1
|
Matamoros-Recio A, Alonso-Rueda E, Borrego E, Caballero A, Pérez PJ, Martín-Santamaría S. Molecular Dynamic Simulations of Aqueous Micellar Organometallic Catalysis: Methane Functionalization as a Case Study. Angew Chem Int Ed Engl 2024; 63:e202314773. [PMID: 38055325 DOI: 10.1002/anie.202314773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2023]
Abstract
Molecular Dynamics (MD) simulations constitute a powerful tool that provides a 3D perspective of the dynamical behavior of chemical systems. Herein the first MD study of the dynamics of a catalytic organometallic system, in micellar media, is presented. The challenging methane catalytic functionalization into ethyl propionate through a silver-catalyzed process has been targeted as the case study. The intimate nature of the micelles formed with the surfactants sodium dodecylsulfate (SDS) and potassium perfluorooctane sulfonate (PFOS) has been ascertained, as well as the relative distribution of the main actors in this transformation, namely methane, the diazo reagent and the silver catalyst, the latter in two different forms: the initial compound and a silver-carbene intermediate. Catalyst deactivation occurs with halide containing surfactants dodecyltrimethylammonium chloride (DTAC) and Triton X-100. Computed simulations allow explaining the experimental results, indicating that micelles behave differently regarding the degree of accumulation and the local distribution of the reactants and their effect in the molecular collisions leading to net reaction.
Collapse
Affiliation(s)
- Alejandra Matamoros-Recio
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040, Madrid, Spain
| | - Elia Alonso-Rueda
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040, Madrid, Spain
| | - Elena Borrego
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Ana Caballero
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Pedro J Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Sonsoles Martín-Santamaría
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040, Madrid, Spain
| |
Collapse
|
2
|
Lin Z, Li H, Zhang J, Pei X, Chen Z, Cui Z, Song B. Toroidal micelles formed in viscoelastic aqueous solutions of a double-tailed surfactant with two quaternary ammonium head groups. SOFT MATTER 2024; 20:804-812. [PMID: 38168697 DOI: 10.1039/d3sm01132a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Innovation in surfactant structures is an effective way to prepare new soft materials with novel applications. In this study, we synthesized a double-tailed surfactant containing two quaternary ammonium head groups (Di-C12-N2). The Di-C12-N2 solution behavior was investigated by surface tension, fluorescence, rheology, and cryo-TEM methods. Although Di-C12-N2 contained a large double-tailed hydrophobic group, the solubility of Di-C12-N2 was ∼90 mmol L-1 at 25 °C with a Krafft temperature of ∼1 °C. The increase in Di-C12-N2 concentration in the solutions led to the formation of various aggregates, including spherical micelles, worm-like micelles, multi-layered vesicles, and a rare type of small toroidal micelles. The two quaternary ammonium head groups in Di-C12-N2 led to strong electrostatic interactions between molecules, which was critical for the formation of toroidal micelles. Moreover, with an added NaCl concentration of 40 mmol L-1, the viscosity of the 5 mmol L-1Di-C12-N2 solution increased by ∼1000 times compared to the pure 5 mmol L-1Di-C12-N2 solution, revealing the high sensitivity of the unique head groups to ionic strength. This study enriches the research on the self-assembly principles of surfactants and brings new potential applications for new soft materials.
Collapse
Affiliation(s)
- Zhengrong Lin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Hongye Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Jinpeng Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Zhao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Binglei Song
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| |
Collapse
|
3
|
O'Connor JPD, Cook JL, Stott IP, Masters AJ, Avendaño C. Local density dependent potentials for an underlying van der Waals equation of state: A simulation and density functional theory analysis. J Chem Phys 2023; 159:194109. [PMID: 37982487 DOI: 10.1063/5.0171331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023] Open
Abstract
There is an ever increasing use of local density dependent potentials in the mesoscale modeling of complex fluids. Questions remain, though, about the dependence of the thermodynamic and structural properties of such systems on the cutoff distance used to calculate these local densities. These questions are particularly acute when it comes to the stability and structure of the vapor/liquid interface. In this article, we consider local density dependent potentials derived from an underlying van der Waals equation of state. We use simulation and density functional theory to examine how the bulk thermodynamic and interfacial properties vary with the cutoff distance, rc, used to calculate the local densities. We show quantitatively how the simulation results for bulk thermodynamic properties and vapor-liquid equilibrium approach the van der Waals limit as rc increases and demonstrate a scaling law for the radial distribution function in the large rc limit. We show that the vapor-liquid interface is stable with a well-defined surface tension and that the interfacial density profile is oscillatory, except for temperatures close to critical. Finally, we show that in the large rc limit, the interfacial tension is proportional to rc and, therefore, unlike the bulk thermodynamic properties, does not approach a constant value as rc increases. We believe that these results give new insights into the properties of local density dependent potentials, in particular their unusual interfacial behavior, which is relevant for modeling complex fluids in soft matter.
