1
|
Chen S, Chen S, Yu X, Wan C, Wang Y, Peng L, Li Q. Sources of Lipopeptides and Their Applications in Food and Human Health: A Review. Foods 2025; 14:207. [PMID: 39856874 PMCID: PMC11765196 DOI: 10.3390/foods14020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/29/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Lipopeptides (LPs) are widely sourced surface-active natural products with a wide range of functions and low toxicity, high potency, and good biodegradability. In this paper, we summarize, for the first time, the plant, animal, microbial, and synthetic sources of LPs. We also introduce the applications of LPs in food and human health, including (1) LPs can inhibit the growth of food microorganisms during production and preservation. They can also be added to food packaging materials for preservation and freshness during transportation, and can be used as additives to improve the taste of food. (2) LPs can provide amino acids and promote protein synthesis and cellular repair. Due to their broad-spectrum antimicrobial properties, they exhibit good anticancer effects and biological activities. This review summarizes, for the first time, the sources of LPs and their applications in food and human health, laying the foundation for the development and application of LPs.
Collapse
Affiliation(s)
| | | | | | | | | | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.C.); (S.C.); (X.Y.); (C.W.); (Y.W.); (L.P.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (S.C.); (S.C.); (X.Y.); (C.W.); (Y.W.); (L.P.)
| |
Collapse
|
2
|
Rios EA, Ribeiro DCS, Otero A, Rodríguez-Calleja JM. A hurdle strategy based on the combination of non-thermal treatments to control diarrheagenic E. coli in cheese. Int J Food Microbiol 2024; 425:110859. [PMID: 39173289 DOI: 10.1016/j.ijfoodmicro.2024.110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
This study aimed to assess the efficacy of a multi-hurdle process combining mild High Hydrostatic Pressure (HHP) treatments and Thyme Oil (TO) edible films as a non-thermal method to combat pathogenic E. coli (aEPEC and STEC) in raw cow's-milk cheese stored at 7 °C and packaged under modified atmosphere. Changes in headspace atmosphere of cheese packs and treatment effects on Lactic Acid Bacteria (LAB) counts and diarrheagenic E. coli strains (aEPEC and STEC) were evaluated over a 28 d storage period. The results demonstrated that the combined treatment exhibited the most significant antimicrobial effect against both strains compared to individual treatments, achieving reductions of 4.30 and 4.80 log cfu/g after 28 d of storage for aEPEC and STEC, respectively. Notably, the synergistic effect of the combination treatment resulted in the complete inactivation of intact cells for STEC and nearly completed inactivation for aEPEC by the end of the storage period. These findings suggest that the combination of HHP with selected hurdles could effectively enhance microbial inactivation capacity, offering promising alternatives for improving cheese safety without affecting the starter microbiota.
Collapse
Affiliation(s)
- Edson A Rios
- National Institute of Science and Technology for the Dairy Production Chain (INCT-Leite), Paraná, Brazil
| | - Daniela C S Ribeiro
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Spain
| | - Andrés Otero
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Spain; Institute of Food Science and Technology, Universidad de León, 24071 León, Spain
| | - Jose M Rodríguez-Calleja
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Spain; Institute of Food Science and Technology, Universidad de León, 24071 León, Spain.
