1
|
Campuzano S, Ruiz-Valdepeñas Montiel V, Torrente-Rodríguez RM, Pingarrón JM. Bioelectroanalytical Technologies for Advancing the Frontiers To Democratize Personalized Desired Health. Anal Chem 2025; 97:11371-11381. [PMID: 40364744 DOI: 10.1021/acs.analchem.5c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The breakthroughs experienced in the development of cutting-edge, reliable, and multipurpose (bio)electroanalytical technologies and their successful incursion into underexplored scenarios have demonstrated their unique potential to act as enablers of the ongoing transformation from reactive to predictive, preventive, personalized, and participatory healthcare, currently known as "P4" medicine. This transformation, more than a vision, is a necessity to achieve a new generation of more efficient, sustainable, and tailored to individual needs healthcare. This promising outlook is the focus of this Perspective, which in addition to highlighting some of the most shocking related research over the last 5 years, offers a prospective and insightful view of the opportunities and imminent advances that shape the future of these fascinating technologies.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Víctor Ruiz-Valdepeñas Montiel
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Rebeca M Torrente-Rodríguez
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| |
Collapse
|
2
|
Sen D, Volya N, Muhammed Y, Lazenby RA. Fabrication and Characterization of a Tunable Microelectrode Array Probe for Simultaneous Multiplexed Electrochemical Detection. Anal Chem 2025; 97:7702-7710. [PMID: 40183452 DOI: 10.1021/acs.analchem.4c05175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Individually addressable microelectrode arrays (MEAs) enable the simultaneous and independent measurement of multiple analytes and benefit from a small size scale, which enables highly localized electrochemical detection. In this work, we describe a new methodology to fabricate low-cost and tunable MEA probes in which the number, spatial arrangement, and spacing of the electrodes and electrode material can be changed and controlled. This was achieved using a 3D printed support assembly to position wires of the electrode material into designated positions and a mold to seal the electrodes in place using epoxy resin. After curing of the epoxy, mechanical polishing exposed the surface of closely spaced disk microelectrodes embedded in the insulating material, which formed the MEA. The individual electrodes of the array were characterized using electrochemical methods and optical and electron microscopy to evaluate the surface quality and the integrity of the seal with the insulating epoxy. To validate the fabrication method and to demonstrate the controlled electrode spacing, we used a dual-disk electrode device, while four-, five-, and seven-electrode probes were used to demonstrate some of the different numbers and geometric arrangements of electrodes that are possible. While the developed probes have numerous potential applications, including as probes or substrates in scanning electrochemical microscopy, we fabricated electrochemical aptamer-based sensors on the individual electrodes, for the simultaneous detection of adenosine triphosphate and dopamine in phosphate-buffered saline solution, with and without 10% fetal bovine serum.
Collapse
Affiliation(s)
- Debashis Sen
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Nicholas Volya
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Yusuf Muhammed
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Robert A Lazenby
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
3
|
Cao Y, Xia J, Li L, Zeng Y, Zhao J, Li G. Electrochemical Biosensors for Cancer Diagnosis: Multitarget Analysis to Present Molecular Characteristics of Tumor Heterogeneity. JACS AU 2024; 4:4655-4672. [PMID: 39735934 PMCID: PMC11672140 DOI: 10.1021/jacsau.4c00989] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024]
Abstract
Electrochemical biosensors are gaining attention as powerful tools in cancer diagnosis, particularly in liquid biopsy, due to their high efficiency, rapid response, exceptional sensitivity, and specificity. However, the complexity of intra- and intertumor heterogeneity, with variations in genetic and protein expression profiles and epigenetic modifications, makes electrochemical biosensors susceptible to false-positive or false-negative diagnostic outcomes. To address this challenge, there is growing interest in simultaneously analyzing multiple biomarkers to reveal molecular characteristics of tumor heterogeneity for precise cancer diagnosis. In this Perspective, we highlight recent advancements in utilizing electrochemical biosensors for cancer diagnosis, with a specific emphasis on the multitarget analysis of cancer biomarkers including tumor-associated nucleic acids, tumor protein markers, extracellular vesicles, and tumor cells. These biosensors hold significant promise for improving precision in early cancer diagnosis and monitoring, as well as potentially offering new insights into personalized cancer management.