Collapse
Affiliation(s)
- James P D O'Connor
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Rd., Manchester M13 9PL, United Kingdom
| | - Joanne L Cook
- Unilever Research & Development Port Sunlight, Bebington CH63 3JW, United Kingdom
| | - Ian P Stott
- Unilever Research & Development Port Sunlight, Bebington CH63 3JW, United Kingdom
| | - Andrew J Masters
- Department of Chemical Engineering, The University of Manchester, Oxford Rd., Manchester M13 9PL, United Kingdom
| | - Carlos Avendaño
- Department of Chemical Engineering, The University of Manchester, Oxford Rd., Manchester M13 9PL, United Kingdom
| |
Collapse
|
4
|
Bjørnestad VA, Li X, Tribet C, Lund R, Cascella M. Micelle kinetics of photoswitchable surfactants: Self-assembly pathways and relaxation mechanisms. J Colloid Interface Sci 2023; 646:883-899. [PMID: 37235934 DOI: 10.1016/j.jcis.2023.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
HYPOTHESIS A key question in the kinetics of surfactant self-assembly is whether exchange of unimers or fusion/fission of entire micelles is the dominant pathway. In this study, an isomerizable surfactant is used to explore fundamental out-of-equilibrium kinetics and mechanisms for growth and dissolution of micelles. EXPERIMENTS The kinetics of cationic surfactant 4-butyl-4'-(3-trimethylammoniumpropoxy)-phenylazobenzene was studied using molecular dynamics simulations. The fusion and exchange processes were investigated using umbrella sampling. Equilibrium states were validated by comparison with small-angle X-ray scattering data. The photo-isomerization event was simulated by modifying the torsion potential of the photo-responsive group to emulate the trans-to-cis transition. FINDINGS Micelle growth is dominated by unimer exchange processes, whereas, depending on the conditions, dissolution can occur both through fission and unimer expulsion. Fusion barriers increase steeply with the aggregation number making this an unlikely pathway to equilibrium for micelles of sizes that fit with the experimental data. The barriers for unimer expulsion remain constant and are much lower for unimer insertion, making exchange more likely at high aggregation. When simulating photo-conversion events, both fission and a large degree of unimer expulsion can occur depending on the extent of the out-of-equilibrium stress that is put on the system.
Collapse
Affiliation(s)
- Victoria Ariel Bjørnestad
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Sem Sælands vei 26, Oslo, 0371, Norway
| | - Xinmeng Li
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Sem Sælands vei 26, Oslo, 0371, Norway
| | - Christophe Tribet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Reidar Lund
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Sem Sælands vei 26, Oslo, 0371, Norway.
| | - Michele Cascella
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Sem Sælands vei 26, Oslo, 0371, Norway.
| |
Collapse
|
5
|
Shen K, Nguyen M, Sherck N, Yoo B, Köhler S, Speros J, Delaney KT, Shell MS, Fredrickson GH. Predicting surfactant phase behavior with a molecularly informed field theory. J Colloid Interface Sci 2023; 638:84-98. [PMID: 36736121 DOI: 10.1016/j.jcis.2023.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS The computational study of surfactants and self-assembly is challenging because 1) models need to reflect chemistry-specific interactions, and 2) self-assembled structures are difficult to equilibrate with conventional molecular dynamics. We propose to overcome these challenges with a multiscale simulation approach where relative entropy minimization transfers chemically-detailed information from all-atom (AA) simulations to coarse-grained (CG) models that can be simulated using field-theoretic methods. Field-theoretic simulations are not limited by intrinsic physical time scales like diffusion and allow for rigorous equilibration via free energy minimization. This approach should enable the study of properties that are difficult to obtain by particle-based simulations. SIMULATION WORK We apply this workflow to sodium dodecylsulfate. To ensure chemical fidelity we present an AA force field calibrated against interfacial tension experiments. We generate CG models from AA simulation trajectories and show that particle-based and field-theoretic simulations of the CG model reproduce AA simulations and experimental measurements. FINDINGS The workflow captures the complex balance of interactions in a multicomponent system ultimately described by an atomistic model. The resulting CG models can study complex 3D phases like double or alternating gyroids, and reproduce salt effects on properties like aggregation number and shape transitions.
