1
|
Kim H, Ali A, Kang Y, Lim B, Kim C. Surface-Driven Particle Dynamics: Sequential Synchronization of Colloidal Flow Attempted in a Static Fluidic Environment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12772-12781. [PMID: 39921211 DOI: 10.1021/acsami.4c16099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
The collective behavior of colloids in microsystems is characterized by precise micro-object control, broadening the applications of cargo manipulation in drug delivery, microfluidics, and nanotechnology. To further investigate this potential, we introduce a cargo-manipulating platform that utilizes micromagnetic patterns and fluid flow rather than conventional fluidic components. This platform, called the flowless micropump, comprises an encapsulating fluid system within a chip, containing both actuation particles (2.8 μm in diameter) and control targets, thereby eliminating external interactions. This platform enables two distinct modes of cargo manipulation: direct control of nonmagnetic cargo (e.g., MCF-7 and THP-1 cells) and indirect manipulation of particles (e.g., polymer particles) through secondary localized fluid flow. Direct manipulation is achieved via coordinated particle collisions, facilitated by an optimized guiding wall with a height of 25 μm. Conversely, indirect manipulation allows for high-speed control and mode change of individual targets. These manipulation events are achieved using two patterned structures: railway-track and connected half-disk (conductor) patterns. By employing a conductor pattern in conjunction with a railway-track pattern, precise and agile control of microcargo (MCF-7 and THP-1 cells and polymer bead clusters) was achieved at frequencies of 1-3 Hz and a magnetic field strength of 10 mT. This study establishes a programmable platform for designing flowless micropumps with diverse functionalities for various experimental purposes. By using colloidal flow and localized fluid flow generated by the shape of magnetic patterns and semi-three-dimensional (3D) structures, this platform holds significant promise for applications in drug screening, cell-cell interaction studies, and organoid-on-chip research.
Collapse
Affiliation(s)
- Hyeonseol Kim
- National Nanofab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Abbas Ali
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Yumin Kang
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Byeonghwa Lim
- Department of Smart Sensor Engineering, Andong National University, Andong 36729, Republic of Korea
| | - CheolGi Kim
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
2
|
López-Molina J, Groh S, Dzubiella J, Moncho-Jordá A. Nonequilibrium relaxation of soft responsive colloids. J Chem Phys 2024; 161:094902. [PMID: 39225526 DOI: 10.1063/5.0221903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Stimuli-responsive macromolecules display large conformational changes during their dynamics, sometimes switching between states. Such a multi-stability is useful for the development of soft functional materials. Here, we introduce a mean-field dynamical density functional theory for a model of responsive colloids to study the nonequilibrium dynamics of a colloidal dispersion in time-dependent external fields, with a focus on the coupling of translational and conformational dynamics during their relaxation. Specifically, we consider soft Gaussian particles with a bimodal size distribution between two confining walls with time-dependent (switching-on and off) external gravitational and osmotic fields. We find a rich relaxation behavior of the systems in excellent agreement with particle-based Brownian dynamics computer simulations. In particular, we find time-asymmetric relaxations of integrated observables (wall pressures, mean size, and liquid center-of-mass) for activation/deactivation of external potentials, respectively, which are tunable by the ratio of translational and conformational diffusion time scales. Our work thus paves the way for studying the nonequilibrium relaxation dynamics of complex soft matter with multiple degrees of freedom and hierarchical relaxations.
Collapse
Affiliation(s)
- José López-Molina
- Department of Applied Physics, University of Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Sebastien Groh
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany
| | - Arturo Moncho-Jordá
- Department of Applied Physics, University of Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Institute Carlos I for Theoretical and Computational Physics, University de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| |
Collapse
|
3
|
McClements DJ. Novel animal product substitutes: A new category of plant-based alternatives to meat, seafood, egg, and dairy products. Compr Rev Food Sci Food Saf 2024; 23:e313330. [PMID: 38551190 DOI: 10.1111/1541-4337.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Many consumers are adopting plant-centric diets to address the adverse effects of livestock production on the environment, health, and animal welfare. Processed plant-based foods, including animal product analogs (such as meat, seafood, egg, or dairy analogs) and traditional animal product substitutes (such as tofu, seitan, or tempeh), may not be desirable to a broad spectrum of consumers. This article introduces a new category of plant-based foods specifically designed to overcome the limitations of current animal product analogs and substitutes: novel animal product substitutes (NAPS). NAPS are designed to contain high levels of nutrients to be encouraged (such as proteins, omega-3 fatty acids, dietary fibers, vitamins, and minerals) and low levels of nutrients to be discouraged (such as salt, sugar, and saturated fat). Moreover, they may be designed to have a wide range of appearances, textures, mouthfeels, and flavors. For instance, they could be red, orange, green, yellow, blue, or beige; they could be spheres, ovals, cubes, or pyramids; they could be hard/soft or brittle/pliable; and they could be lemon, thyme, curry, or chili flavored. Consequently, there is great flexibility in creating NAPS that could be eaten in situations where animal products are normally consumed, for example, with pasta, rice, potatoes, bread, soups, or salads. This article reviews the science behind the formulation of NAPS, highlights factors impacting their appearance, texture, flavor, and nutritional profile, and discusses methods that can be used to formulate, produce, and characterize them. Finally, it stresses the need for further studies on this new category of foods, especially on their sensory and consumer aspects.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
4
|
Moncho-Jordá A, Groh S, Dzubiella J. External field-driven property localization in liquids of responsive macromolecules. J Chem Phys 2024; 160:024904. [PMID: 38189617 DOI: 10.1063/5.0177933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
We explore theoretically the effects of external potentials on the spatial distribution of particle properties in a liquid of explicitly responsive macromolecules. In particular, we focus on the bistable particle size as a coarse-grained internal degree of freedom (DoF, or "property"), σ, that moves in a bimodal energy landscape, in order to model the response of a state-switching (big-to-small) macromolecular liquid to external stimuli. We employ a mean-field density functional theory (DFT) that provides the full inhomogeneous equilibrium distributions of a one-component model system of responsive colloids (RCs) interacting with a Gaussian pair potential. For systems confined between two parallel hard walls, we observe and rationalize a significant localization of the big particle state close to the walls, with pressures described by an exact RC wall theorem. Application of more complex external potentials, such as linear (gravitational), osmotic, and Hamaker potentials, promotes even stronger particle size segregation, in which macromolecules of different size are localized in different spatial regions. Importantly, we demonstrate how the degree of responsiveness of the particle size and its coupling to the external potential tune the position-dependent size distribution. The DFT predictions are corroborated by Brownian dynamics simulations. Our study highlights the fact that particle responsiveness can be used to localize liquid properties and therefore helps to control the property- and position-dependent function of macromolecules, e.g., in biomedical applications.