Collapse
Affiliation(s)
- Ya Cao
- Center
for Molecular Recognition and Biosensing, Shanghai Engineering Research
Center of Organ Repair, Joint International Research Laboratory of
Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jianan Xia
- Center
for Molecular Recognition and Biosensing, Shanghai Engineering Research
Center of Organ Repair, Joint International Research Laboratory of
Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lijuan Li
- Center
for Molecular Recognition and Biosensing, Shanghai Engineering Research
Center of Organ Repair, Joint International Research Laboratory of
Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yujing Zeng
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- Center
for Molecular Recognition and Biosensing, Shanghai Engineering Research
Center of Organ Repair, Joint International Research Laboratory of
Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Genxi Li
- Center
for Molecular Recognition and Biosensing, Shanghai Engineering Research
Center of Organ Repair, Joint International Research Laboratory of
Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
School of Life Sciences, Shanghai University, Shanghai 200444, China
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Costa JNY, Pimentel GJC, Poker JA, Merces L, Paschoalino WJ, Vieira LCS, Castro ACH, Alves WA, Ayres LB, Kubota LT, Santhiago M, Garcia CD, Piazzetta MHO, Gobbi AL, Shimizu FM, Lima RS. Single-Response Duplexing of Electrochemical Label-Free Biosensor from the Same Tag. Adv Healthc Mater 2024; 13:e2303509. [PMID: 38245830 PMCID: PMC11468374 DOI: 10.1002/adhm.202303509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Multiplexing is a valuable strategy to boost throughput and improve clinical accuracy. Exploiting the vertical, meshed design of reproducible and low-cost ultra-dense electrochemical chips, the unprecedented single-response multiplexing of typical label-free biosensors is reported. Using a cheap, handheld one-channel workstation and a single redox probe, that is, ferro/ferricyanide, the recognition events taking place on two spatially resolved locations of the same working electrode can be tracked along a single voltammetry scan by collecting the electrochemical signatures of the probe in relation to different quasi-reference electrodes, Au (0 V) and Ag/AgCl ink (+0.2 V). This spatial isolation prevents crosstalk between the redox tags and interferences over functionalization and binding steps, representing an advantage over the existing non-spatially resolved single-response multiplex strategies. As proof of concept, peptide-tethered immunosensors are demonstrated to provide the duplex detection of COVID-19 antibodies, thereby doubling the throughput while achieving 100% accuracy in serum samples. The approach is envisioned to enable broad applications in high-throughput and multi-analyte platforms, as it can be tailored to other biosensing devices and formats.
Collapse
Affiliation(s)
- Juliana N. Y. Costa
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Gabriel J. C. Pimentel
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
| | - Júlia A. Poker
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
| | - Leandro Merces
- Research Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Waldemir J. Paschoalino
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Luis C. S. Vieira
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Ana C. H. Castro
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Wendel A. Alves
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Lucas B. Ayres
- Department of ChemistryClemson UniversityClemsonSC29634USA
| | - Lauro T. Kubota
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | | | - Maria H. O. Piazzetta
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Angelo L. Gobbi
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Flávio M. Shimizu
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Renato S. Lima
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
- Department of ChemistryClemson UniversityClemsonSC29634USA
- São Carlos Institute of ChemistryUniversity of São PauloSão CarlosSão Paulo13565‐590Brazil
| |
Collapse
|
5
|
Povedano E, Ruiz-Valdepeñas Montiel V, Sebuyoya R, Torrente-Rodríguez RM, Garranzo-Asensio M, Montero-Calle A, Pingarrón JM, Barderas R, Bartosik M, Campuzano S. Bringing to Light the Importance of the miRNA Methylome in Colorectal Cancer Prognosis Through Electrochemical Bioplatforms. Anal Chem 2024; 96:4580-4588. [PMID: 38348822 PMCID: PMC10955513 DOI: 10.1021/acs.analchem.3c05474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