Collapse
Affiliation(s)
- Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| | - My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - Brian Yoo
- BASF Corporation, Tarrytown 10591, NY, United States
| | | | - Joshua Speros
- California Research Alliance (CARA) by BASF, Berkeley 94720, CA, United States
| | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| | - Glenn H Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Department of Materials Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| |
Collapse
|
6
|
Luz AM, Barbosa G, Manske C, Tavares FW. Tween-80 on Water/Oil Interface: Structure and Interfacial Tension by Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3255-3265. [PMID: 36825990 DOI: 10.1021/acs.langmuir.2c03001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Surfactants are used in many fields of the chemical industry in a wide range of applications. Generally, surfactants on water/oil interfaces reduce interfacial tension, enabling the formation of emulsions or providing greater stability to the emulsion formed. Although molecular dynamics has been extensively used and has achieved remarkable success in describing thermodynamic and molecular properties of systems with surface-active compounds, the traditional molecular simulation force fields considerably constrain the system size and the time scale of simulations. Here, we propose a coarse-grained model of polysorbate 80, a nonionic surfactant commercially known as Tween-80. Based on the proposed coarse-grained model, we evaluate the influence of the more internal ethylene oxide chain on the properties of the water/Tween-80/decane system. We verify with the simulation results that the model can reproduce the expected decrease in interfacial tension as the surfactant quantity increases in the simulations. Furthermore, we observe changes in the surfactant orientation as their quantity in the interface increases, indicating a preferential orientation for these molecules in the adsorption layer. We also assessed the partition coefficient of the surfactant between the two bulk phases by performing free energy calculations, which showed a higher affinity of Tween-80 surfactants with the water phase.
Collapse
Affiliation(s)
- Arthur Mussi Luz
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
| | - Gabriel Barbosa
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Carla Manske
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
| | - Frederico Wanderley Tavares
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
- Programa de Engenharia Química - PEQ/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
| |
Collapse
|
7
|
Farafonov VS, Lebed AV, Nerukh DA, Mchedlov-Petrossyan NO. Estimation of Nanoparticle's Surface Electrostatic Potential in Solution Using Acid-Base Molecular Probes II: Insight from Atomistic Simulations of Micelles. J Phys Chem B 2023; 127:1031-1038. [PMID: 36657036 DOI: 10.1021/acs.jpcb.2c07028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Exploiting acid-base indicators as molecular probes is one of the most popular methods for determining the surface electrostatic potential Ψ in hydrophilic colloids like micellar surfactant solutions and related systems. Specifically, the indicator's apparent acidity constant index is measured in the colloid solution of interest and, as a rule, in a nonionic surfactant solution; the difference between the two is proportional to Ψ. Despite the widespread use of this approach, a major problem remains unresolved, namely, the dissimilarity of Ψ values obtained with different indicators for the same system. The common point of view recognizes the effect of several factors (the choice of the nonionic surfactant, the probe's localization, and the degree of hydration of micellar pseudophase) but does not allow to quantitatively assess their impact and decide which indicator reports the most correct Ψ value. Here, based on the ability to predict the reported Ψ values in silico, we examined the role of these factors using molecular dynamics simulations for five probes and two surfactants. The probe's hydration in the Stern layer was found responsible for approximately half of the dissimilarity range. The probe's localization is found important but hard to quantify because of the irregular structure of the Stern layer. The most accurate indicators among the examined set were identified. Supplementing experiments on measuring Ψ with molecular dynamics simulation is proposed as a way of improving the efficacy of the indicator method: the simulations can guide the choice of the most suitable probe and nonionic surfactant for the given nanoparticles.