| |
Collapse
|
3
|
Kapetanakou AE, Mistriotis A, Bozinaki DC, Tserotas P, Athanasoulia IG, Briassoulis D, Skandamis PN. Developing an Active Biodegradable Bio-Based Equilibrium Modified Atmosphere Packaging Containing a Carvacrol-Emitting Sachet for Cherry Tomatoes. Foods 2024; 13:3371. [PMID: 39517155 PMCID: PMC11544796 DOI: 10.3390/foods13213371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to develop an active biodegradable bio-based (polylactic acid/PLA) equilibrium modified atmosphere packaging (EMAP) containing a carvacrol-emitting sachet (created by poly-hydroxybutyrate) (PLA-PHB-CARV) to extend the shelf-life of cherry tomatoes at 15 °C and 25 °C. Cherry tomatoes in macro-perforated polypropylene (PP) films (mimicking the commercial packaging) or in PLA-based micro-perforated film without the carvacrol sachet (PLA) were also tested. Weight loss, decay, headspace gases, pH, titratable acidity (TA), total suspended solids (TSS), ripening index, color, texture, total viable counts (TVC), and sensory analysis were performed. Decay was 40% in PLA-PHB-CARV, and 97% in PP after 20 days at 25 °C. PLA-PHB-CARV showed lower weight loss (p < 0.05) and stable firmness compared to PP and PLA at both temperatures. TSS and TA were not affected by the packaging at 15 °C, while at 25 °C, the TSS accumulation was inhibited in PLA-PHB-CARV compared to in PLA and PP (p < 0.05), indicating a notable delay in the ripening process. PLA-PHB-CARV retained their red color during storage compared to PP and PLA. Carvacrol addition inhibited TVC compared to PP and PLA by ca. 2.0 log CFU/g during storage at 25 °C, while at 15 °C, the packaging did not reveal a significant effect. Overall, the results indicated that the developed active EMAP may be adequately used as an advanced and alternative packaging for tomatoes or potentially other fruits with a similar respiration rate versus their conventional packaging, showing several advantages, e.g., a reduction in petrochemical-based plastics use, shelf-life extension of the packaged food, and consequently, the perspective of limiting food waste during distribution and retail or domestic storage.
Collapse
Affiliation(s)
- Anastasia E. Kapetanakou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Votanikos, Greece (P.N.S.)
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DIMITRA, S. Venizelou 1, 14123 Lycovrissi, Greece
| | - Antonis Mistriotis
- Laboratory of Farm Structures, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Votanikos, Greece (D.B.)
| | - Dimitra C. Bozinaki
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Votanikos, Greece (P.N.S.)
| | - Philippos Tserotas
- Laboratory of Farm Structures, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Votanikos, Greece (D.B.)
| | - Ioanna-Georgia Athanasoulia
- Laboratory of Farm Structures, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Votanikos, Greece (D.B.)
| | - Demetrios Briassoulis
- Laboratory of Farm Structures, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Votanikos, Greece (D.B.)
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Votanikos, Greece (P.N.S.)
| |
Collapse
|
4
|
Bajer D. Eco-Friendly, Biodegradable Starch-Based Packaging Materials with Antioxidant Features. Polymers (Basel) 2024; 16:958. [PMID: 38611216 PMCID: PMC11013144 DOI: 10.3390/polym16070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Due to the extensive application of petroleum-based plastics as packaging materials and problems related to their degradation/recycling, developing new solutions in the field of novel biopolymer-based materials has become imperative. Natural substitutes for synthetic polymers (starch, cellulose, chitosan) require modifications that enable their processing and provide them with additional properties (i.e., mechanical strength, controlled biodeterioration, antimicrobial and antioxidative activity). The antioxidant activity of natural packaging materials still requires further investigation. In this research paper, novel materials used for packaging perishable food susceptible to oxidizing agents were designed from potato starch (NS) reinforced with antioxidants such as dialdehyde starch (DS) and caffeic acid (CA)/quinic acid (QA). The use of spectroscopic techniques (ATR-FTIR, Raman) and X-ray diffraction allowed the examination of the chemical structure and arrangement of the blend and confirmed the component interactions. The film surface was examined by AFM. DS, functioning as a cross-linker, enhanced the film barrier as well as the mechanical and thermal properties, and it promoted starch amorphization when blended with other antioxidants. The antioxidant activity of caffeic acid was greater than that of quinic acid. Dialdehyde starch improves elasticity, whereas acids (particularly caffeic acid) influence film stiffness. A high susceptibility to biodegradation is valuable for potential eco-friendly packaging applications.
