | | |
Collapse
|
23
|
Bongiorno D, Ceraulo L, Indelicato S, Turco Liveri V, Indelicato S. Charged supramolecular assemblies of surfactant molecules in gas phase. MASS SPECTROMETRY REVIEWS 2016; 35:170-187. [PMID: 26113001 DOI: 10.1002/mas.21476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 06/04/2023]
Abstract
The aim of this review is to critically analyze recent literature on charged supramolecular assemblies formed by surfactant molecules in gas phase. Apart our specific interest on this research area, the stimuli to undertake the task arise from the widespread theoretical and applicative benefits emerging from a comprehensive view of this topic. In fact, the study of the formation, stability, and physicochemical peculiarities of non-covalent assemblies of surfactant molecules in gas phase allows to unveil interesting aspects such as the role of attractive, repulsive, and steric intermolecular interactions as driving force of supramolecular organization in absence of interactions with surrounding medium and the size and charge state dependence of aggregate structural and dynamical properties. Other interesting aspects worth to be investigated are joined to the ability of these assemblies to incorporate selected solubilizates molecules as well as to give rise to chemical reactions within a single organized structure. In particular, the incorporation of large molecules such as proteins has been of recent interest with the objective to protect their structure and functionality during the transition from solution to gas phase. Exciting fall-out of the study of gas phase surfactant aggregates includes mass and energy transport in the atmosphere, origin of life and simulation of supramolecular aggregation in the interstellar space. Moreover, supramolecular assemblies of amphiphilic molecules in gas phase could find remarkable applications as atmospheric cleaning agents, nanosolvents and nanoreactors for specialized chemical processes in confined space. Mass spectrometry techniques have proven to be particularly suitable to generate these assemblies and to furnish useful information on their size, size polydispersity, stability, and structural organization. On the other hand molecular dynamics simulations have been very useful to rationalize many experimental findings and to furnish a vivid picture of the structural and dynamic features of these aggregates. Thus, in this review, we will focus on the most important achievements gained in recent years by both these investigative tools.
Collapse
Affiliation(s)
- David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
- Centro Grandi Apparecchiature-UniNetLab, Università degli Studi di Palermo, Via Marini 14, I-90128, Palermo, Italy
| | - Leopoldo Ceraulo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
- Centro Grandi Apparecchiature-UniNetLab, Università degli Studi di Palermo, Via Marini 14, I-90128, Palermo, Italy
| | - Sergio Indelicato
- Core Laboratory of Quality control and Chemical Risk, Policlinico P. Giaccone, Università di Palermo, via del Vespro 129, I-90127, Palermo, Italy
| | - Vincenzo Turco Liveri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - Serena Indelicato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
- Centro Grandi Apparecchiature-UniNetLab, Università degli Studi di Palermo, Via Marini 14, I-90128, Palermo, Italy
| |
Collapse
|
24
|
Sett S, Karakashev SI, Smoukov SK, Yarin AL. Ion-specific effects in foams. Adv Colloid Interface Sci 2015; 225:98-113. [PMID: 26386757 DOI: 10.1016/j.cis.2015.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/12/2015] [Accepted: 08/16/2015] [Indexed: 10/23/2022]
Abstract
We present a critical review on ion-specific effects in foams in the presence of added salts. We show the theoretical basis developed for understanding experimental data in systems with ionic surfactants, as well as the nascent approaches to modeling the much more difficult systems with non-ionic surfactants, starting with the most recent models of the air-water interface. Even in the case of ionic surfactant systems, we show methods for improving the theoretical understanding and apply them for interpretation of surprising experimental results we have obtained on ion-specific effects in these systems. We report unexpectedly strong ion-specific effects of counter-ions on the stability and the rate of drainage of planar foam films from solutions of 0.5mM sodium dodecyl sulfate (SDS) as a function of concentration of a series of inorganic salts (MCl, M=Li, Na, K). We found that the counter-ions can either stabilize the foam films (up to a critical concentration) or destabilize them beyond it. The ordering for destabilization is in the same order as the Hofmeister series, while for stabilization it is the reverse Therefore, the strongest foam stabilizer (K(+)), becomes the strongest foam destabilizer at and beyond its critical concentration, and vice versa. Though the critical concentration is different for different salts, calculating the critical surfactant adsorption level one could simplify the analysis, with all the critical concentrations occurring at the same surfactant adsorption level. Beyond this level, the foam lifetime decreases and films suddenly start draining faster, which may indicate salt-induced surfactant precipitation. Alternatively, formation of pre-micellar structures may result in slower equilibration and fewer surfactant molecules at the surface, thus leading to unstable foams and films.