Collapse
Affiliation(s)
- Vladimir S Farafonov
- Department of Physical Chemistry, V. N. Karazin National University, Kharkiv61022, Ukraine.,Department of Mathematics, Aston University, BirminghamB4 7ET, U.K
| | - Alexander V Lebed
- Department of Physical Chemistry, V. N. Karazin National University, Kharkiv61022, Ukraine
| | - Dmitry A Nerukh
- Department of Mathematics, Aston University, BirminghamB4 7ET, U.K
| | | |
Collapse
|
8
|
Ginzburg VV. Mesoscale Modeling of Micellization and Adsorption of Surfactants and Surfactant-Like Polymers in Solution: Challenges and Opportunities. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Valeriy V. Ginzburg
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, Room 2100, East Lansing, Michigan 48824-1226, United States
| |
Collapse
|
9
|
Seddon D, Müller EA, Cabral JT. Machine learning hybrid approach for the prediction of surface tension profiles of hydrocarbon surfactants in aqueous solution. J Colloid Interface Sci 2022; 625:328-339. [PMID: 35717847 DOI: 10.1016/j.jcis.2022.06.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Predicting the surface tension (SFT)-log(c) profiles of hydrocarbon surfactants in aqueous solution is computationally non-trivial, and empirically challenging due to the diverse and complex architecture and interactions of surfactant molecules. Machine learning (ML), combining a data-based and knowledge-based approach, can provide a powerful means to relate molecular descriptors to SFT profiles. EXPERIMENTS A dataset of SFT for 154 model hydrocarbon surfactants at 20-30 °C is fitted to the Szyszkowski equation to extract three characteristic parameters (Γmax,KL and critical micelle concentration (CMC)) which are correlated to a series of 2D and 3D molecular descriptors. Key (∼10) descriptors were selected by removing co-correlation, and employing a gradient-boosted regressor model to rank feature importance and carry out recursive feature elimination (RFE). The hyperparameters of each target-variable model were fine-tuned using a randomised cross-validated grid search, to improve predictive ability and reduce overfitting. FINDINGS The ML models correlate favourably with test experimental data, with R2= 0.69-0.87, and the merits and limitations of the approach are discussed based on 'unseen' hydrocarbon surfactants. The incorporation of a knowledge-based framework provides an appropriate smoothing of the experimental data which simplifies the data-driven approach and enhances its generality. Open-source codes and a brief tutorial are provided.
Collapse
Affiliation(s)
- Dale Seddon
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Erich A Müller
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
| | - João T Cabral
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
10
|
Lavagnini E, Cook JL, Warren PB, Hunter CA. Systematic Parameterization of Ion-Surfactant Interactions in Dissipative Particle Dynamics Using Setschenow Coefficients. J Phys Chem B 2022; 126:2308-2315. [PMID: 35290050 PMCID: PMC9098171 DOI: 10.1021/acs.jpcb.2c00101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Dissipative
particle dynamics (DPD) simulations of nonionic surfactants
with an added salt show that the Setschenow relationship is reproduced;
that is, the critical micelle concentration is log-linearly dependent
on the added salt concentration. The simulated Setschenow coefficients
depend on the DPD bead–bead repulsion amplitudes, and matching
to the experimentally determined values provides a systematic method
to parameterize the interactions between salt ion beads and surfactant
beads. The optimized ion-specific interaction parameters appear to
be transferrable and follow the same trends as the empirical Hofmeister
series.
Collapse
Affiliation(s)
- Ennio Lavagnini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Joanne L Cook
- Unilever R&D Port Sunlight, Quarry Road East, Bebington CH63 3JW, U.K
| | - Patrick B Warren
- Unilever R&D Port Sunlight, Quarry Road East, Bebington CH63 3JW, U.K.,STFC Hartree Centre, Sci-Tech Daresbury, Warrington WA4 4AD, U.K
| | - Christopher A Hunter
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
11
|
The effect of head group of surfactant on the adsorption of methyl red onto modified coffee residues. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
