1
|
Oh JY, Villaseñor KE, Kian AC, Cormode DP. Advances in Ultrasmall Inorganic Nanoparticles for Nanomedicine: From Diagnosis to Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40343711 DOI: 10.1021/acsami.5c02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Inorganic nanoparticles possess unique physicochemical properties that make them attractive candidates for diverse applications in nanomedicine, including as contrast agents and as therapeutics. However, many inorganic nanoparticles are composed of high-atomic-number elements, raising safety concerns due to potential long-term retention in the body. However, ultrasmall inorganic nanoparticles (UINPs), i.e., those that are less than ∼5 nm in diameter, can offer the advantage of rapid renal clearance from the body, reducing toxicity risks associated with prolonged exposure and thereby creating a path toward clinical translation. In this review, we discuss current knowledge on the design and functionalization of UINPs, exploring their capabilities from diagnosis to therapeutics, with examples including radiosensitization, photothermal, and anti-inflammatory catalytic therapies. In addition, we discuss their limitations, the approaches taken to solve their limitations, and progress of UINPs toward clinical translation. Through this discussion, we aim to provide a comprehensive perspective on how UINPs are advancing the field of nanomedicine, underscoring their potential to significantly improve bioimaging and therapeutic outcomes.
Collapse
Affiliation(s)
- Jun Yong Oh
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kathleen E Villaseñor
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrea C Kian
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Acharya C, Mishra S, Chaurasia SK, Pandey BK, Dhar R, Pandey JK. Synthesis of metallic nanoparticles using biometabolites: mechanisms and applications. Biometals 2025; 38:21-54. [PMID: 39377881 DOI: 10.1007/s10534-024-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Bio-metabolites have played a crucial role in the recent green synthesis of nanoparticles, resulting in more versatile, safer, and effective nanoparticles. Various primary and secondary metabolites, such as proteins, carbohydrates, lipids, nucleic acids, enzymes, vitamins, organic acids, alkaloids, flavonoids, and terpenes, have demonstrated strong metal reduction and stabilization properties that can be utilized to synthesize nanomaterials and influence their characters. While physical and chemical methods were previously used to synthesize these nanomaterials, their drawbacks, including high energy consumption, elevated cost, lower yield, and the use of toxic chemicals, have led to a shift towards eco-friendly, rapid, and efficient alternatives. Biomolecules act as reducing agents through deprotonation, nucleophilic reactions, transesterification reactions, ligand binding, and chelation mechanisms, which help sequester metal ions into stable metal nanoparticles (NPs). Engineered NPs have potential applications in various fields due to their optical, electronic, and magnetic properties, offering improved performance compared to bulkier counterparts. NPs can be used in medicine, food and agriculture, chemical catalysts, energy harvesting, electronics, etc. This review provides an overview of the role of primary and secondary metabolites in creating effective nanostructures and their potential applications.
Collapse
Affiliation(s)
- Chinmayee Acharya
- Department of Botany, Government Post Graduate College, Tikamgarh, 472001, India
- Maharaja Chhatrasal Bundelkhand University, Chhatarpur, 471001, India
| | - Sonam Mishra
- Centre of Materials Sciences, University of Allahabad, Prayagraj, 211002, India
| | - Sandeep Kumar Chaurasia
- Department of Botany, Government Post Graduate College, Tikamgarh, 472001, India.
- Maharaja Chhatrasal Bundelkhand University, Chhatarpur, 471001, India.
| | - Bishnu Kumar Pandey
- Department of Physics, SPM College, University of Allahabad, Prayagraj, 211013, India
| | - Ravindra Dhar
- Centre of Materials Sciences, University of Allahabad, Prayagraj, 211002, India
| | - Jitendra Kumar Pandey
- Department of Botany, Government Post Graduate College, Tikamgarh, 472001, India.
