1
|
Caselli L, Malmsten M. Combining functionalities-nanoarchitectonics for combatting bacterial infection. Adv Colloid Interface Sci 2025; 337:103385. [PMID: 39721197 DOI: 10.1016/j.cis.2024.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
New antimicrobial and anti-inflammatory therapeutics are needed because of antibiotic resistance development and resulting complications such as inflammation, ultimately leading to septic shock. The antimicrobial effects of various nanoparticles (NPs) are currently attracting intensive research interest. Although various NPs display potent antimicrobial effects against strains resistant to conventional antibiotics, the therapeutic use of such materials is restricted by poor selectivity between bacteria and human cells, leading to adverse side effects. As a result, increasing research efforts during the last few years have focused on targeting NPs against bacteria and other components in the infection micro-environment. Examples of approaches explored include peptide-, protein- and nucleic acid-based NP coatings for bacterial membrane recognition, as well as NP conjugation with enzyme substrates or other moieties that respond to bacterial or other enzymes present in the infection micro-environment. In general, this study aims to add to the literature on the antimicrobial effects of nanomaterials by discussing surface modification strategies for targeting bacterial membranes and membrane components, as well as how such surface modifications can improve the antimicrobial effects of nanomaterials and simultaneously decrease toxicity towards human cells and tissues. In doing so, the biological effects observed are related throughout to the physico-chemical modes of action underlying such effects.
Collapse
Affiliation(s)
| | - Martin Malmsten
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden; Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Gostaviceanu A, Gavrilaş S, Copolovici L, Copolovici DM. Graphene-Oxide Peptide-Containing Materials for Biomedical Applications. Int J Mol Sci 2024; 25:10174. [PMID: 39337659 PMCID: PMC11432502 DOI: 10.3390/ijms251810174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This review explores the application of graphene-based materials (GBMs) in biomedicine, focusing on graphene oxide (GO) and its interactions with peptides and proteins. GO, a versatile nanomaterial with oxygen-containing functional groups, holds significant potential for biomedical applications but faces challenges related to toxicity and environmental impact. Peptides and proteins can be functionalized on GO surfaces through various methods, including non-covalent interactions such as π-π stacking, electrostatic forces, hydrophobic interactions, hydrogen bonding, and van der Waals forces, as well as covalent bonding through reactions involving amide bond formation, esterification, thiol chemistry, and click chemistry. These approaches enhance GO's functionality in several key areas: biosensing for sensitive biomarker detection, theranostic imaging that integrates diagnostics and therapy for real-time treatment monitoring, and targeted cancer therapy where GO can deliver drugs directly to tumor sites while being tracked by imaging techniques like MRI and photoacoustic imaging. Additionally, GO-based scaffolds are advancing tissue engineering and aiding tissues' bone, muscle, and nerve tissue regeneration, while their antimicrobial properties are improving infection-resistant medical devices. Despite its potential, addressing challenges related to stability and scalability is essential to fully harness the benefits of GBMs in healthcare.
Collapse
Affiliation(s)
- Andreea Gostaviceanu
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Biomedical Sciences Doctoral School, University of Oradea, University St., No. 1, 410087 Oradea, Romania
| | - Simona Gavrilaş
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| | - Lucian Copolovici
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| | - Dana Maria Copolovici
- Institute for Interdisciplinary Research, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania
| |
Collapse
|
3
|
Caselli L, Parra-Ortiz E, Micciulla S, Skoda MWA, Häffner SM, Nielsen EM, van der Plas MJA, Malmsten M. Boosting Membrane Interactions and Antimicrobial Effects of Photocatalytic Titanium Dioxide Nanoparticles by Peptide Coating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309496. [PMID: 38402437 DOI: 10.1002/smll.202309496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/30/2024] [Indexed: 02/26/2024]
Abstract