Collapse
Affiliation(s)
- Arturo Moncho-Jordá
- Department of Applied Physics, University de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Institute Carlos I for Theoretical and Computational Physics, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Sebastien Groh
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität 6 Freiburg, D-79110 Freiburg, Germany
| |
Collapse
|
5
|
Tosif MM, Bains A, Sadh PK, Sarangi PK, Kaushik R, Burla SVS, Chawla P, Sridhar K. Loquat seed starch - Emerging source of non-conventional starch: Structure, properties, and novel applications. Int J Biol Macromol 2023:125230. [PMID: 37301342 DOI: 10.1016/j.ijbiomac.2023.125230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Recently, non-conventional sources of starch have attracted attention due to their potential to provide cost-effective alternatives to traditional starch. Among non-conventional starches, loquat (Eriobotrya japonica) seed starch is an emerging source of starch consisting of the amount of starch (nearly 20 %). Due to its unique structure, functional properties, and novel applications, it could be utilized as a potential ingredient. Interestingly, this starch has similar properties as commercial starches including high amylose content, small granule size, and high viscosity and heat stability, making it an attractive option for various food applications. Therefore, this review mainly covers the fundamental understanding of the valorization of loquat seeds by extracting the starch using different isolation methods, with preferable structural, morphological, and functional properties. Different isolation and modification methods (wet milling, acid, neutral and alkaline) are effectively used to obtain higher amounts of starch are revealed. Moreover, insight into various analytical techniques including scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction used to characterize the molecular structure of the starch are discussed. In addition, the effect of shear rate and temperature on rheological attributes with solubility index, swelling power, and color is revealed. Besides, this starch contains bioactive compounds that have shown a positive impact on the enhancement of the shelf-life of the fruits. Overall, loquat seed starches have the potential to provide sustainable and cost-effective alternatives to traditional starch sources and can lead to novel applications in the food industry. Further research is needed to optimize processing techniques and develop value-added products that can be produced at a large scale. However, there is relatively limited published scientific evidence on the structural and morphological characteristics of loquat seed starch. Thus, in this review, we focused on different isolation techniques of loquat seed starch, its structural and functional characteristics, along with potential applications.
Collapse
Affiliation(s)
- Mansuri M Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, Manipur, India
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
6
|
Mostarac D, Kantorovich SS. Rheology of a Nanopolymer Synthesized through Directional Assembly of DNA Nanochambers, for Magnetic Applications. Macromolecules 2022; 55:6462-6473. [PMID: 35966117 PMCID: PMC9367010 DOI: 10.1021/acs.macromol.2c00738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/09/2022] [Indexed: 11/29/2022]
Abstract
![]()
We present a numerical study of the effects of monomer
shape and
magnetic nature of colloids on the behavior of a single magnetic filament
subjected to the simultaneous action of shear flow and a stationary
external magnetic field perpendicular to the flow. We find that based
on the magnetic nature of monomers, magnetic filaments exhibit a completely
different phenomenology. Applying an external magnetic field strongly
inhibits tumbling only for filaments with ferromagnetic monomers.
Filament orientation with respect to the flow direction is in this
case independent of monomer shape. In contrast, reorientational dynamics
in filaments with superparamagnetic monomers are not inhibited by
applied magnetic fields, but enhanced. We find that the filaments
with spherical, superparamagnetic monomers, depending on the flow
and external magnetic field strength, assume semipersistent, collapsed,
coiled conformations, and their characteristic time of tumbling is
a function of field strength. However, external magnetic fields do
not affect the characteristic time of tumbling for filaments with
cubic, superparamagnetic monomers, but increase how often tumbling
occurs.
Collapse
Affiliation(s)
- Deniz Mostarac
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Research Platform MMM Mathematics-Magnetism-Materials, 1090 Vienna, Austria
| | - Sofia S. Kantorovich
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
7
|
Rudyak VY, Sergeev AV, Kozhunova EY, Molchanov VS, Philippova OE, Chertovich AV. Viscosity of macromolecules with complex architecture. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Bley M, Hurtado PI, Dzubiella J, Moncho-Jordá A. Active interaction switching controls the dynamic heterogeneity of soft colloidal dispersions. SOFT MATTER 2022; 18:397-411. [PMID: 34904609 DOI: 10.1039/d1sm01507a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We employ Reactive Dynamical Density Functional Theory (R-DDFT) and Reactive Brownian Dynamics (R-BD) simulations to investigate the dynamics of a suspension of active soft Gaussian colloids with binary interaction switching, i.e., a one-component colloidal system in which every particle stochastically switches at predefined rates between two interaction states with different mobility. Using R-DDFT we extend a theory previously developed to access the dynamics of inhomogeneous liquids [Archer et al., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2007, 75, 040501] to study the influence of the switching activity on the self and distinct part of the Van Hove function in bulk solution, and determine the corresponding mean squared displacement of the switching particles. Our results demonstrate that, even though the average diffusion coefficient is not affected by the switching activity, it significantly modifies the non-equilibrium dynamics and diffusion coefficients of the individual particles, leading to a crossover from short to long times, with a regime for intermediate times showing anomalous diffusion. In addition, the self-part of the van Hove function has a Gaussian form at short and long times, but becomes non-Gaussian at intermediates ones, having a crossover between short and large displacements. The corresponding self-intermediate scattering function shows the two-step relaxation patters typically observed in soft materials with heterogeneous dynamics such as glasses and gels. We also introduce a phenomenological Continuous Time Random Walk (CTRW) theory to understand the heterogeneous diffusion of this system. R-DDFT results are in excellent agreement with R-BD simulations and the analytical predictions of CTRW theory, thus confirming that R-DDFT constitutes a powerful method to investigate not only the structure and phase behavior, but also the dynamical properties of non-equilibrium active switching colloidal suspensions.
Collapse
Affiliation(s)
- Michael Bley
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany.
| | - Pablo I Hurtado
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Institute Carlos I for Theoretical and Computational Physics, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain.
| | - Joachim Dzubiella
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany.
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Arturo Moncho-Jordá
- Institute Carlos I for Theoretical and Computational Physics, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain.
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| |
Collapse
|
9
|
Bley M, Dzubiella J, Moncho-Jordá A. Active binary switching of soft colloids: stability and structural properties. SOFT MATTER 2021; 17:7682-7696. [PMID: 34342324 DOI: 10.1039/d1sm00670c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We employ reactive dynamical density functional theory (R-DDFT) and reactive Brownian dynamics (R-BD) simulations to study the non-equilibrium structure and phase behavior of an active dispersion of soft Gaussian colloids with binary interaction switching, i.e., we consider a one-component colloidal system in which every particle can individually switch stochastically between two interaction states (here, sizes 'big' and 'small') at predefined rates. We consider the influence of switching activity on the inhomogeneous density profiles of the colloids confined by various external potentials, as well as on their pair structure and phase behavior in bulk solutions. For the latter, we extend the R-DDFT method to incorporate the Percus test-particle route. Our results demonstrate that switching activity strongly modifies the steady-state density profiles and structural (pair) correlations. In particular, the switching rate interpolates from a near-equilibrium binary colloidal mixture of two states at very low rates to a non-equilibrium, 'one-state liquid' at very high rates characterized by one, average interaction size. The latter limit can be described by an equivalent effective one-component (EOC) equilibrium system, for which the exact analytical expression for the effective pair potential is a diffusion-weighted superposition of the active systems' pair potentials. This leads to the interesting fact that under certain conditions an interacting switching system can behave like a non-interacting (ideal) gas in the limit of high switching rates. Moreover, for colloids that are unstable (i.e., demix) near equilibrium, we demonstrate that phase separation and micro-clustering in both confinement and bulk can be dynamically controlled by the switching rate, and vanish for high rates. All R-DDFT results are in excellent agreement with our R-BD simulations.