- Maharaja Chhatrasal Bundelkhand University, Chhatarpur, 471001, India.
| |
Collapse
|
3
|
Patoine K, Ta K, Gilbert A, Percuoco M, Gerdon AE. Equilibrium interactions of biomimetic DNA aptamers produce intrafibrillar calcium phosphate mineralization of collagen. Acta Biomater 2024; 179:234-242. [PMID: 38554888 DOI: 10.1016/j.actbio.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Native and biomimetic DNA structures have been demonstrated to impact materials synthesis under a variety of conditions but have only just begun to be explored in this role compared to other biopolymers such as peptides, proteins, polysaccharides, and glycopolymers. One selected DNA aptamer has been explored in calcium phosphate and calcium carbonate mineralization, demonstrating sequence-dependent control of kinetics, morphology, and crystallinity. This aptamer is here applied to a biologically-relevant bone model system that uses collagen hydrogels. In the presence of the aptamer, intrafibrillar collagen mineralization is observed compared to negative controls and a positive control using well-studied poly-aspartic acid. The mechanism of interaction is explored through affinity measurements, kinetics of calcium uptake, and kinetics of aptamer uptake into the forming mineral. There is a marked difference observed between the selected aptamer containing a G-quadruplex secondary structure compared to a control sequence with no G-quadruplex. It is hypothesized that the equilibrium interaction of the aptamer with calcium-phosphate precursors and with the collagen itself leads to slow kinetic mineral formation and a morphology appropriate to bone. This points to new uses for DNA aptamers in biologically-relevant mineralization systems and the possibility of future biomedical applications. STATEMENT OF SIGNIFICANCE: Collagen is the protein structural component that mineralizes with calcium phosphate to form durable bone. Crystalline calcium phosphate must be infused throughout the collagen fiber structure to produce a strong material. This process is assisted by soluble proteins that interact with both calcium phosphate precursors and the collagen protein and has been proposed to follow a polymer-induce liquid precursor (PILP) model. Further understanding of this model and control of the process through synthetic, biomimetic molecules could have significant advantages in biomedical, restorative procedures. For the first time, synthetic DNA aptamers with specific secondary structures are here shown to influence and direct collagen mineralization. The mechanism of this process has been studied to demonstrate an important equilibrium between the DNA aptamer, calcium phosphate precursors, and collagen.
Collapse
Affiliation(s)
- Kassidy Patoine
- Department of Chemistry & Physics, Emmanuel College, 400 Fenway, Boston, MA 02115, United States
| | - Kristy Ta
- Department of Chemistry & Physics, Emmanuel College, 400 Fenway, Boston, MA 02115, United States
| | - Amanda Gilbert
- Department of Chemistry & Physics, Emmanuel College, 400 Fenway, Boston, MA 02115, United States
| | - Marielle Percuoco
- Department of Chemistry & Physics, Emmanuel College, 400 Fenway, Boston, MA 02115, United States
| | - Aren E Gerdon
- Department of Chemistry & Physics, Emmanuel College, 400 Fenway, Boston, MA 02115, United States.
| |
Collapse
|
4
|
Zhou Y, Wang H, Zhao Z, Luan D, Bian X, Lai K, Yan J. Colloidal SERS measurement of enrofloxacin with petaloid nanostructure clusters formed by terminal deoxynucleotidyl transferase catalyzed cytosine-constituted ssDNA. Food Chem 2023; 429:136954. [PMID: 37499513 DOI: 10.1016/j.foodchem.2023.136954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
We developed petal-like plasmonic nanoparticle (PLNP) clusters-based colloidal SERS method for enrofloxacin (EnFX) detection. PLNPs were synthesized by the regulation of single-stranded DNA composed of homo-cytosine deoxynucleotides (hC) catalyzed by terminal deoxynucleotidyl transferase. SERS hot spots were created via the agglomeration process of PLNPs by adding an inorganic salt potassium iodide solution, in which EnFX molecules were attached to the negatively charged PLNPs surface by electrostatic interactions. This approach enabled direct in situ detection of antibiotic residues, achieving a limit of detection (LOD) of 1.15 μg/kg for EnFX. The spiked recoveries of the SERS method were approximately 92.7% to 107.2% and the RSDs ranged from 1.05% to 7.8%, indicating that the method can be applied to actual sample detection. This colloidal SERS measurement platform would be very promising in various applications, especially in real-time and on-site food safety screening owing to its rapidness, simplicity, and sensitivity.