Collapse
|
25
|
Mehandzhiyski AY, Riccardi E, van Erp TS, Koch H, Åstrand PO, Trinh TT, Grimes BA. Density Functional Theory Study on the Interactions of Metal Ions with Long Chain Deprotonated Carboxylic Acids. J Phys Chem A 2015; 119:10195-203. [DOI: 10.1021/acs.jpca.5b04136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aleksandar Y. Mehandzhiyski
- Department
of Chemical Engineering, Norwegian University of Science and Technology, SemSælandsvei 4, NO-7491 Trondheim, Norway
| | - Enrico Riccardi
- Department
of Chemistry, Norwegian University of Science and Technology, Høgskoleringen
5 Realfagbygget blokk D, 3.etg., NO-7491 Trondheim, Norway
| | - Titus S. van Erp
- Department
of Chemistry, Norwegian University of Science and Technology, Høgskoleringen
5 Realfagbygget blokk D, 3.etg., NO-7491 Trondheim, Norway
| | - Henrik Koch
- Department
of Chemistry, Norwegian University of Science and Technology, Høgskoleringen
5 Realfagbygget blokk D, 3.etg., NO-7491 Trondheim, Norway
| | - Per-Olof Åstrand
- Department
of Chemistry, Norwegian University of Science and Technology, Høgskoleringen
5 Realfagbygget blokk D, 3.etg., NO-7491 Trondheim, Norway
| | - Thuat T. Trinh
- Department
of Chemistry, Norwegian University of Science and Technology, Høgskoleringen
5 Realfagbygget blokk D, 3.etg., NO-7491 Trondheim, Norway
| | - Brian A. Grimes
- Department
of Chemical Engineering, Norwegian University of Science and Technology, SemSælandsvei 4, NO-7491 Trondheim, Norway
| |
Collapse
|
26
|
Martinez AV, Małolepsza E, Domínguez L, Lu Q, Straub JE. Role of Charge and Solvation in the Structure and Dynamics of Alanine-Rich Peptide AKA2 in AOT Reverse Micelles. J Phys Chem B 2015; 119:9084-90. [PMID: 25337983 PMCID: PMC4516319 DOI: 10.1021/jp508813n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/20/2014] [Indexed: 11/28/2022]
Abstract
The propensity of peptides to form α-helices has been intensely studied using theory, computation, and experiment. Important model peptides for the study of the coil-to-helix transition have been alanine-lysine (AKA) peptides in which the lysine residues are placed on opposite sides of the helix avoiding charge repulsion while enhancing solubility. In this study, the effects of capped versus zwitterionic peptide termini on the secondary structure of alanine-rich peptides in reverse micelles are explored. The reverse micelles are found to undergo substantial shape fluctuations, a property observed in previous studies of AOT reverse micelles in the absence of solvated peptide. The peptides are observed to interact with water, as well as the AOT surfactant, including interactions between the nonpolar residues and the aliphatic surfactant tails. Computation of IR spectra for the amide I band of the peptide allows for direct comparison with experimental spectra. The results demonstrate that capped AKA2 peptides form more stable α helices than zwitterionic AKA2 peptides in reverse micelles. The rotational anisotropy decay of water is found to be distinctly different in the presence or absence of peptide within the reverse micelle, suggesting that the introduction of peptide significantly alters the number of free waters within the reverse micelle nanopool. However, neither the nature of the peptide termini (capped or charged) nor the degree of peptide helicity is found to significantly alter the balance of interactions between the peptides and the environment. Observed changes in the degree of helicity in AKA2 peptides in bulk solution and in reverse micelle environments result from changes in peptide confinement and hydration as well as direct nonpolar and polar interactions with the water-surfactant interface.