Photocatalytic nanoparticles offer antimicrobial effects under illumination due to the formation of reactive oxygen species (ROS), capable of degrading bacterial membranes. ROS may, however, also degrade human cell membranes and trigger toxicity. Since antimicrobial peptides (AMPs) may display excellent selectivity between human cells and bacteria, these may offer opportunities to effectively "target" nanoparticles to bacterial membranes for increased selectivity. Investigating this, photocatalytic TiO2 nanoparticles (NPs) are coated with the AMP LL-37, and ROS generation is found by C11-BODIPY to be essentially unaffected after AMP coating. Furthermore, peptide-coated TiO2 NPs retain their positive ζ-potential also after 1-2 h of UV illumination, showing peptide degradation to be sufficiently limited to allow peptide-mediated targeting. In line with this, quartz crystal microbalance measurements show peptide coating to promote membrane binding of TiO2 NPs, particularly so for bacteria-like anionic and cholesterol-void membranes. As a result, membrane degradation during illumination is strongly promoted for such membranes, but not so for mammalian-like membranes. The mechanisms of these effects are elucidated by neutron reflectometry. Analogously, LL-37 coating promoted membrane rupture by TiO2 NPs for Gram-negative and Gram-positive bacteria, but not for human monocytes. These findings demonstrate that AMP coating may selectively boost the antimicrobial effects of photocatalytic NPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Department of Pharmacy, University of Copenhagen, Copenhagen, DK-2100, Denmark
- Department of Physical Chemistry 1, Lund University, Lund, SE-22100, Sweden
| | - Elisa Parra-Ortiz
- Department of Pharmacy, University of Copenhagen, Copenhagen, DK-2100, Denmark
- Novonesis, Biologiens Vej 2, Lyngby, DK-2800 Kgs, Denmark
| | - Samantha Micciulla
- Institut Laue-Langevin, CS 20156, Grenoble Cedex 9, 38042, France
- Laboratoire Interdisciplinaire de Physique (LIPhy), Saint Martin d'Hères, 38402, France
- Centre National de la Recherche Scientifique (CNRS), Saint-Martin-d'Hères, Auvergne-Rhône-Alpes, France
| | - Maximilian W A Skoda
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, OX11 0QX, UK
| | - Sara Malekkhaiat Häffner
- Department of Pharmacy, University of Copenhagen, Copenhagen, DK-2100, Denmark
- RISE Research Institutes of Sweden, Malvinas väg 3, Stockholm, 114 86, Sweden
| | | | | | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, Copenhagen, DK-2100, Denmark
- Department of Physical Chemistry 1, Lund University, Lund, SE-22100, Sweden
| |
Collapse
|
4
|
Caselli L, Köhler S, Schirone D, Humphreys B, Malmsten M. Conformational control of antimicrobial peptide amphiphilicity: consequences for boosting membrane interactions and antimicrobial effects of photocatalytic TiO 2 nanoparticles. Phys Chem Chem Phys 2024; 26:16529-16539. [PMID: 38828872 DOI: 10.1039/d4cp01724b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This study reports on the effects of conformationally controlled amphiphilicity of antimicrobial peptides (AMPs) on their ability to coat TiO2 nanoparticles (NPs) and boost the photocatalytic antimicrobial effects of such NPs. For this, TiO2 NPs were combined with AMP EFK17 (EFKRIVQRIKDFLRNLV), displaying a disordered conformation in aqueous solution but helix formation on interaction with bacterial membranes. The membrane-bound helix is amphiphilic, with all polar and charged amino acid residues located at one side and all non-polar and hydrophobic residues on the other. In contrast, the d-enantiomer variant EFK17-d (E(dF)KR(dI)VQR(dI)KD(dF)LRNLV) is unable to form the amphiphilic helix on bacterial membrane interaction, whereas the W-residues in EFK17-W (EWKRWVQRWKDFLRNLV) boost hydrophobic interactions of the amphiphilic helix. Circular dichroism results showed the effects displayed for the free peptide, to also be present for peptide-coated TiO2 NPs, causing peptide binding to decrease in the order EFK17-W > EFK17 > EFK17-d. Notably, the formation of reactive oxygen species (ROS) by the TiO2 NPs was essentially unaffected by the presence of peptide coating, for all the peptides investigated, and the coatings stabilized over hours of UV exposure. Photocatalytic membrane degradation from TiO2 NPs coated with EFK17-W and EFK17 was promoted for bacteria-like model bilayers containing anionic phosphatidylglycerol but suppressed in mammalian-like bilayers formed by zwitterionic phosphatidylcholine and cholesterol. Structural aspects of these effects were further investigated by neutron reflectometry with clear variations observed between the bacteria- and mammalian-like model bilayers for the three peptides. Mirroring these results in bacteria-like model membranes, combining TiO2 NPs with EFK17-W and EFK17, but not with non-adsorbing EFK17-d, resulted in boosted antimicrobial effects of the resulting cationic composite NPs already in darkness, effects enhanced further on UV illumination.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Department of Physical Chemistry 1, Lund University, SE-22100 Lund, Sweden.
| | - Sebastian Köhler
- LINXS Institute of Advanced Neutron and X-ray Science, Scheelevagen 19, 22370 Lund, Sweden
| | - Davide Schirone
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 20506 Malmö, Sweden
| | - Ben Humphreys
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - Martin Malmsten
- Department of Physical Chemistry 1, Lund University, SE-22100 Lund, Sweden.