Collapse
Affiliation(s)
- Yangyang Zhou
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Huiyuan Wang
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Zhihui Zhao
- Shanghai Oceanhood Optoelctronics Technology Co., Shanghai 200444, PR China
| | - Donglei Luan
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xiaojun Bian
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Keqiang Lai
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Juan Yan
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
5
|
Hoseinzadeh A, Ghoddusi Johari H, Anbardar MH, Tayebi L, Vafa E, Abbasi M, Vaez A, Golchin A, Amani AM, Jangjou A. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Eur J Med Res 2022; 27:232. [PMID: 36333816 PMCID: PMC9636835 DOI: 10.1186/s40001-022-00833-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is a vital biological process involving blood vessels forming from pre-existing vascular systems. This process contributes to various physiological activities, including embryonic development, hair growth, ovulation, menstruation, and the repair and regeneration of damaged tissue. On the other hand, it is essential in treating a wide range of pathological diseases, such as cardiovascular and ischemic diseases, rheumatoid arthritis, malignancies, ophthalmic and retinal diseases, and other chronic conditions. These diseases and disorders are frequently treated by regulating angiogenesis by utilizing a variety of pro-angiogenic or anti-angiogenic agents or molecules by stimulating or suppressing this complicated process, respectively. Nevertheless, many traditional angiogenic therapy techniques suffer from a lack of ability to achieve the intended therapeutic impact because of various constraints. These disadvantages include limited bioavailability, drug resistance, fast elimination, increased price, nonspecificity, and adverse effects. As a result, it is an excellent time for developing various pro- and anti-angiogenic substances that might circumvent the abovementioned restrictions, followed by their efficient use in treating disorders associated with angiogenesis. In recent years, significant progress has been made in different fields of medicine and biology, including therapeutic angiogenesis. Around the world, a multitude of research groups investigated several inorganic or organic nanoparticles (NPs) that had the potential to effectively modify the angiogenesis processes by either enhancing or suppressing the process. Many studies into the processes behind NP-mediated angiogenesis are well described. In this article, we also cover the application of NPs to encourage tissue vascularization as well as their angiogenic and anti-angiogenic effects in the treatment of several disorders, including bone regeneration, peripheral vascular disease, diabetic retinopathy, ischemic stroke, rheumatoid arthritis, post-ischemic cardiovascular injury, age-related macular degeneration, diabetic retinopathy, gene delivery-based angiogenic therapy, protein delivery-based angiogenic therapy, stem cell angiogenic therapy, and diabetic retinopathy, cancer that may benefit from the behavior of the nanostructures in the vascular system throughout the body. In addition, the accompanying difficulties and potential future applications of NPs in treating angiogenesis-related diseases and antiangiogenic therapies are discussed.
Collapse
Affiliation(s)
- Ahmad Hoseinzadeh
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Ghoddusi Johari
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Golchin
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Ruan Y, Sohail M, Zhao J, Hu F, Li Y, Wang P, Zhang L. Applications of Material-Binding Peptides: A Review. ACS Biomater Sci Eng 2022; 8:4738-4750. [PMID: 36229413 DOI: 10.1021/acsbiomaterials.2c00651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Material-binding peptides (MBPs) are functionalized adhesive materials consisting of a few to several dozen amino acids. This affinity between MBPs and materials is regulated by multiple interactions, including hydrogen bonding, electrostatic, hydrophobic interactions, and π-π stacking. They show selective binding and high affinity to a diverse range of inorganic and organic materials, such as silicon-based materials, metals, metal compounds, carbon materials, and polymers. They are used to improve the biocompatibility of materials, increase the efficiency of material synthesis, and guide the controlled synthesis of nanomaterials. In addition, these can be used for precise targeting of proteins by conjugating to target biomolecules. In this review, we summarize the main designs and applications of MBPs in recent years. The discussions focus on more efficient and functional peptides, including evolution and overall design of MBPs. We have also highlighted the recent applications of MBPs, such as functionalization of material surfaces, synthesis of nanomaterials, drug delivery, cancer therapy, and plastic degradation. Besides, we also discussed the development trend of MBPs. This interpretation will accelerate future investigations to bottleneck the drawbacks of available MBPs, promoting their commercial applications.