This work reports the first electrochemical bioplatforms developed for the determination of the total contents of either target miRNA or methylated target miRNA. The bioplatforms are based on the hybridization of the target miRNA with a synthetic biotinylated DNA probe, the capture of the formed DNA/miRNA heterohybrids on the surface of magnetic microcarriers, and their recognition with an antibody selective to these heterohybrids or to the N6-methyladenosine (m6A) epimark. The determination of the total or methylated target miRNA was accomplished by labeling such secondary antibodies with the horseradish peroxidase (HRP) enzyme. In both cases, amperometric transduction was performed on the surface of disposable electrodes after capturing the resulting HRP-tagged magnetic bioconjugates. Because of their increasing relevance in colorectal cancer (CRC) diagnosis and prognosis, miRNA let-7a and m6A methylation were selected. The proposed electrochemical bioplatforms showed attractive analytical and operational characteristics for the determination of the total and m6A-methylated target miRNA in less than 75 min. These bioplatforms, innovative in design and application, were applied to the analysis of total RNA samples extracted from cultured cancer cells with different metastatic profiles and from paired healthy and tumor tissues of patients diagnosed with CRC at different stages. The obtained results demonstrated, for the first time using electrochemical platforms, the potential of interrogating the target miRNA methylation level to discriminate the metastatic capacities of cancer cells and to identify tumor tissues and, in a pioneering way, the potential of the m6A methylation in miRNA let-7a to serve as a prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Eloy Povedano
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Víctor Ruiz-Valdepeñas Montiel
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Ravery Sebuyoya
- Research
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Zluty kopec 7, Brno 656
53, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Rebeca M. Torrente-Rodríguez
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Maria Garranzo-Asensio
- Chronic
Disease Programme, UFIEC, Institute of Health
Carlos III, Majadahonda, Madrid 28220, Spain
| | - Ana Montero-Calle
- Chronic
Disease Programme, UFIEC, Institute of Health
Carlos III, Majadahonda, Madrid 28220, Spain
| | - José M. Pingarrón
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Rodrigo Barderas
- Chronic
Disease Programme, UFIEC, Institute of Health
Carlos III, Majadahonda, Madrid 28220, Spain
| | - Martin Bartosik
- Research
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Zluty kopec 7, Brno 656
53, Czech Republic
| | - Susana Campuzano
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| |
Collapse
|
6
|
Li D, Huang Q, Wang K. Exonuclease III-propelled DNAzyme walker: an electrochemical strategy for microRNA diagnostics. Mikrochim Acta 2024; 191:173. [PMID: 38436735 DOI: 10.1007/s00604-024-06208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
MicroRNA detection is crucial for early infectious disease diagnosis and rapid cancer screening. However, conventional techniques like reverse transcription-quantitative polymerase chain reaction, requiring specialized training and intricate procedures, are less suitable for point-of-care analyses. To address this, we've developed a straightforward amplifier based on an exonuclease III (exo III)-propelled DNAzyme walker for sensitive and selective microRNA detection. This amplifier employs a specially designed hairpin probe with two exposed segments for strand recognition. Once the target microRNA is identified by the hairpin's extended single-strand DNA, exo III initiates its digestion, allowing microRNA regeneration and subsequent hairpin probe digestion cycles. This cyclical process produces a significant amount of DNAzyme, leading to a marked reduction in electrochemical signals. The biosensor exhibits a detection range from 10 fM to 100 pM and achieves a detection limit of 5 fM (3σ criterion). Importantly, by integrating an "And logic gate," our system gains the capacity for simultaneous diagnosis of multiple microRNAs, enhancing its applicability in RNA-based disease diagnostics.