The transition of rodlike micelles to wormlike micelles of an ionic liquid surfactant induced by different additives and the template-directed synthesis of calcium oxalate monohydrate to mimic the formation of urinary stones. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Lee MT. Micellization of Rhamnolipid Biosurfactants and Their Applications in Oil Recovery: Insights from Mesoscale Simulations. J Phys Chem B 2021; 125:9895-9909. [PMID: 34423979 DOI: 10.1021/acs.jpcb.1c05802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dissipative particle dynamics (DPD) mesoscopic method is used to investigate the self-assembly of rhamnolipid congeners and their aggregation behaviors with paraffins including nonane and pentadecane. The coarse-grained force field is parameterized by combining molecular dynamics (MD) simulations, COSMOtherm calculations, and available experimental data. This model reproduces the vesicular formation of α-l-rhamnopyranosyl-β-hydroxydecanoyl-β-hydroxydecanoate (Rha-C10-C10) reported by all-atom MD simulations. The vesicle composed of Rha-C10-C10 is found to be most stable at a surfactant concentration of 100-146 mM based on asphericity analysis. The architecture of rhamnolipid congeners affects the morphology of their aggregates. Di-rhamno-di-lipidic dRha-C16-C16 forms vesicles with a thicker unilamellar layer of 3.2 nm. Rha-C16-C16 forms vesicles at a lower concentration of 70 mM, but the enclosed water space collapses when the surfactant concentration increases. dRha-C10-C10 forms wormlike micelles, which agglomerate into a torus and interconnected network at higher concentrations. In the presence of alkane molecules, dRha-C10-C10 maintains its wormlike micellar morphology with alkane molecules wrapped inside the aggregates. For Rha-C10-C10, Rha-C16-C16, and dRha-C16-C16, nonane molecules are distributed in the hydrophobic subdomain formed by rhamnolipid molecules. Spherical vesicles are formed at a surfactant concentration of 50 mM and then develop into ellipsoidal vesicles when the concentration increases to 125 mM. When mixed with pentadecane, the alkane molecules are aggregated and surrounded by surfactants forming a core-shell structure at a low surfactant concentration of 20 mM. At higher alkane and surfactant concentrations, the morphologies develop into disk micelles, wormlike micelles, and vesicles, with pentadecane molecules being distributed and packed with rhamnolipids. The obtained simulation results suggest that these biosurfactants have potential as environmental remediation agents.
Collapse
Affiliation(s)
- Ming-Tsung Lee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
14
|
Rizvi A, Mulvey JT, Carpenter BP, Talosig R, Patterson JP. A Close Look at Molecular Self-Assembly with the Transmission Electron Microscope. Chem Rev 2021; 121:14232-14280. [PMID: 34329552 DOI: 10.1021/acs.chemrev.1c00189] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular self-assembly is pervasive in the formation of living and synthetic materials. Knowledge gained from research into the principles of molecular self-assembly drives innovation in the biological, chemical, and materials sciences. Self-assembly processes span a wide range of temporal and spatial domains and are often unintuitive and complex. Studying such complex processes requires an arsenal of analytical and computational tools. Within this arsenal, the transmission electron microscope stands out for its unique ability to visualize and quantify self-assembly structures and processes. This review describes the contribution that the transmission electron microscope has made to the field of molecular self-assembly. An emphasis is placed on which TEM methods are applicable to different structures and processes and how TEM can be used in combination with other experimental or computational methods. Finally, we provide an outlook on the current challenges to, and opportunities for, increasing the impact that the transmission electron microscope can have on molecular self-assembly.
Collapse
Affiliation(s)
- Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Justin T Mulvey
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
15
|
Jamadagni SN, Ko X, Thomas JB, Eike DM. Salt- and pH-Dependent Viscosity of SDS/LAPB Solutions: Experiments and a Semiempirical Thermodynamic Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8714-8725. [PMID: 34270265 DOI: 10.1021/acs.langmuir.1c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present novel data on the composition-, pH-, and salt-dependent zero shear viscosity of the commercially important mixture of anionic sodium dodecyl sulfate (SDS) and zwitterionic lauramidopropyl betaine (LAPB). We show via proton NMR experiments that the notionally zwitterionic LAPB exhibits a large pKa shift in the presence of SDS and can become partially cationic at formulation-relevant pH ranges of 4.5-6.0-that is, the binary system is effectively a ternary system. This has a pronounced effect on the viscosity of the system at low pH, especially if the fraction of LAPB is high. We use theoretical arguments to motivate a semiempirical but practical approach to model the viscosity of the mixtures using thermodynamic parameters such as the excess chemical potentials or activity coefficients of the surfactants. We demonstrate this using an augmented regular solution theory-based mixed micelle thermodynamic model and develop robust regression models using Bayesian approaches. We also show how the pKa shift from NMR experiments can be used to parameterize the thermodynamic model. This framework should be extensible to other arbitrary surfactant mixtures in the future and hence will be of broad interest for the development of surfactant formulations for household, personal care, and other applications.