Collapse
Affiliation(s)
- Yongqiang Ruan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jindi Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Fanghui Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yunhan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Panlin Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
7
|
Wang Y, Satyavolu NSR, Yang H, Lu Y. Kinetic Reconstruction of DNA-Programed Plasmonic Metal Nanostructures with Predictable Shapes and Optical Properties. J Am Chem Soc 2022; 144:4410-4421. [PMID: 35234474 DOI: 10.1021/jacs.1c11333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It is desirable to rationally engineer plasmonic metal nanostructures with sets of structural parameters that lead to specific functions. However, it is still challenging to predict the nanostructured outcome of a synthesis reaction by design because not only the exact kinetic path for the structural evolution is very complicated but also the relationships among various functional and structural parameters are often tangled. It is necessary to deconvolute the structure-function relationships and understand the co-evolution of structural and functional parameters as the nanostructures grow. DNA is a programable biomolecular capping ligand that was shown to be capable of precisely controlling the evolution of metal nanostructures. In this study, we systematically analyzed the evolution of two structural parameters and several functional parameters in the growth of Au-Ag nanostructures controlled by two DNA sequences. We deconvoluted the contributions from the two structural parameters in affecting the plasmonic properties in different kinetic and geometric domains. We further designed new nanostructures by exchanging DNA sequences in the growth environment, which also changed their evolution pathways. The resulting structural and functional parameters could be predictively tuned by the timing of the exchange. This study demonstrates the powerful toolbox provided by programable biomolecules in producing novel nanostructures in a predictable manner. It also shows that by understanding the kinetic evolution of the structural parameters and their relationships with the function parameters, it is possible to design the precise combinations of structural and functional parameters in the nanostructured products.
Collapse
Affiliation(s)
- Yiming Wang
- Departments of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Nitya Sai Reddy Satyavolu
- Departments of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Hong Yang
- Departments of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Departments of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Lu C, Zhou S, Gao F, Lin J, Liu J, Zheng J. DNA-Mediated Growth of Noble Metal Nanomaterials for Biosensing Applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Jayawardena HSN, Liyanage SH, Rathnayake K, Patel U, Yan M. Analytical Methods for Characterization of Nanomaterial Surfaces. Anal Chem 2021; 93:1889-1911. [PMID: 33434434 PMCID: PMC7941215 DOI: 10.1021/acs.analchem.0c05208] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- H Surangi N Jayawardena
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Sajani H Liyanage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Kavini Rathnayake
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Unnati Patel
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
10
|
Wang Y, Counihan MJ, Lin JW, Rodríguez-López J, Yang H, Lu Y. Quantitative Analysis of DNA-Mediated Formation of Metal Nanocrystals. J Am Chem Soc 2020; 142:10.1021/jacs.0c08604. [PMID: 33207870 PMCID: PMC9203591 DOI: 10.1021/jacs.0c08604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The predictive synthesis of metal nanocrystals with desired structures relies on the precise control of the crystal formation process. Using a capping ligand is an effective method to affect the reduction of metal ions and the formation of nanocrystals. However, predictively synthesizing nanostructures has been difficult to achieve using conventional capping ligands. DNA, as a class of the promising biomolecular capping ligands, has been used to generate sequence-specific morphologies in various metal nanocrystals. However, mechanistic insight into the DNA-mediated nanocrystal formation remains elusive due to the lack of quantitative experimental evidence. Herein, we quantitatively analyzed the precise control of DNA over Ag+ reduction and the structures of resulting Au-Ag core-shell nanocrystals. We derived the equilibrium binding constants between DNA and Ag+, the kinetic rate constants of sequence-specific Ag+ reduction pathways, and the percentage of active surface sites remaining on the nanocrystals after DNA passivation. These three synergistic factors influence the nucleation and growth process both thermodynamically and kinetically, which contributed to the morphological evolution of Au-Ag nanocrystals synthesized with different DNA sequences. This study demonstrates the potential of using functional DNA sequences as a versatile and tunable capping ligand system for the predictable synthesis of metal nanostructures.