Collapse
Affiliation(s)
- Dagmara Bajer
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
5
|
Ke Q, Ma K, Zhang Y, Meng Q, Huang X, Kou X. Antibacterial aroma compounds as property modifiers for electrospun biopolymer nanofibers of proteins and polysaccharides: A review. Int J Biol Macromol 2023; 253:126563. [PMID: 37657584 DOI: 10.1016/j.ijbiomac.2023.126563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023]
Abstract
Electrospinning is one of the most promising techniques for producing biopolymer nanofibers for various applications. Proteins and polysaccharides, among other biopolymers, are attractive substrates for electrospinning due to their favorable biocompatibility and biodegradability. However, there are still challenges to improve the mechanical properties, water sensitivity and biological activity of biopolymer nanofibers. Therefore, these strategies such as polymer blending, application of cross-linking agents, the addition of nanoparticles and bioactive components, and modification of biopolymer have been developed to enhance the properties of biopolymer nanofibers. Among them, antibacterial aroma compounds (AACs) from essential oils are widely used as bioactive components and property modifiers in various biopolymer nanofibers to enhance the functionality, hydrophobicity, thermal properties, and mechanical properties of nanofibers, which depends on the electrospun strategy of AACs. This review summarizes the recently reported antimicrobial activities and applications of AACs, and compares the effects of four electrospinning strategies for encapsulating AACs on the properties and applications of nanofibers. The authors focus on the correlation of the main characteristics of these biopolymer electrospun nanofibers with the encapsulation strategy of AACs in the nanofibers. Moreover, this review also particularly emphasizes the impact of the characteristics of these nanofibers on their application field of antimicrobial materials.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Kangning Ma
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Zabihzadeh Khajavi M, Nikiforov A, Nilkar M, Devlieghere F, Ragaert P, De Geyter N. Degradable Plasma-Polymerized Poly(Ethylene Glycol)-Like Coating as a Matrix for Food-Packaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2774. [PMID: 37887925 PMCID: PMC10609115 DOI: 10.3390/nano13202774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Currently, there is considerable interest in seeking an environmentally friendly technique that is neither thermally nor organic solvent-dependent for producing advanced polymer films for food-packaging applications. Among different approaches, plasma polymerization is a promising method that can deposit biodegradable coatings on top of polymer films. In this study, an atmospheric-pressure aerosol-assisted plasma deposition method was employed to develop a poly(ethylene glycol) (PEG)-like coating, which can act as a potential matrix for antimicrobial agents, by envisioning controlled-release food-packaging applications. Different plasma operating parameters, including the input power, monomer flow rate, and gap between the edge of the plasma head and substrate, were optimized to produce a PEG-like coating with a desirable water stability level and that can be biodegradable. The findings revealed that increased distance between the plasma head and substrate intensified gas-phase nucleation and diluted the active plasma species, which in turn led to the formation of a non-conformal rough coating. Conversely, at short plasma-substrate distances, smooth conformal coatings were obtained. Furthermore, at low input powers (<250 W), the chemical structure of the precursor was mostly preserved with a high retention of C-O functional groups due to limited monomer fragmentation. At the same time, these coatings exhibit low stability in water, which could be attributed to their low cross-linking degree. Increasing the power to 350 W resulted in the loss of the PEG-like chemical structure, which is due to the enhanced monomer fragmentation at high power. Nevertheless, owing to the enhanced cross-linking degree, these coatings were more stable in water. Finally, it could be concluded that a moderate input power (250-300 W) should be applied to obtain an acceptable tradeoff between the coating stability and PEG resemblance.
Collapse
Affiliation(s)
- Maryam Zabihzadeh Khajavi
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (F.D.); (P.R.)
- Research Unit Plasma Technology, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium; (A.N.); (M.N.); (N.D.G.)
| | - Anton Nikiforov
- Research Unit Plasma Technology, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium; (A.N.); (M.N.); (N.D.G.)
| | - Maryam Nilkar
- Research Unit Plasma Technology, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium; (A.N.); (M.N.); (N.D.G.)