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Lin T, Lai Y, Jiang G, Chen X, Hou L, Zhao S. pH-Triggered visual detection of Escherichia coli based on the co-assembly of bacitracin and thymolphthalein. Chem Commun (Camb) 2023; 59:12986-12989. [PMID: 37791572 DOI: 10.1039/d3cc04017h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A novel probe for bacteria was simply synthesized through the solvent-induced co-assembly of bacitracin (AMP) and thymolphthalein (TP) without complicated modification. Combining with aptamer-Fe3O4, AMP/TP nanoparticles were used for the colorimetric detection of Escherichia coli with good sensitivity through the NaOH-triggered blue color and a smartphone-based App.
Collapse
Affiliation(s)
- Tianran Lin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Yunping Lai
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Gaoyan Jiang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Xinlian Chen
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Li Hou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Shulin Zhao
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
6
|
Xie M, Gao M, Yun Y, Malmsten M, Rotello VM, Zboril R, Akhavan O, Kraskouski A, Amalraj J, Cai X, Lu J, Zheng H, Li R. Antibacterial Nanomaterials: Mechanisms, Impacts on Antimicrobial Resistance and Design Principles. Angew Chem Int Ed Engl 2023; 62:e202217345. [PMID: 36718001 DOI: 10.1002/anie.202217345] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to the environment and health. AMR rapidly invalidates conventional antibiotics, and antimicrobial nanomaterials have been increasingly explored as alternatives. Interestingly, several antimicrobial nanomaterials show AMR-independent antimicrobial effects without detectable new resistance and have therefore been suggested to prevent AMR evolution. In contrast, some are found to trigger the evolution of AMR. Given these seemingly conflicting findings, a timely discussion of the two faces of antimicrobial nanomaterials is urgently needed. This review systematically compares the killing mechanisms and structure-activity relationships of antibiotics and antimicrobial nanomaterials. We then focus on nano-microbe interactions to elucidate the impacts of molecular initiating events on AMR evolution. Finally, we provide an outlook on future antimicrobial nanomaterials and propose design principles for the prevention of AMR evolution.
Collapse
Affiliation(s)
- Maomao Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yang Yun
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.,Department of Physical Chemistry 1, University of Lund, 22100, Lund, Sweden
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic.,Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Omid Akhavan
- Condensed Matter National Laboratory, P.O. Box 1956838861, Tehran, Iran
| | - Aliaksandr Kraskouski
- Department of Physicochemistry of Thin Film Materials, Institute of Chemistry of New Materials of NAS of Belarus, 36 F. Skaryna Str., 220084, Minsk, Belarus
| | - John Amalraj
- Laboratory of Materials Science, Instituto de Química de Recursos Naturales, Universidad de Talca, P.O. Box 747, Talca, Chile
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, National Center for International Research on Intelligent Nano-Materials and Detection Technology in Environmental Protection, Soochow University, Suzhou, 215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
7
|
Carucci C, Sechi G, Piludu M, Monduzzi M, Salis A. A drug delivery system based on poly-L-lysine grafted mesoporous silica nanoparticles for quercetin release. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Veni, Vidi, Vici: Immobilized Peptide-Based Conjugates as Tools for Capture, Analysis, and Transformation. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Analysis of peptide biomarkers of pathological states of the organism is often a serious challenge, due to a very complex composition of the cell and insufficient sensitivity of the current analytical methods (including mass spectrometry). One of the possible ways to overcome this problem is sample enrichment by capturing the selected components using a specific solid support. Another option is increasing the detectability of the desired compound by its selective tagging. Appropriately modified and immobilized peptides can be used for these purposes. In addition, they find application in studying the specificity and activity of proteolytic enzymes. Immobilized heterocyclic peptide conjugates may serve as metal ligands, to form complexes used as catalysts or analytical markers. In this review, we describe various applications of immobilized peptides, including selective capturing of cysteine-containing peptides, tagging of the carbonyl compounds to increase the sensitivity of their detection, enrichment of biological samples in deoxyfructosylated peptides, and fishing out of tyrosine–containing peptides by the formation of azo bond. Moreover, the use of the one-bead-one-compound peptide library for the analysis of substrate specificity and activity of caspases is described. Furthermore, the evolution of immobilization from the solid support used in peptide synthesis to nanocarriers is presented. Taken together, the examples presented here demonstrate immobilized peptides as a multifunctional tool, which can be successfully used to solve multiple analytical problems.