Collapse
|
11
|
Jing Y, Ning S, Guan Y, Cao M, Li J, Zhu L, Zhang Q, Cheng C, Deng Y. Electrochemical Determination of Nicotine in Tobacco Products Based on Biosynthesized Gold Nanoparticles. Front Chem 2020; 8:593070. [PMID: 33195097 PMCID: PMC7606926 DOI: 10.3389/fchem.2020.593070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/04/2020] [Indexed: 12/04/2022] Open
Abstract
In this work, gold nanoparticles were biosynthesized via Plectranthus amboinicus leaf extract as the reducing agent. A series of techniques were used for sample analysis. The biosynthesized gold nanoparticles (bAuNPs) are a uniform size with a spherical shape. The FTIR analysis reveals the presence of many oxygen-containing functional groups on the bAuNP surface. The cyclic voltammetry and electrochemical impedance spectroscopic characterizations reveal that while the bAuNPs have a slightly lower conductivity than chemically synthesized AuNPs (cAuNPs). However, the bAuNPs have a superior electrocatalytic performance toward nicotine reduction. After optimization, the bAuNP-modified SPE could detect nicotine linearly from 10 to 2,000 μM with a low detection limit of 2.33 μM. In addition, the bAuNPs/SPE have been successfully used for nicotine-containing-product analysis.
Collapse
Affiliation(s)
- Yanqiu Jing
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Shanghui Ning
- Changde Branch of Hunan Tobacco Corporation, Changde, China
| | - Yu Guan
- Sichuan of China National Tobacco Corporation, Chengdu, China
| | - Mingfeng Cao
- Changde Branch of Hunan Tobacco Corporation, Changde, China
| | - Junju Li
- Sichuan of China National Tobacco Corporation, Chengdu, China
| | - Li Zhu
- Changde Branch of Hunan Tobacco Corporation, Changde, China
| | - Qili Zhang
- Sichuan of China National Tobacco Corporation, Chengdu, China
| | - Chuance Cheng
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Yong Deng
- Changde Branch of Hunan Tobacco Corporation, Changde, China
| |
Collapse
|
12
|
Hellner B, Stegmann AE, Pushpavanam K, Bailey MJ, Baneyx F. Phase Control of Nanocrystalline Inclusions in Bioprecipitated Titania with a Panel of Mutant Silica-Binding Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8503-8510. [PMID: 32614593 DOI: 10.1021/acs.langmuir.0c01108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The biomimetic route to inorganic synthesis presents an opportunity to produce complex materials with superior properties under ambient conditions and from nontoxic precursors. While there has been significant progress in using solid-binding peptides (SBPs), proteins, and organisms to produce a variety of inorganic and hybrid structures, it has been more challenging to understand the interplay of solution conditions and solid-binding peptide (SBP) sequence, structure, and self-association on synthetic outcomes. Here, we show that fusing the Car9 silica-binding peptide-but not the silaffin-derived R5 peptide-to superfolder green fluorescent protein (sfGFP) enhances the ability of micromolar concentrations of protein to induce rapid titania (TiO2) precipitation from acidified solutions of tetrakis(di-lactato)-oxo-titanate (TiBALDH). TiO2 is produced stoichiometrically and although predominantly amorphous, contains nanosized anatase and monoclinic TiO2(B) inclusions. Remarkably, the phase of these nanocrystallites can be tuned from about 80% TiO2(B) to about 65% anatase by using Car9 mutants impaired in their ability to drive the formation of higher-order sfGFP-Car9 oligomers. Our results suggest that the presentation of multiple basic side chains in an extended plane formed by SBP self-association is critical to template the formation of monoclinic crystallites and underscore the subtle influence that single or dual substitutions in dodecameric SBPs can exert on the yield and crystallinity of biomineralized inorganics.