Collapse
Affiliation(s)
- Michael Bley
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
10
|
Modeling Red Blood Cell Viscosity Contrast Using Inner Soft Particle Suspension. MICROMACHINES 2021; 12:mi12080974. [PMID: 34442596 PMCID: PMC8398941 DOI: 10.3390/mi12080974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022]
Abstract
The inner viscosity of a biological red blood cell is about five times larger than the viscosity of the blood plasma. In this work, we use dissipative particles to enable the proper viscosity contrast in a mesh-based red blood cell model. Each soft particle represents a coarse-grained virtual cluster of hemoglobin proteins contained in the cytosol of the red blood cell. The particle interactions are governed by conservative and dissipative forces. The conservative forces have purely repulsive character, whereas the dissipative forces depend on the relative velocity between the particles. We design two computational experiments that mimic the classical viscometers. With these experiments we study the effects of particle suspension parameters on the inner cell viscosity and provide parameter sets that result in the correct viscosity contrast. The results are validated with both static and dynamic biological experiment, showing an improvement in the accuracy of the original model without major increase in computational complexity.
Collapse
|
11
|
Baul U, Dzubiella J. Structure and dynamics of responsive colloids with dynamical polydispersity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:174002. [PMID: 33443239 DOI: 10.1088/1361-648x/abdbaa] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Dynamical polydispersity in single-particle properties, for example a fluctuating particle size, shape, charge density, etc, is intrinsic to responsive colloids (RCs), such as biomacromolecules or microgels, but is typically not resolved in coarse-grained mesoscale simulations. Here, we present Brownian dynamics simulations of suspensions of RCs modeling soft hydrogel colloids, for which the size of the individual particles is an explicitly resolved (Gaussian) degree of freedom and dynamically responds to the local interacting environment. We calculate the liquid structure, emergent size distributions, long-time diffusion, and property (size) relaxation kinetics for a wide range of densities and intrinsic property relaxation times in the canonical ensemble. Comparison to interesting reference cases, such as conventional polydisperse suspensions with a frozen parent distribution, or conventional monodisperse systems interacting with an effective pair potential for one fixed size, shows a significant spread in the structure and dynamics. The differences, most apparent in the high density regimes, are due to many-body correlations and the dynamical coupling between property and translation in RC systems, not explicitly accounted for in the conventional treatments. In particular, the translational diffusion in the RC systems is surprisingly close to the free (single RC) diffusion, mainly due to a cancellation of crowding and size compression effects. We show that an effective monodisperse pair potential can be constructed that describes the many-body correlations reasonably well by convoluting the RC pair potential with the density-dependent emergent size distributions and using a mean effective diffusion constant.
Collapse
Affiliation(s)
- Upayan Baul
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany
| |
Collapse
|
12
|
Wang H, Qian T, Xu X. Onsager's variational principle in active soft matter. SOFT MATTER 2021; 17:3634-3653. [PMID: 33480912 DOI: 10.1039/d0sm02076a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Onsagers variational principle (OVP) was originally proposed by Lars Onsager in 1931 [L. Onsager, Phys. Rev., 1931, 37, 405]. This fundamental principle provides a very powerful tool for formulating thermodynamically consistent models. It can also be employed to find approximate solutions, especially in the study of soft matter dynamics. In this work, OVP is extended and applied to the dynamic modeling of active soft matter such as suspensions of bacteria and aggregates of animal cells. We first extend the general formulation of OVP to active matter dynamics where active forces are included as external non-conservative forces. We then use OVP to analyze the directional motion of individual active units: a molecular motor walking on a stiff biofilament and a toy two-sphere microswimmer. Next we use OVP to formulate a diffuse-interface model for an active polar droplet on a solid substrate. In addition to the generalized hydrodynamic equations for active polar fluids in the bulk region, we have also derived thermodynamically consistent boundary conditions. Finally, we consider the dynamics of a thin active polar droplet under the lubrication approximation. We use OVP to derive a generalized thin film equation and then employ OVP as an approximation tool to find the spreading laws for the thin active polar droplet. By incorporating the activity of biological systems into OVP, we develop a general approach to construct thermodynamically consistent models for better understanding the emergent behaviors of individual animal cells and cell aggregates or tissues.
Collapse
Affiliation(s)
- Haiqin Wang
- Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | | | | |
Collapse
|
13
|
Li R, Gompper G, Ripoll M. Tumbling and Vorticity Drift of Flexible Helicoidal Polymers in Shear Flow. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Run Li
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marisol Ripoll
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
14
|
Lin YC, Rotenberg B, Dzubiella J. Structure and position-dependent properties of inhomogeneous suspensions of responsive colloids. Phys Rev E 2020; 102:042602. [PMID: 33212687 DOI: 10.1103/physreve.102.042602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Responsive particles, such as biomacromolecules or hydrogels, display a broad and polymodal distribution of conformations and have thus the ability to change their properties (e.g., size, shape, charge density, etc.) substantially in response to external fields or to their local environment (e.g., mediated by cosolutes or pH). Here we discuss the basic statistical mechanics for a model of responsive colloids (RCs) by introducing an additional "property" degree of freedom as a collective variable in a formal coarse-graining procedure. The latter leads to an additional one-body term in the coarse-grained (CG) free energy, defining a single-particle property distribution for an individual polydisperse RC. We argue that in the equilibrium thermodynamic limit such a CG system of RCs behaves like a conventional polydisperse system of nonresponsive particles. We then illustrate the action of external fields, which impose local (position-dependent) property distributions leading to nontrivial effects on the spatial one-body property and density profiles, even for an ideal (noninteracting) gas of RCs. We finally apply density-functional theory in the local density approximation to discuss the effects of particle interactions for specific examples of (i) a suspension of RCs in an external field linear in both position and property, (ii) a suspension of RCs with highly localized properties (sizes) confined between two walls, and (iii) a two-component suspension where an inhomogeneously distributed (nonresponsive) cosolute component, as found, e.g., in the studies of osmolyte- or salt-induced collapse or swelling transitions of thermosensitive polymers, modifies the local properties and density of the RC liquid.
Collapse
Affiliation(s)
- Yi-Chen Lin
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
15
|
Moncho-Jordá A, Dzubiella J. Controlling the Microstructure and Phase Behavior of Confined Soft Colloids by Active Interaction Switching. PHYSICAL REVIEW LETTERS 2020; 125:078001. [PMID: 32857575 DOI: 10.1103/physrevlett.125.078001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
We explore the microstructure and phase behavior of confined soft colloids which can actively switch their interactions at a predefined kinetic rate. For this, we employ a reactive dynamical density-functional theory and study the effect of a two-state switching of the size of colloids interacting with a Gaussian pair potential in the nonequilibrium steady state. The switching rate interpolates between a near-equilibrium binary mixture at low rates and a nonequilibrium monodisperse liquid for large rates, strongly affecting the one-body density profiles, adsorption, and pressure at confining walls. Importantly, we show that sufficiently fast switching impedes the phase separation of an (in equilibrium) unstable liquid, allowing the control of the degree of mixing and condensation and local microstructuring in a cellular confinement by tuning the switching rate.