Collapse
Affiliation(s)
- Sumanth N Jamadagni
- The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - Xueying Ko
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Jacqueline B Thomas
- The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - David M Eike
- The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| |
Collapse
|
16
|
Del Regno A, Warren PB, Bray DJ, Anderson RL. Critical Micelle Concentrations in Surfactant Mixtures and Blends by Simulation. J Phys Chem B 2021; 125:5983-5990. [PMID: 34043913 DOI: 10.1021/acs.jpcb.1c00893] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore the use of coarse-grained dissipative particle dynamics simulations to predict critical micelle concentrations (CMCs) in polydisperse surfactant mixtures and blends. By fitting pseudo-phase separation models (PSMs) to aqueous solutions of binary surfactant mixtures at selected compositions above the CMC, we avoid the need for expensive simulations of more complex multicomponent mixtures performed as a function of dilution. The approach is demonstrated for sodium laureth sulfate (SLES) surfactants with polydispersity in the ethoxylate spacer. For this system, we find a modest degree of cooperativity in micelle formation, which we attribute to the reduced repulsion between charged headgroups for surfactants with dissimilar ethoxylate spacer lengths. However, this is insufficient to explain the lowered CMC often observed in commercial SLES samples, which we attribute to the presence of small amounts of unsulfated alkyl ethoxylates and/or traces of salt.
Collapse
Affiliation(s)
- Annalaura Del Regno
- Hartree Centre, Science and Technology Facilities Council (STFC), Sci-Tech Daresbury, Warrington, WA4 4AD, U.K.,BASF SE, Materials Molecular Modeling, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany
| | - Patrick B Warren
- Hartree Centre, Science and Technology Facilities Council (STFC), Sci-Tech Daresbury, Warrington, WA4 4AD, U.K.,Unilever R&D Port Sunlight, Quarry Road East, Bebington, Wirral, CH63 3JW, U.K
| | - David J Bray
- Hartree Centre, Science and Technology Facilities Council (STFC), Sci-Tech Daresbury, Warrington, WA4 4AD, U.K
| | - Richard L Anderson
- Hartree Centre, Science and Technology Facilities Council (STFC), Sci-Tech Daresbury, Warrington, WA4 4AD, U.K
| |
Collapse
|
17
|
Griffiths MZ, Shinoda W. Analyzing the Role of Surfactants in the Colloidal Stability of Nanoparticles in Oil through Coarse-Grained Molecular Dynamics Simulations. J Phys Chem B 2021; 125:6315-6321. [DOI: 10.1021/acs.jpcb.1c01148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mark Z. Griffiths
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
18
|
Farias CBB, Almeida FC, Silva IA, Souza TC, Meira HM, Soares da Silva RDCF, Luna JM, Santos VA, Converti A, Banat IM, Sarubbo LA. Production of green surfactants: Market prospects. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
19
|
Lee MT. Designing Highly Conductive Block Copolymer-Based Anion Exchange Membranes by Mesoscale Simulations. J Phys Chem B 2021; 125:2729-2740. [PMID: 33719456 DOI: 10.1021/acs.jpcb.0c10909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydroxide ion conductivity is a key aspect of anion exchange membranes and is mainly determined by the nanoscale membrane morphologies. Fundamental understanding of the structural and transport properties of membranes in terms of polymer architectures is crucial for future development of membrane-based applications. Using mesoscale simulations, this work predicts the mesostructure of the hydrated triblock copolymers; the designed polymers are composed of aromatic (polyphenylene oxide, PPO) or aliphatic (polystyrene-ethylene-butylene-styrene, SEBS) backbones, with cationic side chains being modified by hydrophobic or hydrophilic spacers. For PPO-based polymers, using octyl spacers creates a meshlike water network, yielding ion conductivity equal to 30.6 mS/cm at room temperature. For SEBS-based polymers, the nonmodified form is sufficient to produce ion-conducting pathways. Adding hydrophobic spacers further enhances the nanosegregation, and the membranes provide similar conductivity at a lower ion exchange capacity and water content. Adding hydrophilic spacers, however, has negative impacts on the ion transport. The side chains are in the stretched configurations, which sterically hinder the mobility of water and hydroxide ions. Such a resistance can be overcome by adapting multication side-chain designs, where large water channels are formed, yielding ion conductivity as high as 32.8 mS/cm.