Collapse
Affiliation(s)
- Anna Victoria Martinez
- Department
of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Edyta Małolepsza
- Department
of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Domínguez
- Department
of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qing Lu
- Division
of Materials Science and Engineering, Boston
University, 15 Saint
Mary’s Street, Brookline, Massachusetts 02446, United States
| | - John E. Straub
- Department
of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
27
|
Ghosh R, Samanta T, Banaerjee S, Biswas R, Bagchi B. Spatio-temporal correlations in aqueous systems: computational studies of static and dynamic heterogeneity by 2D-IR spectroscopy. Faraday Discuss 2015; 177:313-28. [PMID: 25692942 DOI: 10.1039/c4fd00201f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Local heterogeneity is ubiquitous in natural aqueous systems. It can be caused locally by external biomolecular subsystems like proteins, DNA, micelles and reverse micelles, nanoscopic materials etc., but can also be intrinsic to the thermodynamic nature of the aqueous solution itself (like binary mixtures or at the gas-liquid interface). The altered dynamics of water in the presence of such diverse surfaces has attracted considerable attention in recent years. As these interfaces are quite narrow, only a few molecular layers thick, they are hard to study by conventional methods. The recent development of two dimensional infra-red (2D-IR) spectroscopy allows us to estimate length and time scales of such dynamics fairly accurately. In this work, we present a series of interesting studies employing two dimensional infra-red spectroscopy (2D-IR) to investigate (i) the heterogeneous dynamics of water inside reverse micelles of varying sizes, (ii) supercritical water near the Widom line that is known to exhibit pronounced density fluctuations and also study (iii) the collective and local polarization fluctuation of water molecules in the presence of several different proteins. The spatio-temporal correlation of confined water molecules inside reverse micelles of varying sizes is well captured through the spectral diffusion of corresponding 2D-IR spectra. In the case of supercritical water also, we observe a strong signature of dynamic heterogeneity from the elongated nature of the 2D-IR spectra. In this case the relaxation is ultrafast. We find remarkable agreement between the different tools employed to study the relaxation of density heterogeneity. For aqueous protein solutions, we find that the calculated dielectric constant of the respective systems unanimously shows a noticeable increment compared to that of neat water. However, the 'effective' dielectric constant for successive layers shows significant variation, with the layer adjacent to the protein having a much lower value. Relaxation is also slowest at the surface. We find that the dielectric constant achieves the bulk value at distances more than 3 nm from the surface of the protein.
Collapse
Affiliation(s)
- Rikhia Ghosh
- SSCU, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | | | |
Collapse
|
28
|
Marchi M, Abel S. Modeling the Self-Aggregation of Small AOT Reverse Micelles from First-Principles. J Phys Chem Lett 2015; 6:170-174. [PMID: 26263107 DOI: 10.1021/jz5023619] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This Letter is the first attempt at studying the self-aggregation of AOT reverse micelles from first-principles. It focuses on predicting the aggregation number, the radius of gyration, and the hydrodynamic radius of a low water content reverse micelle by theoretical means. We show that molecular dynamics simulation in the μs time range combined with atomistic potentials is capable of reproducing and explaining, to a convenient degree, experimental results on the size and dimensions of reverse micelles of AOT of low water content, [H2O]/[AOT] ≈ 5.
Collapse
Affiliation(s)
- Massimo Marchi
- Commissariat à l'Energie Atomique, DSV/i-BiTec-S/SB2SM/LBMS, CNRS UMR 8221, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Stéphane Abel
- Commissariat à l'Energie Atomique, DSV/i-BiTec-S/SB2SM/LBMS, CNRS UMR 8221, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
29
|
Bozorgmehr MR, Saberi M, Chegini H. The study of sodium dodecyl sulfate self-assembly behavior at three different concentrations in the presence and absence of lysozyme: Molecular dynamics simulation approach. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Riccardi E, Wang JC, Liapis AI. Modeling the construction of polymeric adsorbent media: effects of counter-ions on ligand immobilization and pore structure. J Chem Phys 2014; 140:084901. [PMID: 24588192 DOI: 10.1063/1.4865910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Molecular dynamics modeling and simulations are employed to study the effects of counter-ions on the dynamic spatial density distribution and total loading of immobilized ligands as well as on the pore structure of the resultant ion exchange chromatography adsorbent media. The results show that the porous adsorbent media formed by polymeric chain molecules involve transport mechanisms and steric resistances which cause the charged ligands and counter-ions not to follow stoichiometric distributions so that (i) a gradient in the local nonelectroneutrality occurs, (ii) non-uniform spatial density distributions of immobilized ligands and counter-ions are formed, and (iii) clouds of counter-ions outside the porous structure could be formed. The magnitude of these counter-ion effects depends on several characteristics associated with the size, structure, and valence of the counter-ions. Small spherical counter-ions with large valence encounter the least resistance to enter a porous structure and their effects result in the formation of small gradients in the local nonelectroneutrality, higher ligand loadings, and more uniform spatial density distributions of immobilized ligands, while the formation of exterior counter-ion clouds by these types of counter-ions is minimized. Counter-ions with lower valence charges, significantly larger sizes, and elongated shapes, encounter substantially greater steric resistances in entering a porous structure and lead to the formation of larger gradients in the local nonelectroneutrality, lower ligand loadings, and less uniform spatial density distributions of immobilized ligands, as well as substantial in size exterior counter-ion clouds. The effects of lower counter-ion valence on pore structure, local nonelectroneutrality, spatial ligand density distribution, and exterior counter-ion cloud formation are further enhanced by the increased size and structure of the counter-ion. Thus, the design, construction, and functionality of polymeric porous adsorbent media will significantly depend, for a given desirable ligand to be immobilized and represent the adsorption active sites, on the type of counter-ion that is used during the ligand immobilization process. Therefore, the molecular dynamics modeling and simulation approach presented in this work could contribute positively by representing an engineering science methodology to the design and construction of polymeric porous adsorbent media which could provide high intraparticle mass transfer and adsorption rates for the adsorbate biomolecules of interest which are desired to be separated by an adsorption process.