Collapse
Affiliation(s)
- Arturo Moncho-Jordá
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
16
|
Roullet M, Clegg PS, Frith WJ. Rheology of protein-stabilised emulsion gels envisioned as composite networks 1- Comparison of pure droplet gels and protein gels. J Colloid Interface Sci 2020; 579:878-887. [PMID: 32679385 DOI: 10.1016/j.jcis.2020.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/08/2023]
Abstract
HYPOTHESIS Protein-stabilised emulsion gels can be studied in the theoretical framework of colloidal gels, because both protein assemblies and droplets may be considered as soft colloids. These particles differ in their nature, size and softness, and these differences may have an influence on the rheological properties of the gels they form. EXPERIMENTS Pure gels made of milk proteins (sodium caseinate), or of sub-micron protein-stabilised droplets, were prepared by slow acidification of suspensions at various concentrations. Their microstructure was characterised, their viscoelasticity, both in the linear and non-linear regime, and their frequency dependence were measured, and the behaviour of the two types of gels was compared. FINDINGS Protein gels and droplet gels were found to have broadly similar microstructure and rheological properties when compared at fixed volume fraction, a parameter derived from the study of the viscosity of the suspensions formed by proteins and by droplets. The viscoelasticity displayed a power law behaviour in concentration, as did the storage modulus in frequency. Additionally, strain hardening was found to occur at low concentration. These behaviours differed slightly between protein gels and droplet gels, showing that some specific properties of the primary colloidal particles play a role in the development of the rheological properties of the gels.
Collapse
Affiliation(s)
- Marion Roullet
- Unilever R&D Colworth, Sharnbrook, Bedford MK44 1LQ, UK; School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Paul S Clegg
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | | |
Collapse
|
17
|
Soleymani FA, Ripoll M, Gompper G, Fedosov DA. Dissipative particle dynamics with energy conservation: Isoenergetic integration and transport properties. J Chem Phys 2020; 152:064112. [PMID: 32061230 DOI: 10.1063/1.5119778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Simulations of nano- to micro-meter scale fluidic systems under thermal gradients require consistent mesoscopic methods accounting for both hydrodynamic interactions and proper transport of energy. One such method is dissipative particle dynamics with energy conservation (DPDE), which has been used for various fluid systems with non-uniform temperature distributions. We propose an easily parallelizable modification of the velocity-Verlet algorithm based on local energy redistribution for each DPDE particle such that the total energy in a simulated system is conserved up to machine precision. Furthermore, transport properties of a DPDE fluid are analyzed in detail. In particular, an analytical approximation for the thermal conductivity coefficient is derived, which allows its a priori estimation for a given parameter set. Finally, we provide approximate expressions for the dimensionless Prandtl and Schmidt numbers, which characterize fluid transport properties and can be adjusted independently by a proper selection of model parameters. In conclusion, our results strengthen the DPDE method as a very robust approach for the investigation of mesoscopic systems with temperature inhomogeneities.
Collapse
Affiliation(s)
- Fatemeh A Soleymani
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marisol Ripoll
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dmitry A Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
18
|
Chen Y, Wang W. Reticulate collisional structure in boundary-driven granular gases. Phys Rev E 2019; 100:042908. [PMID: 31770908 DOI: 10.1103/physreve.100.042908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 11/07/2022]
Abstract
We report a peculiar head-on collision network between two vibrating boundaries in experiments performed during a parabolic flight and in a laboratory using horizontal vibration. This structure is a new ordering, which is due to an orientation correlation between the relative position and velocity of any particle pair. It weakens the collision frequency and produces a long-range boundary effect. Moreover, we find the molecular chaos assumption is violated in a larger portion of the phase space. Using an anisotropic distribution model, we modify angular integration results and compare them to the results of the kinetic theory.
Collapse
Affiliation(s)
- Yanpei Chen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
19
|
Toneian D, Kahl G, Gompper G, Winkler RG. Hydrodynamic correlations of viscoelastic fluids by multiparticle collision dynamics simulations. J Chem Phys 2019; 151:194110. [PMID: 31757142 DOI: 10.1063/1.5126082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The emergent fluctuating hydrodynamics of a viscoelastic fluid modeled by the multiparticle collision dynamics (MPC) approach is studied. The fluid is composed of flexible, Gaussian phantom polymers that interact by local momentum-conserving stochastic MPCs. For comparison, the analytical solution of the linearized Navier-Stokes equation is calculated, where viscoelasticity is taken into account by a time-dependent shear relaxation modulus. The fluid properties are characterized by the transverse velocity autocorrelation function in Fourier space as well as in real space. Various polymer lengths are considered-from dumbbells to (near-)continuous polymers. Viscoelasticity affects the fluid properties and leads to strong correlations, which overall decay exponentially in Fourier space. In real space, the center-of-mass velocity autocorrelation function of individual polymers exhibits a long-time tail, independent of the polymer length, which decays as t-3/2, similar to a Newtonian fluid, in the asymptotic limit t → ∞. Moreover, for long polymers, an additional power-law decay appears at time scales shorter than the longest polymer relaxation time with the same time dependence, but negative correlations, and the polymer length dependence L-1/2. Good agreement is found between the analytical and simulation results.
Collapse
Affiliation(s)
- David Toneian
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
| | - Gerhard Kahl
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
20
|
Wang Z, Faraone A, Yin P, Porcar L, Liu Y, Do C, Hong K, Chen WR. Dynamic Equivalence between Soft Star Polymers and Hard Spheres. ACS Macro Lett 2019; 8:1467-1473. [PMID: 35651190 DOI: 10.1021/acsmacrolett.9b00617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the dynamics of soft colloids, such as star polymers, dendrimers, and microgels, is of scientific and practical importance. It is known that the excluded volume effect plays a key role in colloidal dynamics. Here, we propose a condition of compressibility equivalence that provides a simple method to experimentally evaluate the excluded volume of soft colloids from a thermodynamic view. We apply this condition to survey the dynamics of a series of star polymer dispersions. It is found that, as the concentration increases, the slowing of the long-time self-diffusivity of the star polymer, normalized by the short-time self-diffusivity, can be mapped onto the hard-sphere behavior. This phenomenon reveals the dynamic equivalence between soft colloids and hard spheres, despite the apparent complexity of the interparticle interaction of the soft colloids. The methods for measuring the osmotic compressibility and the self-diffusivities of soft colloidal dispersions are also presented.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Engineering Physics and Key Laboratory of Particle and Radiation Imaging (Tsinghua University) of Ministry of Education, Tsinghua University, Beijing 100084, China.,Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Antonio Faraone
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6100, United States
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Lionel Porcar
- Institut Laue-Langevin, B.P. 156, F-38042 Grenoble CEDEX 9, France
| | - Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6100, United States
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
21
|
Liu Y, Zhao K. Rheological and dielectric behavior of milk/sodium carboxymethylcellulose mixtures at various temperatures. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Ruiz-Franco J, Jaramillo-Cano D, Camargo M, Likos CN, Zaccarelli E. Multi-particle collision dynamics for a coarse-grained model of soft colloids. J Chem Phys 2019; 151:074902. [PMID: 31438712 DOI: 10.1063/1.5113588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The growing interest in the dynamical properties of colloidal suspensions, both in equilibrium and under an external drive such as shear or pressure flow, requires the development of accurate methods to correctly include hydrodynamic effects due to the suspension in a solvent. In the present work, we generalize Multiparticle Collision Dynamics (MPCD) to be able to deal with soft, polymeric colloids. Our methods build on the knowledge of the monomer density profile that can be obtained from monomer-resolved simulations without hydrodynamics or from theoretical arguments. We hereby propose two different approaches. The first one simply extends the MPCD method by including in the simulations effective monomers with a given density profile, thus neglecting monomer-monomer interactions. The second one considers the macromolecule as a single penetrable soft colloid (PSC), which is permeated by an inhomogeneous distribution of solvent particles. By defining an appropriate set of rules to control the collision events between the solvent and the soft colloid, both linear and angular momenta are exchanged. We apply these methods to the case of linear chains and star polymers for varying monomer lengths and arm number, respectively, and compare the results for the dynamical properties with those obtained within monomer-resolved simulations. We find that the effective monomer method works well for linear chains, while the PSC method provides very good results for stars. These methods pave the way to extend MPCD treatments to complex macromolecular objects such as microgels or dendrimers and to work with soft colloids at finite concentrations.