Collapse
Affiliation(s)
- Brittney Hellner
- Department of Chemical Engineering, University of Washington, P.O. Box 351750, Seattle, Washington 98195, United States
| | - Amy E Stegmann
- Department of Chemical Engineering and Molecular Engineering & Sciences Institute, University of Washington, P.O. Box 351750, Seattle, Washington 98195, United States
| | - Karthik Pushpavanam
- Department of Chemical Engineering, University of Washington, P.O. Box 351750, Seattle, Washington 98195, United States
| | - Matthew J Bailey
- Department of Chemical Engineering, University of Washington, P.O. Box 351750, Seattle, Washington 98195, United States
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, P.O. Box 351750, Seattle, Washington 98195, United States
| |
Collapse
|
13
|
Selected DNA aptamers as hydroxyapatite affinity reagents. Anal Chim Acta 2020; 1110:115-121. [PMID: 32278386 DOI: 10.1016/j.aca.2020.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 11/22/2022]
Abstract
DNA aptamers were selected for their ability to bind specifically and quickly to crystalline hydroxyapatite (Ca10(PO4)6(OH)2; HAP), the primary mineral component of enamel and bone. Aptamers were found to have an enhanced percent of G-nucleotides and a propensity for forming a G-quadruplex secondary structure. One aptamer was studied in comparison to control sequences and was found to bind with high affinity and at high loading capacity, with enhanced binding kinetics, and with specificity for crystalline HAP material over amorphous calcium phosphate (ACP) and β-tricalcium phosphate (TCP). The fluorescently-functionalized aptamer was demonstrated to specifically label HAP in a surface binding experiment and suggests the usefulness of this selected aptamer in biomedical or biotechnology fields where the labeling of specific calcium phosphate materials is required.
Collapse
|
14
|
Zhang Y, Li F, Li M, Mao X, Jing X, Liu X, Li Q, Li J, Wang L, Fan C, Zuo X. Encoding Carbon Nanotubes with Tubular Nucleic Acids for Information Storage. J Am Chem Soc 2019; 141:17861-17866. [PMID: 31603326 DOI: 10.1021/jacs.9b09116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA has evolved to be a type of unparalleled material for storing and transmitting genetic information. Much recent attention has been drawn to translate the natural specificity of DNA hybridization reactions for information storage in vitro. In this work, we developed a new type of tubular nucleic acid (TNA) by condensing DNA chains on the surface of one-dimensional carbon nanotubes (CNTs). We find that DNA interacts with CNTs in a sequence-specific manner, resulting in different conformations including helix, i-motif, and G-quadruplex. Atomic force microscopic (AFM) imaging revealed that TNAs exhibit distinct patterns with characteristic height and distance that can be exploited for two-dimensional encoding on CNTs. We further demonstrate the use of TNA-CNT for information storage with visual output. This noncanonical, DNA hybridization-free strategy provides a new route to DNA-based data storage.
Collapse
Affiliation(s)
- Yueyue Zhang
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China.,Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Synchrotron Radiation Facility , Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Fan Li
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Min Li
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Xiuhai Mao
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Xinxin Jing
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Xiaoguo Liu
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Qian Li
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Jiang Li
- Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Synchrotron Radiation Facility , Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Lihua Wang
- Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Synchrotron Radiation Facility , Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Chunhai Fan
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200127 , China
| |
Collapse
|
15
|
Li L, Xing H, Zhang J, Lu Y. Functional DNA Molecules Enable Selective and Stimuli-Responsive Nanoparticles for Biomedical Applications. Acc Chem Res 2019; 52:2415-2426. [PMID: 31411853 DOI: 10.1021/acs.accounts.9b00167] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nanoparticles (NPs) have enormous potential to improve disease diagnosis and treatment due to their intrinsic electronic, optical, magnetic, mechanical, and physiological properties. To realize their full potential for nanomedicine, NPs must be biocompatible and targetable toward specific biomolecules to ensure selective sensing, imaging, and drug delivery in complex environments such as living cells, tissues, animals, and human bodies. In this Account, we summarize our efforts to impart specific biocompatibility and biorecognition functionality to NPs by developing strategies to integrate inorganic and organic NPs with functional DNA (fDNA), including aptamers, DNAzymes, and aptazymes to create fDNA-NPs. These hybrid NPs take advantage of fDNA's ability to either bind targets or catalyze reactions in the presence of targets selectively and utilize their unique physicochemical properties including small size, low immunogenicity, and ease of synthesis and chemical modification in comparison with other molecules such as antibodies. By integrating inorganic NPs such as gold NPs, quantum dots, and iron oxide nanoparticles with fDNA, we designed stimuli-responsive fDNA-NPs that exhibit target induced assembly and disassembly of NPs, resulting in a variety of colorimetric, fluorescent, and magnetic resonance imaging (MRI)-based sensors for diagnostic