Collapse
Affiliation(s)
- Dengke Li
- Department of Rehabilitation Medicine, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China.
| | - Qiuyan Huang
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Kun Wang
- Department of Physics, New York University, New York, NY, 10003, USA
| |
Collapse
|
7
|
O’Brien C, Khor CK, Ardalan S, Ignaszak A. Multiplex electrochemical sensing platforms for the detection of breast cancer biomarkers. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1360510. [PMID: 38425422 PMCID: PMC10902167 DOI: 10.3389/fmedt.2024.1360510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Herein, advancements in electroanalytical devices for the simultaneous detection of diverse breast cancer (BC) markers are demonstrated. This article identifies several important areas of exploration for electrochemical diagnostics and highlights important factors that are pivotal for the successful deployment of novel bioanalytical devices. We have highlighted that the limits of detection (LOD) reported for the multiplex electrochemical biosensor can surpass the sensitivity displayed by current clinical standards such as ELISA, FISH, and PCR. HER-2; a breast cancer marker characterised by increased metastatic potential, more aggressive development, and poor clinical outcomes; can be sensed with a LOD of 0.5 ng/ml using electrochemical multiplex platforms, which falls within the range of that measured by ELISA (from picogram/ml to nanogram/ml). Electrochemical multiplex biosensors are reported with detection limits of 0.53 ng/ml and 0.21 U/ml for MUC-1 and CA 15-3, respectively, or 5.8 × 10-3 U/ml for CA 15-3 alone. The sensitivity of electrochemical assays is improved when compared to conventional analysis of MUC-1 protein which is detected at 11-12 ng/ml, and ≤30 U/ml for CA 15-3 in the current clinical blood tests. The LOD for micro-ribonucleic acid (miRNA) biomarkers analyzed by electrochemical multiplex assays were all notedly superior at 9.79 × 10-16 M, 3.58 × 10-15 M, and 2.54 × 10-16 M for miRNA-155, miRNA-21, and miRNA-16, respectively. The dogma in miRNA testing is the qRT-PCR method, which reports ranges in the ng/ml level for the same miRNAs. Breast cancer exosomes, which are being explored as a new frontier of biosensing, have been detected electrochemically with an LOD of 103-108 particles/mL and can exceed detection limits seen by the tracking and analysis of nanoparticles (∼ 107 particles/ml), flow cytometry, Western blotting and ELISA, etc. A range of concentration at 78-5,000 pg/ml for RANKL and 16-1,000 pg/ml for TNF is reported for ELISA assay while LOD values of 2.6 and 3.0 pg/ml for RANKL and TNF, respectively, are demonstrated by the electrochemical dual immunoassay platform. Finally, EGFR and VEGF markers can be quantified at much lower concentrations (0.01 and 0.005 pg/ml for EGFR and VEGF, respectively) as compared to their ELISA assays (EGRF at 0.31-20 ng/ml and VEGF at 31.3-2,000 pg/ml). In this study we hope to answer several questions: (1) Are the limits of detection (LODs) reported for multiplex electrochemical biosensors of clinical relevance and how do they compare to well-established methods like ELISA, FISH, or PCR? (2) Can a single sensor electrode be used for the detection of multiple markers from one blood drop? (3) What mechanism of electrochemical biosensing is the most promising, and what technological advancements are needed to utilize these devices for multiplex POC detection? (4) Can nanotechnology advance the sensitive and selective diagnostics of multiple BC biomarkers? (5) Are there preferred receptors (antibody, nucleic acid or their combinations) and preferred biosensor designs (complementary methods, sandwich-type protocols, antibody/aptamer concept, label-free protocol)? (6) Why are we still without FDA-approved electrochemical multiplex devices for BC screening?
Collapse
Affiliation(s)
- Connor O’Brien
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Chun Keat Khor
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| | - Sina Ardalan
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| | - Anna Ignaszak
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
8
|
Jankelow A, Chen CL, Cowell TW, Espinosa de Los Monteros J, Bian Z, Kindratenko V, Koprowski K, Darsi S, Han HS, Valera E, Bashir R. Multiplexed electrical detection of whole viruses from plasma in a microfluidic platform. Analyst 2024; 149:1190-1201. [PMID: 38213181 PMCID: PMC11646553 DOI: 10.1039/d3an01510f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The advancement of point-of-care diagnostics is crucial to improving patient outcomes, especially in areas with low access to hospitals or specialized laboratories. In particular, rapid, sensitive, and multiplexed detection of disease biomarkers has great potential to achieve accurate diagnosis and inform high quality care for patients. Our Coulter counting and immunocapture based detection system has previously shown its broad applicability in the detection of cells, proteins, and nucleic acids. This paper expands the capability of the platform by demonstrating multiplexed detection of whole-virus particles using electrically distinguishable hydrogel beads by demonstrating the capability of our platform to achieve simultaneous detection at clinically relevant concentrations of hepatitis A virus (>2 × 103 IU mL-1) and human parvovirus B19 virus like particles (>106 IU mL-1) from plasma samples. The expanded versatility of the differential electrical counting platform allows for more robust and diverse testing capabilities.