Collapse
Affiliation(s)
- José Ruiz-Franco
- CNR-ISC, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Diego Jaramillo-Cano
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Manuel Camargo
- FIMEB & CICBA, Universidad Antonio Nariño - Campus Farallones, Km 18 vía Cali-Jamundí, 760030 Cali, Colombia
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | | |
Collapse
|
23
|
Kong X, Han Y, Chen W, Cui F, Li Y. Understanding conformational and dynamical evolution of semiflexible polymers in shear flow. SOFT MATTER 2019; 15:6353-6361. [PMID: 31298682 DOI: 10.1039/c9sm00600a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A clear description of the conformational and dynamical evolution of polymer chains in shear flow is the fundamental basis of microfluidic separations and macroscopic rheological behaviors. We employ graph theory analysis to analyze the local deformation and dynamics of linear polymer chains with different rigidities in shear flow based on the simulation trajectories that record the instantaneous conformations and dynamics. Our results show that all semiflexible chains experience quasi-periodic tumbling motions when the shear strain overwhelms the U-shape (or S-shape) deformation energy barrier. More interestingly, the contact map provides solid evidence for the asymmetric deformation in the whole tumbling motion. In the stretching process: at small and intermediate shear strength, flexible polymers show a quasi-affine deformation while semiflexible ones are initially unfolded from the center of the chains, then both of them follow the extension with half dumbbell- or dumbbell-like ends; at high shear strength, all polymer chains present only a dumbbell-like extension. In the collapse process, all chains prefer to initiate the folding from chain ends. This finding can facilitate our understanding on how semiflexible polymer chains relax and dissipate the stress in shear flow.
Collapse
Affiliation(s)
- Xiangxin Kong
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.
| | | | | | | | | |
Collapse
|
24
|
Rheological properties of concentrated slurries of harvested, incubated and ruptured Nannochloropsis sp. cells. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42480-019-0011-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Tethered Semiflexible Polymer under Large Amplitude Oscillatory Shear. Polymers (Basel) 2019; 11:polym11040737. [PMID: 31018564 PMCID: PMC6523790 DOI: 10.3390/polym11040737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/20/2022] Open
Abstract
The properties of a semiflexible polymer with fixed ends exposed to oscillatory shear flow are investigated by simulations. The two-dimensionally confined polymer is modeled as a linear bead-spring chain, and the interaction with the fluid is described by the Brownian multiparticle collision dynamics approach. For small shear rates, the tethering of the ends leads to a more-or-less linear oscillatory response. However, at high shear rates, we found a strongly nonlinear reaction, with a polymer (partially) wrapped around the fixation points. This leads to an overall shrinkage of the polymer. Dynamically, the location probability of the polymer center-of-mass position is largest on a spatial curve resembling a limaçon, although with an inhomogeneous distribution. We found shear-induced modifications of the normal-mode correlation functions, with a frequency doubling at high shear rates. Interestingly, an even-odd asymmetry for the Cartesian components of the correlation functions appears, with rather similar spectra for odd x- and even y-modes and vice versa. Overall, our simulations yielded an intriguing nonlinear behavior of tethered semiflexible polymers under oscillatory shear flow.
Collapse
|
26
|
Affiliation(s)
- Maud Formanek
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Angel J. Moreno
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia International
Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|
27
|
Kharlamova A, Nicolai T, Chassenieux C. Mixtures of sodium caseinate and whey protein aggregates: Viscosity and acid- or salt-induced gelation. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Nehring A, Shendruk TN, de Haan HW. Morphology of depletant-induced erythrocyte aggregates. SOFT MATTER 2018; 14:8160-8171. [PMID: 30260361 DOI: 10.1039/c8sm01026a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Red blood cells suspended in quiescent plasma tend to aggregate into multicellular assemblages, including linearly stacked columnar rouleaux, which can reversibly form more complex clusters or branching networks. While these aggregates play an essential role in establishing hemorheological and pathological properties, the biophysics behind their self-assembly into dynamic mesoscopic structures remains under-explored. We employ coarse-grained molecular simulations to model low-hematocrit erythrocytes subject to short-range implicit depletion forces, and demonstrate not only that depletion interactions are sufficient to account for a sudden dispersion-aggregate transition, but also that the volume fraction of depletant macromolecules controls small aggregate morphology. We observe a sudden transition from a dispersion to a linear column rouleau, followed by a slow emergence of disorderly amorphous clusters of many short rouleaux at larger volume fractions. This work demonstrates how discocyte topology and short-range, non-specific, physical interactions are sufficient to self-assemble erythrocytes into various aggregate structures, with markedly different morphologies and biomedical consequences.
Collapse
Affiliation(s)
- Austin Nehring
- University of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada.
| | - Tyler N Shendruk
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Hendrick W de Haan
- University of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada.
| |
Collapse
|
29
|
Shamana H, Grossutti M, Papp-Szabo E, Miki C, Dutcher JR. Unusual polysaccharide rheology of aqueous dispersions of soft phytoglycogen nanoparticles. SOFT MATTER 2018; 14:6496-6505. [PMID: 30043804 DOI: 10.1039/c8sm00815a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phytoglycogen is a natural polysaccharide produced in the form of dense, 35 nm diameter nanoparticles by some varieties of plants such as sweet corn. The highly-branched, dendrimeric structure of phytoglycogen leads to interesting and useful properties such as softness and deformability of the particles, and a strong interaction with water. These properties make the particles ideal for use as unique additives in personal care, nutrition and biomedical formulations. In the present study, we describe rheology measurements of aqueous dispersions of phytoglycogen nanoparticles. The viscosity of the dispersions remained Newtonian up to large concentrations (∼20% w/w). For higher concentrations, the zero-shear viscosity increased dramatically, reaching values that exceeded that of the water solvent by six orders of magnitude at a concentration of 30% w/w and were well described by the Vogel-Fulcher-Tammann relation of glassy dynamics. The very large values of the zero-shear viscosity are coupled with significant deformation of the soft nanoparticles. We quantified the softness of the particles by performing osmotic pressure measurements on concentrated dispersions, obtaining a value of 15 kPa for the compressional modulus. For the most concentrated samples, we observed flow at stresses less than the apparent yield stress value determined by fitting the high strain rate data to the Herschel-Bulkley model. This behavior, similar to that of star polymer glasses, suggests the possibility of a hairy colloid particle geometry. Remarkably, phytoglycogen nanoparticles dispersed in water provide a very simple experimental realization of glass-forming dispersions of soft colloidal particles that can be used to validate theoretical models in detail.