Collapse
Affiliation(s)
- Ming-Tsung Lee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
20
|
Analytical modeling of micelle growth. 4. Molecular thermodynamics of wormlike micelles from ionic surfactants: Theory vs. experiment. J Colloid Interface Sci 2021; 584:561-581. [DOI: 10.1016/j.jcis.2020.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/20/2022]
|
21
|
Endter LJ, Risselada HJ. Where are those lipid nano rings? J Colloid Interface Sci 2020; 587:789-796. [PMID: 33246654 DOI: 10.1016/j.jcis.2020.11.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/28/2022]
Abstract
Highly curved toroidal micelles with diameters as small as 100 nm have been successfully constructed by self-assembly of amphiphilic block copolymers. These structures may have potential applications in gene or drug delivery. Experimental observations suggest that toroidal micelles likely originate from spherical or disc-like micelles which are tricked into forming toroidal micelles upon external stimuli ('smart' materials). Since self-assembly of polymeric and lipid surfactants is guided by the same physical principles, we hypothesize that 'smart' lipid surfactants can be equivalently tricked into forming highly curved toroidal micelles that are tenfold smaller (≃10 nm diameter). Paradoxically, these 'nano rings' have never been observed. Using coarse-grained molecular dynamics (MD) simulations in conjunction with a state-of-the-art free energy calculation method (a string method), we illustrate how a thermo-responsive lipid surfactant is able to form toroidal micelles. These micelles originate from disc-like micelles that are spontaneously perforated upon heat shocking, thereby supporting a longstanding hypothesis on the possible origin of polymeric toroidal micelle phases observed in experiments. We illustrate that kinetically stable 'nano rings' are substantially shorter lived than their tenfold larger polymeric analogs. The estimated life-time (milliseconds) is in fact similar to the characteristic breaking time of the corresponding worm-like micelle. Finally, we resolve the characteristic finger print which 'nano rings' leave in time-resolved X-ray spectra and illustrate how the uptake of small DNA fragments may enhance their stability. Despite a shared kinetics of self-assembly, length scale dependent differences in the life-time of surfactant phases can occur when phases are kinetically rather than thermodynamically stable. This results in the apparent absence or presence of toroidal micelle phases on different length scales. Our theoretical work precisely illustrates that the universality of surfactants nevertheless remains conserved even at different length scales.
Collapse
Affiliation(s)
- Laura Josefine Endter
- Georg-August University Göttingen, Institute for Theoretical Physics, 37077 Göttingen, Germany
| | - Herre Jelger Risselada
- Georg-August University Göttingen, Institute for Theoretical Physics, 37077 Göttingen, Germany; Leiden University, Leiden Institute of Chemistry (LIC), 2311 Leiden, Netherlands.
| |
Collapse
|
22
|
Bray DJ, Anderson RL, Warren PB, Lewtas K. Wax Formation in Linear and Branched Alkanes with Dissipative Particle Dynamics. J Chem Theory Comput 2020; 16:7109-7122. [PMID: 32857939 DOI: 10.1021/acs.jctc.0c00605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present a dissipative particle dynamics (DPD) model for wax formation (i.e., the freezing transition) in linear and branched alkanes at room temperature (298 K) and atmospheric pressure. We parametrize the model using pure liquid phase densities and the onset of wax formation as a function of alkyl chain length. Significant emphasis is placed on building an accurate representation of the underlying molecular architecture by careful consideration of bond lengths and angles, aided by distributions obtained from molecular dynamics simulation. Using the derived model, we observe wax formation in n-alkanes when the alkyl chain length is greater than 18 (n-octadecane), in excellent agreement with experimental observations. Further, we reproduce the behavior of branched alkanes and mixtures including solubilities of heavy alkanes in light alkane solvents.
Collapse
Affiliation(s)
- David J Bray
- The Hartree Centre, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
| | - Richard L Anderson
- The Hartree Centre, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
| | - Patrick B Warren
- The Hartree Centre, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom.,Unilever R&D Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, United Kingdom
| | - Kenneth Lewtas
- Lewtas Science & Technologies Ltd., 246 Banbury Road, Oxford OX2 7DY, United Kingdom.,School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
23
|
Johnston MA, Duff AI, Anderson RL, Swope WC. Model for the Simulation of the C nE m Nonionic Surfactant Family Derived from Recent Experimental Results. J Phys Chem B 2020; 124:9701-9721. [PMID: 32986421 DOI: 10.1021/acs.jpcb.0c06132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a comprehensive set of recently published experimental results for training and validation, we have developed computational models appropriate for simulations of aqueous solutions of poly(ethylene oxide) alkyl ethers, an important class of micelle-forming nonionic surfactants, usually denoted CnEm. These models are suitable for use in simulations that employ a moderate amount of coarse graining and especially for dissipative particle dynamics (DPD), which we adopt in this work. The experimental data used for training and validation were reported earlier and produced in our laboratory using dynamic light scattering (DLS) measurements performed on 12 members of the CnEm compound family yielding micelle size distribution functions and mass-weighted mean aggregation numbers at each of several surfactant concentrations. The range of compounds and quality of the experimental results were designed to support the development of computational models. An essential feature of this work is that all simulation results were analyzed in a way that is consistent with the experimental data. Proper account is taken of the fact that a broad distribution of micelle sizes exists, so mass-weighted averages (rather than number-weighted averages) over this distribution are required for the proper comparison of simulation and experimental results. The resulting DPD force field reproduces several important trends seen in the experimental critical micelle concentrations and mass-averaged mean aggregation numbers with respect to surfactant characteristics and concentration. We feel it can be used to investigate a number of open questions regarding micelle sizes and shapes and their dependence on surfactant concentration for this important class of nonionic surfactants.