Collapse
|
9
|
Parra-Ortiz E, Malmsten M. Photocatalytic nanoparticles - From membrane interactions to antimicrobial and antiviral effects. Adv Colloid Interface Sci 2022; 299:102526. [PMID: 34610862 DOI: 10.1016/j.cis.2021.102526] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
As a result of increasing resistance among pathogens against antibiotics and anti-viral therapeutics, nanomaterials are attracting current interest as antimicrobial agents. Such materials offer triggered functionalities to combat challenging infections, based on either direct membrane action, effects of released ions, thermal shock induced by either light or magnetic fields, or oxidative photocatalysis. In the present overview, we focus on photocatalytic antimicrobial effects, in which light exposure triggers generation of reactive oxygen species. These, in turn, cause oxidative damage to key components in bacteria and viruses, including lipid membranes, lipopolysaccharides, proteins, and DNA/RNA. While an increasing body of studies demonstrate that potent antimicrobial effects can be achieved by photocatalytic nanomaterials, understanding of the mechanistic foundation underlying such effects is still in its infancy. Addressing this, we here provide an overview of the current understanding of the interaction of photocatalytic nanomaterials with pathogen membranes and membrane components, and how this translates into antibacterial and antiviral effects.
Collapse
Affiliation(s)
- Elisa Parra-Ortiz
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| |
Collapse
|
10
|
Kotrange H, Najda A, Bains A, Gruszecki R, Chawla P, Tosif MM. Metal and Metal Oxide Nanoparticle as a Novel Antibiotic Carrier for the Direct Delivery of Antibiotics. Int J Mol Sci 2021; 22:ijms22179596. [PMID: 34502504 PMCID: PMC8431128 DOI: 10.3390/ijms22179596] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
In addition to the benefits, increasing the constant need for antibiotics has resulted in the development of antibiotic bacterial resistance over time. Antibiotic tolerance mainly evolves in these bacteria through efflux pumps and biofilms. Leading to its modern and profitable uses, emerging nanotechnology is a significant field of research that is considered as the most important scientific breakthrough in recent years. Metal nanoparticles as nanocarriers are currently attracting a lot of interest from scientists, because of their wide range of applications and higher compatibility with bioactive components. As a consequence of their ability to inhibit the growth of bacteria, nanoparticles have been shown to have significant antibacterial, antifungal, antiviral, and antiparasitic efficacy in the battle against antibiotic resistance in microorganisms. As a result, this study covers bacterial tolerance to antibiotics, the antibacterial properties of various metal nanoparticles, their mechanisms, and the use of various metal and metal oxide nanoparticles as novel antibiotic carriers for direct antibiotic delivery.
Collapse
Affiliation(s)
- Harshada Kotrange
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar 144411, Punjab, India; (H.K.); (M.M.T.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Doświadczalna Street, 20-280 Lublin, Poland;
- Correspondence: (A.N.); (P.C.)
| | - Aarti Bains
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, Punjab, India;
| | - Robert Gruszecki
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Doświadczalna Street, 20-280 Lublin, Poland;
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar 144411, Punjab, India; (H.K.); (M.M.T.)
- Correspondence: (A.N.); (P.C.)
| | - Mansuri M. Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar 144411, Punjab, India; (H.K.); (M.M.T.)