Collapse
Affiliation(s)
- Hurmiz Shamana
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | | | | | | | | |
Collapse
|
30
|
Rotation Dynamics of Star Block Copolymers under Shear Flow. Polymers (Basel) 2018; 10:polym10080860. [PMID: 30960785 PMCID: PMC6404076 DOI: 10.3390/polym10080860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022] Open
Abstract
Star block-copolymers (SBCs) are macromolecules formed by a number of diblock copolymers anchored to a common central core, being the internal monomers solvophilic and the end monomers solvophobic. Recent studies have demonstrated that SBCs constitute self-assembling building blocks with specific softness, functionalization, shape and flexibility. Depending on different physical and chemical parameters, the SBCs can behave as flexible patchy particles. In this paper, we study the rotational dynamics of isolated SBCs using a hybrid mesoscale simulation technique. We compare three different approaches to analyze the dynamics: the laboratory frame, the non-inertial Eckart's frame and a geometrical approximation relating the conformation of the SBC to the velocity profile of the solvent. We find that the geometrical approach is adequate when dealing with very soft systems, while in the opposite extreme, the dynamics is best explained using the laboratory frame. On the other hand, the Eckart frame is found to be very general and to reproduced well both extreme cases. We also compare the rotational frequency and the kinetic energy with the definitions of the angular momentum and inertia tensor from recent publications.
Collapse
|
31
|
Weyer TJ, Denton AR. Concentration-dependent swelling and structure of ionic microgels: simulation and theory of a coarse-grained model. SOFT MATTER 2018; 14:4530-4540. [PMID: 29796467 DOI: 10.1039/c8sm00799c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We study swelling and structural properties of ionic microgel suspensions within a comprehensive coarse-grained model that combines the polymeric and colloidal natures of microgels as permeable, compressible, charged spheres governed by effective interparticle interactions. The model synthesizes the Flory-Rehner theory of cross-linked polymer gels, the Hertz continuum theory of effective elastic interactions, and a theory of density-dependent effective electrostatic interactions. Implementing the model using Monte Carlo simulation and thermodynamic perturbation theory, we compute equilibrium particle size distributions, swelling ratios, volume fractions, net valences, radial distribution functions, and static structure factors as functions of concentration. Trial Monte Carlo moves comprising particle displacements and size variations are accepted or rejected based on the total change in elastic and electrostatic energies. The theory combines first-order thermodynamic perturbation and variational free energy approximations. For illustrative system parameters, theory and simulation agree closely at concentrations ranging from dilute to beyond particle overlap. With increasing concentration, as microgels deswell, we predict a decrease in the net valence and an unusual saturation of pair correlations. Comparison with experimental data for deionized, aqueous suspensions of PNIPAM particles demonstrates the capacity of the coarse-grained model to predict and interpret measured swelling behavior.
Collapse
Affiliation(s)
- Tyler J Weyer
- Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA.
| | | |
Collapse
|
32
|
Liebetreu M, Ripoll M, Likos CN. Trefoil Knot Hydrodynamic Delocalization on Sheared Ring Polymers. ACS Macro Lett 2018; 7:447-452. [PMID: 35619341 DOI: 10.1021/acsmacrolett.8b00059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The behavior of unknotted and trefoil-knotted ring polymers under shear flow is here examined by means of mesoscopic simulations. In contrast to most polymers, ring polymers in a hydrodynamic solvent at high shear rates do not get shortened in the vorticity direction. This is a consequence of the backflow produced by the interaction of the sheared solvent with the end-free polymer topology. The extended structures of the ring in the vorticity-flow plane, when they are aligned in a constant velocity plane, favor ring contour fluctuations. This variety of conformations largely suppresses the tank-treading type of rotation with extended conformations in favor of the tumbling type of rotations, where stretched and collapsed conformations alternate. The extension of trefoil knots is also enhanced, so that the knots become delocalized. We anticipate that these effects, which disappear in the absence of hydrodynamic interactions, will have a crucial impact on the rheological properties of concentrated ring solutions, and will also influence the behavior of more complicated systems such as mixtures of polymers with different topologies.
Collapse
Affiliation(s)
- Maximilian Liebetreu
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Marisol Ripoll
- Forschungszentrum Jülich, Institute of Complex Systems, Theoretical Soft Matter and Biophysics, 52425 Jülich, Germany
| | - Christos N. Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
33
|
Jaramillo-Cano D, Formanek M, Likos CN, Camargo M. Star Block-Copolymers in Shear Flow. J Phys Chem B 2018; 122:4149-4158. [PMID: 29547293 DOI: 10.1021/acs.jpcb.7b12229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Star block-copolymers (SBCs) have been demonstrated to constitute self-assembling building blocks with specific softness, functionalization, shape, and flexibility. In this work, we study the behavior of an isolated SBC under a shear flow by means of particle-based multiscale simulations. We systematically analyze the conformational properties of low-functionality stars, as well as the formation of attractive patches on their corona as a function of the shear rate. We cover a wide range of system parameters, including functionality, amphiphilicity, and solvent quality. It is shown that SBCs display a richer structural and dynamical behavior than athermal star polymers in a shear flow [ Ripoll Phys. Rev. Lett. , 2006 , 96 , 188302 ], and, therefore, they are also interesting candidates to tune the viscoelastic properties of complex fluids. We identify three factors of patch reorganization under shear that lead to patch numbers and orientations depending on the shear rate, namely, free arms joining existing patches, fusion of medium-sized patches into bigger ones, and fission of large patches into two smaller ones under high shear rates. Because the conformation of single SBC is expected to be preserved in low-density bulk phases, the presented results are a first step in understanding and predicting the rheological properties of semidilute suspensions of this kind of polymers.
Collapse
Affiliation(s)
- Diego Jaramillo-Cano
- Faculty of Physics , University of Vienna , Boltzmanngasse 5 , A-1090 Vienna , Austria
| | - Maud Formanek
- Faculty of Physics , University of Vienna , Boltzmanngasse 5 , A-1090 Vienna , Austria
| | - Christos N Likos
- Faculty of Physics , University of Vienna , Boltzmanngasse 5 , A-1090 Vienna , Austria
| | - Manuel Camargo
- Centro de Investigaciones en Ciencias Básicas y Aplicadas , Universidad Antonio Nariño , Km 18 via Cali-Jamundí , 760030 Cali , Colombia
| |
Collapse
|
34
|
Singh SP, Gompper G, Winkler RG. Steady state sedimentation of ultrasoft colloids. J Chem Phys 2018; 148:084901. [PMID: 29495770 DOI: 10.1063/1.5001886] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The structural and dynamical properties of ultra-soft colloids-star polymers-exposed to a uniform external force field are analyzed by applying the multiparticle collision dynamics technique, a hybrid coarse-grain mesoscale simulation approach, which captures thermal fluctuations and long-range hydrodynamic interactions. In the weak-field limit, the structure of the star polymer is nearly unchanged; however, in an intermediate regime, the radius of gyration decreases, in particular transverse to the sedimentation direction. In the limit of a strong field, the radius of gyration increases with field strength. Correspondingly, the sedimentation coefficient increases with increasing field strength, passes through a maximum, and decreases again at high field strengths. The maximum value depends on the functionality of the star polymer. High field strengths lead to symmetry breaking with trailing, strongly stretched polymer arms and a compact star-polymer body. In the weak-field-linear response regime, the sedimentation coefficient follows the scaling relation of a star polymer in terms of functionality and arm length.