of a broad range of analytes. To impart both biocompatibility and selectivity on inorganic NPs for targeted bioimaging, we have demonstrated DNA-mediated surface functionalization, shape-controlled synthesis, and coordinative assembly of such NPs as specific bioprobes. A highlight is provided on the construction of fDNA-based nanoprobes with light-activatable sensing and imaging functions, which provides precise control of recognition properties of fDNA with high spatiotemporal resolution. To explore the potential of organic NPs for biosensing applications, we have developed an enzyme-responsive fDNA-liposome as a universal sensing platform compatible with diverse biological targets as well as different detection methods including fluorescence, MRI, or temperature, making possible point-of-care diagnostics. To expand the application regime of organic NPs, we collaborated with the Zimmerman group to prepare single-chain block copolymer-based NPs and incorporated it with a variety of functions, including monovalent DNA for assembly, tunable surface chemistry for cellular imaging, and coordinative Cu(II) sites for catalyzing intracellular click reactions, demonstrating the potential of using organic NPs to create promising fDNA-NP systems with programmable functionalities. Furthermore, we survey our recent endeavor in integration of cell-specific aptamers with different NPs for targeted drug delivery, showing that introducing stimuli-responsive properties into NPs that target tumor microenvironments would enable safer and more effective therapy for cancers. Finally, current challenges and future perspectives in fDNA-mediated engineering of NPs for biomedical applications are discussed.
Collapse
Affiliation(s)
- Lele Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hang Xing
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jingjing Zhang
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E861. [PMID: 31174348 PMCID: PMC6631916 DOI: 10.3390/nano9060861] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles are popularly used in biological and chemical sensors and their applications owing to their fascinating chemical, optical, and catalytic properties. Particularly, the use of gold nanoparticles is widespread in colorimetric assays because of their simple, cost-effective fabrication, and ease of use. More importantly, the gold nanoparticle sensor response is a visual change in color, which allows easy interpretation of results. Therefore, many studies of gold nanoparticle-based colorimetric methods have been reported, and some review articles published over the past years. Most reviews focus exclusively on a single gold nanoparticle-based colorimetric technique for one analyte of interest. In this review, we focus on the current developments in different colorimetric assay designs for the sensing of various chemical and biological samples. We summarize and classify the sensing strategies and mechanism analyses of gold nanoparticle-based detection. Additionally, typical examples of recently developed gold nanoparticle-based colorimetric methods and their applications in the detection of various analytes are presented and discussed comprehensively.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
| | - Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Tzu-Heng Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Ching-Hsu Yang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Chii-Wann Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
- Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| |
Collapse
|
17
|
Satyavolu NSR, Loh KY, Tan LH, Lu Y. Discovery of and Insights into DNA "Codes" for Tunable Morphologies of Metal Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900975. [PMID: 31074939 PMCID: PMC6663601 DOI: 10.1002/smll.201900975] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/14/2019] [Indexed: 05/28/2023]
Abstract
The discovery and elucidation of genetic codes has profoundly changed not only biology but also many fields of science and engineering. The fundamental building blocks of life comprises of four simple deoxyribonucleotides and yet their combinations serve as the carrier of genetic information that encodes for proteins that can carry out many biological functions due to their unique functionalities. Inspired by nature, the functionalities of DNA molecules have been used as a capping ligand for controlling morphology of nanomaterials, and such a control is sequence dependent, which translates into distinct physical and chemical properties of resulting nanoparticles. Herein, an overview on the use of DNA as engineered codes for controlling the morphology of metal nanoparticles, such as gold, silver, and Pd-Au bimetallic nanoparticles is provided. Fundamental insights into rules governing DNA controlled growth mechanisms are also summarized, based on understanding of the affinity of the DNA nucleobases to various metals, the effect of combination of nucleobases, functional modification of DNA, the secondary structures of DNA, and the properties of the seed employed. The resulting physical and chemical properties of these DNA encoded nanomaterials are also reviewed, while perspectives into the future directions of DNA-mediated nanoparticle synthesis are provided.
Collapse
Affiliation(s)
- Nitya Sai Reddy Satyavolu
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kang Yong Loh
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Li Huey Tan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yi Lu
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
18
|
Malmsten M, Zauscher S. Editorial overview: Colloids and surfaces in biology. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|