| |
Collapse
|
11
|
Roque-Borda CA, Pereira LP, Guastalli EAL, Soares NM, Mac-Lean PAB, Salgado DD, Meneguin AB, Chorilli M, Vicente EF. HPMCP-Coated Microcapsules Containing the Ctx(Ile 21)-Ha Antimicrobial Peptide Reduce the Mortality Rate Caused by Resistant Salmonella Enteritidis in Laying Hens. Antibiotics (Basel) 2021; 10:616. [PMID: 34064051 PMCID: PMC8224044 DOI: 10.3390/antibiotics10060616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The constant use of synthetic antibiotics as growth promoters can cause bacterial resistance in chicks. Consequently, the use of these drugs has been restricted in different countries. In recent years, antimicrobial peptides have gained relevance due to their minimal capacity for bacterial resistance and does not generate toxic residues that harm the environment and human health. In this study, a Ctx(Ile21)-Ha antimicrobial peptide was employed, due to its previously reported great antimicrobial potential, to evaluate its application effects in laying chicks challenged with Salmonella Enteritidis, resistant to nalidixic acid and spectinomycin. For this, Ctx(Ile21)-Ha was synthesized, microencapsulated and coated with hypromellose phthalate (HPMCP) to be released in the intestine. Two different doses (20 and 40 mg of Ctx(Ile21)-Ha per kg of isoproteic and isoenergetic poultry feed) were included in the chick's food and administered for 28 days. Antimicrobial activity, effect and response as treatment were evaluated. Statistical results were analyzed in detail and indicate that the formulated Ctx(Ile21)-Ha peptide had a positive and significant effect in relation to the reduction of chick mortality in the first days of life. However, there was moderate evidence (p = 0.07), not considered statistically significant, in the differences in laying chick weight between the control and microencapsulation treatment groups as a function of time. Therefore, the microencapsulated Ctx(Ile21)-Ha antimicrobial peptide can be an interesting and promising option in the substitution of conventional antibiotics.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo 14884-900, Brazil;
| | - Larissa Pires Pereira
- School of Sciences and Engineering, São Paulo State University (Unesp), Tupã, São Paulo 17602-496, Brazil; (L.P.P.); (P.A.B.M.-L.); (D.D.S.)
| | | | - Nilce Maria Soares
- Poultry Health Specialized Laboratory, Biological Institute, Bastos, São Paulo 17690-000, Brazil; (E.A.L.G.); (N.M.S.)
| | - Priscilla Ayleen Bustos Mac-Lean
- School of Sciences and Engineering, São Paulo State University (Unesp), Tupã, São Paulo 17602-496, Brazil; (L.P.P.); (P.A.B.M.-L.); (D.D.S.)
| | - Douglas D’Alessandro Salgado
- School of Sciences and Engineering, São Paulo State University (Unesp), Tupã, São Paulo 17602-496, Brazil; (L.P.P.); (P.A.B.M.-L.); (D.D.S.)
| | - Andréia Bagliotti Meneguin
- School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo 14801-902, Brazil; (A.B.M.); (M.C.)
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo 14801-902, Brazil; (A.B.M.); (M.C.)
| | - Eduardo Festozo Vicente
- School of Sciences and Engineering, São Paulo State University (Unesp), Tupã, São Paulo 17602-496, Brazil; (L.P.P.); (P.A.B.M.-L.); (D.D.S.)
| |
Collapse
|
12
|
Roque-Borda CA, Silva HRL, Crusca Junior E, Serafim JA, Meneguin AB, Chorilli M, Macedo WC, Teixeira SR, Guastalli EAL, Soares NM, Blair JMA, Pikramenou Z, Vicente EF. Alginate-based microparticles coated with HPMCP/AS cellulose-derivatives enable the Ctx(Ile 21)-Ha antimicrobial peptide application as a feed additive. Int J Biol Macromol 2021; 183:1236-1247. [PMID: 33965488 DOI: 10.1016/j.ijbiomac.2021.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 12/20/2022]
Abstract
Microencapsulation is a potential biotechnological tool, which can overcome antimicrobial peptides (AMP) instabilities and reduce toxic side effects. Thus, this study evaluates the antibacterial activities of the Ctx(Ile21)-Ha AMP against multidrug-resistant (MDR) and non-resistant bacteria and develop and characterize peptide-loaded microparticles coated with the enteric polymers hydroxypropylmethylcellulose acetate succinate (HPMCAS) and hydroxypropylmethylcellulose phthalate (HPMCP). Ctx(Ile21)-Ha was obtained by solid phase peptide synthesis (SPPS) method, purified and characterized by HPLC and Mass Spectrometry. The peptide exhibited potent antibiotic activities against Salmonella enteritidis, Salmonella typhimurium, Pseudomonas aeruginosa (MDR), Acinetobacter baumannii (MDR), and Staphylococcus aureus (MDR). Ctx(Ile21)-Ha microencapsulation was performed by ionic gelation with high efficiency, maintaining the physical-chemical stability. Ctx(Ile21)-Ha coated-microparticles were characterized by DSC, TGA, FTIR-Raman, XRD and SEM. Hemolytic activity assay demonstrated that hemolysis was decreased up to 95% compared to single molecule. In addition, in vitro release control profile simulating different portions of gastrointestinal tract was performed and showed the microcapsules' ability to protect the peptide and release it in the intestine, aiming pathogen's location, mainly by Salmonella sp. Therefore, use of microencapsulated Ctx(Ile21)-Ha can be allowed as an antimicrobial controller in monogastric animal production as an oral feed additive (antimicrobial controller), being a valuable option for molecules with low therapeutic indexes or high hemolytic rates.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo CEP 14884-900, Brazil