Collapse
Affiliation(s)
| | - Andrew Ian Duff
- STFC Hartree Centre, SciTech Daresbury, Warrington, Cheshire WA4 4AD, U.K
| | - Richard L Anderson
- STFC Hartree Centre, SciTech Daresbury, Warrington, Cheshire WA4 4AD, U.K
| | - William C Swope
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| |
Collapse
|
24
|
Klebes J, Finnigan S, Bray DJ, Anderson RL, Swope WC, Johnston MA, Conchuir BO. The Role of Chemical Heterogeneity in Surfactant Adsorption at Solid-Liquid Interfaces. J Chem Theory Comput 2020; 16:7135-7147. [PMID: 33081471 DOI: 10.1021/acs.jctc.0c00759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical heterogeneity of solid surfaces disrupts the adsorption of surfactants from the bulk liquid. While its presence can hinder the performance of some formulations, bespoke chemical patterning could potentially facilitate controlled adsorption for nanolithography applications. Although some computational studies have investigated the impact of regularly patterned surfaces on surfactant adsorption, in reality, many interesting surfaces are expected to be stochastically disordered and this is an area unexplored via simulations. In this paper, we describe a new algorithm for the generation of randomly disordered chemically heterogeneous surfaces and use it to explore the adsorption behavior of four model nonionic surfactants. Using novel analysis methods, we interrogate both the global surface coverage (adsorption isotherm) and behavior in localized regions. We observe that trends in adsorption characteristics as surfactant size, head/tail ratio, and surface topology are varied and connect these to underlying physical mechanisms. We believe that our methods and approach will prove useful to researchers seeking to tailor surface patterns to calibrate nonionic surfactant adsorption.
Collapse
Affiliation(s)
- Jason Klebes
- IBM Research Europe, The Hartree Centre, Daresbury, Warrington WA4 4AD, United Kingdom.,School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sophie Finnigan
- IBM Research Europe, The Hartree Centre, Daresbury, Warrington WA4 4AD, United Kingdom.,Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, Wood Lane, London W12 0BZ, United Kingdom
| | - David J Bray
- The Hartree Centre, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
| | - Richard L Anderson
- The Hartree Centre, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
| | - William C Swope
- IBM Almaden Research Center, San Jose, California 95120, United States
| | | | - Breanndan O Conchuir
- IBM Research Europe, The Hartree Centre, Daresbury, Warrington WA4 4AD, United Kingdom
| |
Collapse
|
25
|
Conchuir BO, Gardner K, Jordan KE, Bray DJ, Anderson RL, Johnston MA, Swope WC, Harrison A, Sheehy DR, Peters TJ. Efficient Algorithm for the Topological Characterization of Worm-like and Branched Micelle Structures from Simulations. J Chem Theory Comput 2020; 16:4588-4598. [DOI: 10.1021/acs.jctc.0c00311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Kirk Gardner
- Department of Computer Science & Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Kirk E. Jordan
- IBM T. J. Watson Research, Cambridge, Massachusetts 02142, United States
| | - David J. Bray
- The Hartree Centre, STFC Daresbury Laboratory, Warrington WA4 4AD, U.K
| | | | | | - William C. Swope
- IBM Almaden Research Center, San Jose, California 95120, United States
| | - Alex Harrison
- IBM Research Europe, The Hartree Centre, Daresbury WA4 4AD, U.K
| | - Donald R. Sheehy
- Department of Computer Science, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas J. Peters
- Department of Computer Science & Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|