Collapse
Affiliation(s)
- Sunil P Singh
- Indian Institute of Science Education and Research Bhopal, Bhopal By pass Road Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
35
|
Blaak R, Likos CN. Self-assembly of magnetically functionalized star-polymer nano-colloids. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:3. [PMID: 29327242 DOI: 10.1140/epje/i2018-11614-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
We explore the potential of star-polymers that carry super-paramagnetic nano-particles as end-groups with respect to the single-molecule self-assembly process. With the aid of molecular dynamics simulation, the configurations of these macromolecules are analyzed as a function of functionality, magnetic interaction strength, and the length of the polymeric arms. By means of an external magnetic field the nano-particles can be controlled to form static or dynamic dipolar chains, resulting in conformations of isolated stars that can be characterized by the average number of chains and length. The single-molecule conformation diagram in the plane of magnetic interaction strength vs. the star-functionality is obtained. Further, the molecules are characterized by means of various shape and size order parameters.
Collapse
Affiliation(s)
- Ronald Blaak
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria.
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria
| |
Collapse
|
36
|
Liao CT, Wu YF, Chien W, Huang JR, Chen YL. Modeling shear-induced particle ordering and deformation in a dense soft particle suspension. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:435101. [PMID: 28786815 DOI: 10.1088/1361-648x/aa84df] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca = 0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ = 0.61, the structure maintains layered HCP for Ca = 0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.
Collapse
Affiliation(s)
- Chih-Tang Liao
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan. Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan. Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | |
Collapse
|
37
|
Yu HY, Jabeen Z, Eckmann DM, Ayyaswamy PS, Radhakrishnan R. Microstructure of Flow-Driven Suspension of Hardspheres in Cylindrical Confinement: A Dynamical Density Functional Theory and Monte Carlo Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11332-11344. [PMID: 28810736 PMCID: PMC5654712 DOI: 10.1021/acs.langmuir.7b01860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have studied the microstructure of a flow-driven hardsphere suspension inside a cylinder using dynamical density functional theory and Monte Carlo simulations. In order to be representative of various physical conditions that may prevail in experiments, we investigate the problem using both the grand canonical (μVT) ensemble and the canonical (NVT) ensemble. In both ensembles, the hydrodynamic effect on the suspension mediated by the presence of the confining wall is implemented in a mean-field fashion by incorporating the thermodynamic work done by the inertial lift force on the particle given the average flow field. The predicted particle distribution in the μVT ensemble displays strong structural ordering at increasing flow rates due to the correspondingly higher particle concentrations inside the cylinder. In the NVT ensemble, for dilute suspensions we observe a peak in the distribution of density at a location similar to that of the Segré-Silberberg annulus, while for dense suspensions the competing effects of the inertial lift and the hardsphere interaction lead to the formation of several annuli.
Collapse
Affiliation(s)
- Hsiu-Yu Yu
- Department of Chemical Engineering, National Taiwan University , Taipei 10617, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Abstract
The morphology of core-shell microgels under different swelling conditions and as a function of the core-shell thickness ratio is systematically characterized by mesoscale hydrodynamic simulations. With increasing hydrophobic interaction of the shell polymers, we observe drastic morphological changes from a core-shell structure to an inverted microgel, where the core is turned to the outside, or a microgel with a patchy surface of core polymers directly exposed to the environment. We establish a phase diagram of the various morphologies. Moreover, we characterize the polymer and microgel conformations. For sufficiently thick shells, the changes of the shell size upon increasing hydrophobic interactions are well described by the Flory-Rehner theory. Additionally, this theory provides a critical line in the phase diagram separating core-shell structures from the distinct two other phases. The appearing new phases provide a novel route to nano- and microscale functionalized materials.
Collapse
Affiliation(s)
- Ali Ghavami
- Theoretical Soft Matter and
Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Roland G. Winkler
- Theoretical Soft Matter and
Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
39
|
Cao XZ, Merlitz H, Wu CX. Tuning Adsorption Duration To Control the Diffusion of a Nanoparticle in Adsorbing Polymers. J Phys Chem Lett 2017; 8:2629-2633. [PMID: 28535343 DOI: 10.1021/acs.jpclett.7b01049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Controlling the nanoparticle (NP) diffusion in polymers is a prerequisite to obtain polymer nanocomposites (PNCs) with desired dynamical and rheological properties and to achieve targeted delivery of nanomedicine in biological systems. Here we determine the suppression mechanism of direct NP-polymer attraction to hamper the NP mobility in adsorbing polymers and then quantify the dependence of the effective viscosity ηeff felt by the NP on the adsorption duration τads of polymers on the NP using scaling theory analysis and molecular dynamics simulations. We propose and confirm that participation of adsorbed chains in the NP motion break up at time intervals beyond τads due to the rearrangement of polymer segments at the NP surface, which accounts for the onset of Fickian NP diffusion on a time scale of t ≈ τads. We develop a power law, ηeff ∼ (τads)ν, where ν is the scaling exponent of the dependence of polymer coil size on the chain length, which leads to a theoretical basis for the design of PNCs and nanomedicine with desired applications through tuning the polymer adsorption duration.
Collapse
Affiliation(s)
- Xue-Zheng Cao
- Department of Physics, Zhejiang Sci-Tech University , Hangzhou 310018, P. R. China
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Holger Merlitz
- Department of Physics, Xiamen University , Xiamen 361005, P. R. China
- Leibniz-Institut für Polymerforschung Dresden , 01069 Dresden, Germany
| | - Chen-Xu Wu
- Department of Physics, Xiamen University , Xiamen 361005, P. R. China
| |
Collapse
|
40
|
|
41
|
Ghavami A, Kobayashi H, Winkler RG. Internal dynamics of microgels: A mesoscale hydrodynamic simulation study. J Chem Phys 2017; 145:244902. [PMID: 28049314 DOI: 10.1063/1.4972893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We analyze the dynamics of polymers in a microgel system under different swelling conditions. A microgel particle consists of coarse-grained linear polymers which are tetra-functionally crosslinked and undergoes conformational changes in response to the external stimuli. Here, a broad range of microgel sizes, extending from tightly collapsed to strongly swollen particles, is considered. In order to account for hydrodynamic interactions, the microgel is embedded in a multiparticle collision dynamics fluid while hydrophobic attraction is modelled by an attractive Lennard-Jones potential and swelling of ionic microgels is described through the Debye-Hückel potential. The polymer dynamics is analyzed in terms of the monomer mean square displacement and the intermediate scattering function S(q, t). The scattering function decays in a stretched-exponential manner, with a decay rate exhibiting a crossover from a collective diffusive dynamics at low magnitudes of the wavevector q to a hydrodynamic-dominated dynamics at larger q. There is little difference between the intermediate scattering functions of microgels under good solvent conditions and strongly swollen gels, but strongly collapsed gels exhibit a faster decay at short times and hydrodynamic interactions become screened. In addition, we present results for the dynamics of the crosslinks, which exhibit an unexpected, semiflexible polymer-like dynamics.
