1
|
Yotsumoto M, Fujita R, Matsuo M, Nakanishi S, Denda M, Nakata S. Effects of the Molecular Structure of Malodor Substances and Their Masking on 1,2-Dioleoyl- sn-glycero-3-phosphocholine Molecular Layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6878-6883. [PMID: 38501274 DOI: 10.1021/acs.langmuir.3c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Certain odors have been shown not only to cause health problems and stress but also to affect skin barrier function. Therefore, it is important to understand olfactory masking to develop effective fragrances to mask malodors. However, olfaction and olfactory masking mechanisms are not yet fully understood. To understand the mechanism of the masking effect that has been studied, the responses of several target substance (TS) molecules-1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) mixed molecular layers to odorant (OD) molecules were examined as a simple experimental model of epithelial cellular membranes injured by TS molecules. Here, we examined trans-2-nonenal, 1-nonanal, trans-2-decenal, and 1-decanal as TS molecules to clarify the effects of double bonds and hydrocarbon chain lengths on the phospholipid molecular layer. In addition, benzaldehyde and cyclohexanecarboxaldehyde were utilized as OD molecules to clarify the masking effect of the aromatic ring. Surface pressure (Π)-area (A) isotherms were measured to clarify the adsorption or desorption of TS and OD molecules on the DOPC molecular layer. In addition, Fourier transform infrared spectroscopy was performed to clarify the interactions among DOPC, TS, and OD molecules. We found that TS molecules with and without double bonds had different effects on the DOPC molecular layer and that molecules with shorter chain lengths had greater effects on the DOPC molecular layer. Furthermore, OD molecules with aromatic rings counteracted the effects of the TS molecules. On the basis of this research, not only a detailed mechanism by which odor molecules affect lipid membranes without mediating olfactory receptors is elucidated but also more effective OD molecules with masking effects are proposed.
Collapse
Affiliation(s)
- Mai Yotsumoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Risa Fujita
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Muneyuki Matsuo
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Shinobu Nakanishi
- Shiseido Global Innovation Center, 1-2-11 Takashima-cho, Nishi-ku, Yokohama, Kanagawa 220-0011, Japan
| | - Mitsuhiro Denda
- Institute for Advanced Study of Mathematical Sciences, Meiji University, 8F High-Rise Wing, Nakano Campus, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
2
|
Zhou J, Gao B, Zhang H, Yang R, Huang J, Li X, Zhong Y, Wang Y, Zhu X, Luo Y, Yan F. Ginsenoside modified lipid-coated perfluorocarbon nanodroplets: A novel approach to reduce complement protein adsorption and prolong in vivo circulation. Acta Pharm Sin B 2024; 14:1845-1863. [PMID: 38572112 PMCID: PMC10985128 DOI: 10.1016/j.apsb.2023.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Lipid-coated perfluorocarbon nanodroplets (lp-NDs) hold great promise in bio-medicine as vehicles for drug delivery, molecular imaging and vaccine agents. However, their clinical utility is restricted by limited targeted accumulation, attributed to the innate immune system (IIS), which acts as the initial defense mechanism in humans. This study aimed to optimize lp-ND formulations to minimize non-specific clearance by the IIS. Ginsenosides (Gs), the principal components of Panax ginseng, possessing complement inhibition ability, structural similarity to cholesterol, and comparable fat solubility to phospholipids, were used as promising candidate IIS inhibitors. Two different types of ginsenoside-based lp-NDs (Gs lp-NDs) were created, and their efficacy in reducing IIS recognition was examined. The Gs lp-NDs were observed to inhibit the adsorption of C3 in the protein corona (PC) and the generation of SC5b-9. Adding Gs to lp-NDs reduced complement adsorption and phagocytosis, resulting in a longer blood circulation time in vivo compared to lp-NDs that did not contain Gs. These results suggest that Gs can act as anti-complement and anti-phagocytosis adjuvants, potentially reducing non-specific clearance by the IIS and improving lifespan.
Collapse
Affiliation(s)
- Jie Zhou
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binyang Gao
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huan Zhang
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Yang
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianbo Huang
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Li
- West China Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhong
- West China Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Wang
- Research Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoxia Zhu
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Luo
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Yan
- Ultrasound Department of West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Ultrasound Imaging of West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Dubey D, Christiansen MG, Vizovisek M, Gebhardt S, Feike J, Schuerle S. Engineering Responsive Ultrasound Contrast Agents Through Crosslinked Networks on Lipid-Shelled Microbubbles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107143. [PMID: 35064638 DOI: 10.1002/smll.202107143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Ultrasound imaging with contrast agents, especially with lipid-shelled microbubbles, has become a vital tool in clinical diagnostics. Efforts to adapt these agents for molecular imaging have typically focused on targeted binding. More recently, crosslinking the lipid shell to alter its mechanical properties, followed by decrosslinking upon exposure to a stimulus, has been shown as a promising approach for imaging soluble molecular targets. Nevertheless, a systematic study of the influence of crosslinker concentration and structure on the mechanical properties of microbubbles has not been undertaken. An improved understanding of the role of these parameters is necessary to more effectively design contrast agents that detect proteases, an informative class of soluble disease markers. Here, the influence of crosslinker parameters on the acoustic properties of microbubbles, developing a model of crosslinker network formation on microbubble shells that explains the experimental observations, are studied. By incorporating cleavable elements that respond to UV light or proteolysis, kinetically resolved acoustic detection of these stimuli and the relevance of crosslinker design are demonstrated. The framework established in this study can be readily adapted to other protease-cleavable units and provides a basis for the future development of responsive ultrasound contrast agents for molecular imaging of proteolytic activity.
Collapse
Affiliation(s)
- Dragana Dubey
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Michael G Christiansen
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Matej Vizovisek
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Samuel Gebhardt
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Jasmin Feike
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Simone Schuerle
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
4
|
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:808-862. [PMID: 34476167 PMCID: PMC8372309 DOI: 10.3762/bjnano.12.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential, pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence, and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan, Kurdistan, Sanandaj, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | |
Collapse
|
5
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
6
|
Editorial overview: Particle system shape change and response. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|