| | - Hanyeny Raiely Leite Silva
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo CEP 14884-900, Brazil
| | - Edson Crusca Junior
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo CEP 14800-900, Brazil
| | - Jéssica Aparecida Serafim
- São Paulo State University (Unesp), School of Sciences and Engineering, Tupã, São Paulo CEP 17602-496, Brazil
| | - Andréia Bagliotti Meneguin
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, São Paulo CEP 14801-902, Brazil
| | - Marlus Chorilli
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, São Paulo CEP 14801-902, Brazil
| | - Wagner Costa Macedo
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, São Paulo CEP 19060-900, Brazil
| | - Silvio Rainho Teixeira
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, São Paulo CEP 19060-900, Brazil
| | | | - Nilce Maria Soares
- Poultry Health Specialized Laboratory, Biological Institute, Bastos, São Paulo CEP 17690000, Brazil
| | - Jessica M A Blair
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Zoe Pikramenou
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Eduardo Festozo Vicente
- São Paulo State University (Unesp), School of Sciences and Engineering, Tupã, São Paulo CEP 17602-496, Brazil.
| |
Collapse
|
13
|
Häffner SM, Parra-Ortiz E, Browning KL, Jørgensen E, Skoda MWA, Montis C, Li X, Berti D, Zhao D, Malmsten M. Membrane Interactions of Virus-like Mesoporous Silica Nanoparticles. ACS NANO 2021; 15:6787-6800. [PMID: 33724786 DOI: 10.1021/acsnano.0c10378] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the present study, we investigated lipid membrane interactions of silica nanoparticles as carriers for the antimicrobial peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES). In doing so, smooth mesoporous nanoparticles were compared to virus-like mesoporous nanoparticles, characterized by a "spiky" external surface, as well as to nonporous silica nanoparticles. For this, we employed a combination of neutron reflectometry, ellipsometry, dynamic light scattering, and ζ-potential measurements for studies of bacteria-mimicking bilayers formed by palmitoyloleoylphosphatidylcholine/palmitoyloleoylphosphatidylglycerol. The results show that nanoparticle topography strongly influences membrane binding and destabilization. We found that virus-like particles are able to destabilize such lipid membranes, whereas the corresponding smooth silica nanoparticles are not. This effect of particle spikes becomes further accentuated after loading of such particles with LL-37. Thus, peptide-loaded virus-like nanoparticles displayed more pronounced membrane disruption than either peptide-loaded smooth nanoparticles or free LL-37. The structural basis of this was clarified by neutron reflectometry, demonstrating that the virus-like nanoparticles induce trans-membrane defects and promote incorporation of LL-37 throughout both bilayer leaflets. The relevance of such effects of particle spikes for bacterial membrane rupture was further demonstrated by confocal microscopy and live/dead assays on Escherichia coli bacteria. Taken together, these findings demonstrate that topography influences the interaction of nanoparticles with bacteria-mimicking lipid bilayers, both in the absence and presence of antimicrobial peptides, as well as with bacteria. The results also identify virus-like mesoporous nanoparticles as being of interest in the design of nanoparticles as delivery systems for antimicrobial peptides.
Collapse
Affiliation(s)
| | - Elisa Parra-Ortiz
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Kathryn L Browning
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Elin Jørgensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Maximilian W A Skoda
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11 0QX, United Kingdom
| | - Costanza Montis
- CSGI and Department of Chemistry "Ugo Schiff″, University of Florence, IT-50019 Sesto Fiorentino, Italy
| | - Xiaomin Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, People's Republic of China
| | - Debora Berti
- CSGI and Department of Chemistry "Ugo Schiff″, University of Florence, IT-50019 Sesto Fiorentino, Italy
| | - Dongyuan Zhao
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, People's Republic of China
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| |
Collapse
|