Collapse
Affiliation(s)
- Ali Ghavami
- Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Hideki Kobayashi
- Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Roland G Winkler
- Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
42
|
Chen W, Zhang K, Liu L, Chen J, Li Y, An L. Conformation and Dynamics of Individual Star in Shear Flow and Comparison with Linear and Ring Polymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Kexin Zhang
- School
of Environmental Science, Northeast Normal University, 5268 Renmin
Street, Changchun, P. R. China 130024
| | | | | | | | | |
Collapse
|
43
|
Urich M, Denton AR. Swelling, structure, and phase stability of compressible microgels. SOFT MATTER 2016; 12:9086-9094. [PMID: 27774556 DOI: 10.1039/c6sm02056a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microgels are soft colloidal particles that, when dispersed in a solvent, swell and deswell in response to changes in environmental conditions, such as temperature, concentration, and pH. Using Monte Carlo simulation, we model bulk suspensions of microgels that interact via Hertzian elastic interparticle forces and can expand or contract via trial moves that allow particles to change size in accordance with the Flory-Rehner free energy of cross-linked polymer gels. We monitor the influence of particle compressibility, size fluctuations, and concentration on bulk structural and thermal properties by computing particle swelling ratios, radial distribution functions, static structure factors, osmotic pressures, and freezing densities. For microgels in the nanoscale size range, particle compressibility and associated size fluctuations suppress crystallization, shifting the freezing transition to a higher density than for the hard-sphere fluid. As densities increase beyond close packing, microgels progressively deswell, while their intrinsic size distribution grows increasingly polydisperse.
Collapse
Affiliation(s)
- Matthew Urich
- Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA.
| | - Alan R Denton
- Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA.
| |
Collapse
|
44
|
Affiliation(s)
- Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Qiyun Tang
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
45
|
Yazdani A, Li X, Em Karniadakis G. Dynamic and rheological properties of soft biological cell suspensions. RHEOLOGICA ACTA 2016; 55:433-449. [PMID: 27540271 PMCID: PMC4987001 DOI: 10.1007/s00397-015-0869-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quantifying dynamic and rheological properties of suspensions of soft biological particles such as vesicles, capsules, and red blood cells (RBCs) is fundamentally important in computational biology and biomedical engineering. In this review, recent studies on dynamic and rheological behavior of soft biological cell suspensions by computer simulations are presented, considering both unbounded and confined shear flow. Furthermore, the hemodynamic and hemorheological characteristics of RBCs in diseases such as malaria and sickle cell anemia are highlighted.
Collapse
Affiliation(s)
- Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
| | - Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
46
|
|
47
|
Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies and Molecular Design Criteria for 3D Printable Hydrogels. Chem Rev 2015; 116:1496-539. [PMID: 26492834 DOI: 10.1021/acs.chemrev.5b00303] [Citation(s) in RCA: 433] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tomasz Jungst
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Pleicherwall 2, 97070 Würzburg, Germany
| | - Willi Smolan
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Pleicherwall 2, 97070 Würzburg, Germany
| | - Kristin Schacht
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth , Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth , Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
48
|
Kanehl P, Stark H. Hydrodynamic segregation in a bidisperse colloidal suspension in microchannel flow: A theoretical study. J Chem Phys 2015; 142:214901. [PMID: 26049518 DOI: 10.1063/1.4921800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colloids in suspension exhibit shear-induced migration towards regions of low viscous shear. In dense bidisperse colloidal suspensions under pressure driven flow large particles can segregate in the center of a microchannel and the suspension partially demixes. To develop a theoretical understanding of these effects, we formulate a phenomenological model for the particle currents based on the work of Phillips et al. [Phys. Fluids 4, 30 (1992)]. We also simulate hard spheres under pressure-driven flow in two and three dimensions using the mesoscale simulation technique of multi-particle collision dynamics. Using a single fit parameter for the intrinsic diffusivity, our theory accurately reproduces the simulated density profiles across the channel. We present a detailed parameter study on how a monodisperse suspension enriches the channel center and quantitatively confirm the experimental observation that a binary colloidal mixture partially segregates into its two species. In particular, we always find a strong accumulation of large particles in the center. Qualitative differences between two and three dimensions reveal that collective diffusion is more relevant in two dimensions.
Collapse
Affiliation(s)
- Philipp Kanehl
- Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Holger Stark
- Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
49
|
Ding Y, Mittal J. Equilibrium and nonequilibrium dynamics of soft sphere fluids. SOFT MATTER 2015; 11:5274-5281. [PMID: 26052921 DOI: 10.1039/c5sm00637f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We use computer simulations to test the freezing-point scaling relationship between equilibrium transport coefficients (self-diffusivity, viscosity) and thermodynamic parameters for soft sphere fluids. The fluid particles interact via the inverse-power potential (IPP), and the particle softness is changed by modifying the exponent of the distance-dependent potential term. In the case of IPP fluids, density and temperature are not independent variables and can be combined to obtain a coupling parameter to define the thermodynamic state of the system. We find that the rescaled coupling parameter, based on its value at the freezing point, can approximately collapse the diffusivity and viscosity data for IPP fluids over a wide range of particle softness. Even though the collapse is far from perfect, the freezing-point scaling relationship provides a convenient and effective way to compare the structure and dynamics of fluid systems with different particle softness. We further show that an alternate scaling relationship based on two-body excess entropy can provide an almost perfect collapse of the diffusivity and viscosity data below the freezing transition. Next, we perform nonequilibrium molecular dynamics simulations to calculate the shear-dependent viscosity and to identify the distinct role of particle softness in underlying structural changes associated with rheological properties. Qualitatively, we find a similar shear-thinning behavior for IPP fluids with different particle softness, though softer particles exhibit stronger shear-thinning tendency. By investigating the distance and angle-dependent pair correlation functions in these systems, we find different structural features in the case of IPP fluids with hard-sphere like and softer particle interactions. Interestingly, shear-thinning in hard-sphere like fluids is accompanied by enhanced translational order, whereas softer fluids exhibit loss of order with shear. Our results provide a systematic evaluation of the role of particle softness in equilibrium and nonequilibrium transport properties and their underlying connection with thermodynamic and structural properties.
Collapse
Affiliation(s)
- Yajun Ding
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | | |
Collapse
|
50
|
Lemarchand CA, Bailey NP, Todd BD, Daivis PJ, Hansen JS. Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow: A non-equilibrium molecular dynamics study. J Chem Phys 2015; 142:244501. [DOI: 10.1063/1.4922831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Claire A. Lemarchand
- DNRF Centre “Glass and Time,” IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Nicholas P. Bailey
- DNRF Centre “Glass and Time,” IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Billy D. Todd
- Department of Mathematics, Faculty of Science, Engineering and Technology, and Centre for Molecular Simulation, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Peter J. Daivis
- School of Applied Sciences, RMIT University, Melbourne, Victoria 3001, Australia
| | - Jesper S. Hansen
- DNRF Centre “Glass and Time,” IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|