Collapse
Affiliation(s)
- Aaron Jankelow
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Nick Holonyak Jr Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Carle Foundation Hospital, Urbana, Illinois, USA
| | - Chih-Lin Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Thomas W Cowell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Javier Espinosa de Los Monteros
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Biomedical Research Center, Carle Foundation Hospital, Urbana, Illinois, USA
| | - Zheng Bian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Nick Holonyak Jr Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Victoria Kindratenko
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Nick Holonyak Jr Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Katherine Koprowski
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Nick Holonyak Jr Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sriya Darsi
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Nick Holonyak Jr Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Enrique Valera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Nick Holonyak Jr Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Carle Foundation Hospital, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Nick Holonyak Jr Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Carle Foundation Hospital, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical and Translation Science, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
9
|
Hiniduma K, Bhalerao KS, De Silva PIT, Chen T, Rusling JF. Design and Fabrication of a 3D-Printed Microfluidic Immunoarray for Ultrasensitive Multiplexed Protein Detection. MICROMACHINES 2023; 14:2187. [PMID: 38138356 PMCID: PMC10745552 DOI: 10.3390/mi14122187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023]
Abstract
Microfluidic technology has revolutionized device fabrication by merging principles of fluid dynamics with technologies from chemistry, physics, biology, material science, and microelectronics. Microfluidic systems manipulate small volumes of fluids to perform automated tasks with applications ranging from chemical syntheses to biomedical diagnostics. The advent of low-cost 3D printers has revolutionized the development of microfluidic systems. For measuring molecules, 3D printing offers cost-effective, time, and ease-of-designing benefits. In this paper, we present a comprehensive tutorial for design, optimization, and validation for creating a 3D-printed microfluidic immunoarray for ultrasensitive detection of multiple protein biomarkers. The target is the development of a point of care array to determine five protein biomarkers for aggressive cancers. The design phase involves defining dimensions of microchannels, reagent chambers, detection wells, and optimizing parameters and detection methods. In this study, the physical design of the array underwent multiple iterations to optimize key features, such as developing open detection wells for uniform signal distribution and a flap for covering wells during the assay. Then, full signal optimization for sensitivity and limit of detection (LOD) was performed, and calibration plots were generated to assess linear dynamic ranges and LODs. Varying characteristics among biomarkers highlighted the need for tailored assay conditions. Spike-recovery studies confirmed the assay's accuracy. Overall, this paper showcases the methodology, rigor, and innovation involved in designing a 3D-printed microfluidic immunoarray. Optimized parameters, calibration equations, and sensitivity and accuracy data contribute valuable metrics for future applications in biomarker analyses.
Collapse
Affiliation(s)
- Keshani Hiniduma
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA; (K.H.); (K.S.B.); (P.I.T.D.S.); (T.C.)
| | - Ketki S. Bhalerao
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA; (K.H.); (K.S.B.); (P.I.T.D.S.); (T.C.)
| | - Peyahandi I. Thilini De Silva
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA; (K.H.); (K.S.B.); (P.I.T.D.S.); (T.C.)
| | - Tianqi Chen
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA; (K.H.); (K.S.B.); (P.I.T.D.S.); (T.C.)
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA; (K.H.); (K.S.B.); (P.I.T.D.S.); (T.C.)
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030-0001, USA
- School of Chemistry, National University of Ireland at Galway, H91 TK33 Galway, Ireland
| |
Collapse
|