Collapse
Affiliation(s)
- Enrico Riccardi
- Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Saelands vei 4, NO-7491 Trondheim, Norway
| | - Jee-Ching Wang
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street, Rolla, Missouri 65409-1230, USA
| | - Athanasios I Liapis
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street, Rolla, Missouri 65409-1230, USA
| |
Collapse
|
31
|
Kovalchuk K, Riccardi E, Mehandzhiyski A, Grimes BA. Aggregates of poly-functional amphiphilic molecules in water and oil phases. COLLOID JOURNAL 2014. [DOI: 10.1134/s1061933x1405010x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Lima FS, Chaimovich H, Cuccovia IM, Horinek D. Molecular dynamics shows that ion pairing and counterion anchoring control the properties of triflate micelles: a comparison with triflate at the air/water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1239-1249. [PMID: 24467445 DOI: 10.1021/la404260y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Micellar properties of dodecyltrimethylammonium triflate (DTA-triflate, DTATf) are very different from those of DTA-bromide (DTAB). DTATf aggregates show high aggregation numbers (Nagg), low degree of counterion dissociation (α), disk-like shape, high packing, ordering, and low hydration. These micellar properties and the low surface tension of NaTf aqueous solutions point to a high affinity of Tf(-) to the micellar and air/water interfaces. Although the micellar properties of DTATf are well defined, the source of the Tf(-) effect upon the DTA aggregates is unclear. Molecular dynamics (MD) simulations of Tf(-) (and Br(-)) at the air/water interface and as counterion of a DTA aggregate were performed to clarify the nature of Tf(-) preferences for these interfaces. The effect of NaTf or NaBr on surface tension calculated from MD simulations agreed with the reported experimental values. From the MD simulations a high affinity of Tf(-) toward the interface, which occurred in a specific orientation, was calculated. The micellar properties calculated from the MD simulations for DTATf and DTAB were consistent with experimental data: in MD simulations, the DTATf aggregate was more ordered, packed, and dehydrated than the DTAB aggregate. The Tf(-)/alkyltrimethylammonium interaction energies, calculated from the MD simulations, suggested ion pair formation at the micellar interface, stabilized by the preferential orientation of the adsorbed Tf(-) at the micellar interface.
Collapse
Affiliation(s)
- Filipe S Lima
- Instituto de Química, Universidade de São Paulo , São Paulo 05508-000, Brazil
| | | | | | | |
Collapse
|
33
|
Wu B, Yang X. Molecular Simulation of Electrolyte-Induced Interfacial Interaction between SDS/Graphene Assemblies. THE JOURNAL OF PHYSICAL CHEMISTRY C 2013; 117:23216-23223. [DOI: 10.1021/jp4038842] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Bin Wu
- State Key Laboratory of Material-Orientated
Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
| | - Xiaoning Yang
- State Key Laboratory of Material-Orientated
Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
| |
Collapse
|
34
|
Biswas R, Furtado J, Bagchi B. Layerwise decomposition of water dynamics in reverse micelles: A simulation study of two-dimensional infrared spectrum. J Chem Phys 2013; 139:144906. [DOI: 10.1063/1.4824446] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|