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (F.D.); (P.R.)
| | - Peter Ragaert
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (F.D.); (P.R.)
| | - Nathalie De Geyter
- Research Unit Plasma Technology, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium; (A.N.); (M.N.); (N.D.G.)
| |
Collapse
|
7
|
A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes (Basel) 2023. [DOI: 10.3390/pr11020590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Food packaging systems are continually impacted by the growing demand for minimally processed foods, changing eating habits, and food safety risks. Minimally processed foods are prone to the growth of harmful microbes, compromising quality and safety. As a result, the need for improved food shelf life and protection against foodborne diseases alongside consumer preference for minimally processed foods with no or lesser synthetic additives foster the development of innovative technologies such as antimicrobial packaging. It is a form of active packaging that can release antimicrobial substances to suppress the activities of specific microorganisms, thereby improving food quality and safety during long-term storage. However, antimicrobial packaging continues to be a very challenging technology. This study highlights antimicrobial packaging concepts, providing different antimicrobial substances used in food packaging. We review various types of antimicrobial systems. Emphasis is given to the effectiveness of antimicrobial packaging in various food applications, including fresh and minimally processed fruit and vegetables and meat and dairy products. For the development of antimicrobial packaging, several approaches have been used, including the use of antimicrobial sachets inside packaging, packaging films, and coatings incorporating active antimicrobial agents. Due to their antimicrobial activity and capacity to extend food shelf life, regulate or inhibit the growth of microorganisms and ultimately reduce the potential risk of health hazards, natural antimicrobial agents are gaining significant importance and attention in developing antimicrobial packaging systems. Selecting the best antimicrobial packaging system for a particular product depends on its nature, desired shelf life, storage requirements, and legal considerations. The current review is expected to contribute to research on the potential of antimicrobial packaging to extend the shelf life of food and also serves as a good reference for food innovation information.
Collapse
|
8
|
A Review of Regulatory Standards and Advances in Essential Oils as Antimicrobials in Foods. J Food Prot 2023; 86:100025. [PMID: 36916569 DOI: 10.1016/j.jfp.2022.100025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022]
Abstract
As essential oils (EOs) possess GRAS status, there is a strong interest in their application to food preservation. Trends in the food industry suggest consumers are drawn to environmentally friendly alternatives and less synthetic chemical preservatives. Although the use of EOs has increased over the years, adverse effects have limited their use. This review aims to address the regulatory standards for EO usage in food, techniques for delivery of EOs, essential oils commonly used to control pathogens and molds, and advances with new active compounds that overcome sensory effects for meat products, fresh fruits and vegetables, fruit and vegetable juices, seafood, dairy products, and other products. This review will show adverse sensory effects can be overcome in various products by the use of edible coatings containing encapsulated EOs to facilitate the controlled release of EOs. Depending on the method of cooking, the food product has been shown to mask flavors associated with EOs. In addition, using active packaging materials can decrease the diffusion rate of the EOs, thus controlling undesirable flavor characteristics while still preserving or prolonging the shelf life of food. The use of encapsulation in packaging film can control the release of volatile or active ingredients. Further, use of EOs in the vapor phase allows for contact indirectly, and use of nanoemulsion, coating, and film wrap allows for the controlled release of the EOs. Research has also shown that combining EOs can prevent adverse sensory effects. Essential oils continue to serve as a very beneficial way of controlling undesirable microorganisms in food systems.
Collapse
|
9
|
Firmanda A, Fahma F, Warsiki E, Syamsu K, Arnata IW, Sartika D, Suryanegara L, Qanytah, Suyanto A. Antimicrobial mechanism of nanocellulose composite packaging incorporated with essential oils. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Cortés LA, Herrera AO, Castellanos DA. Natural plant‐based compounds applied in antimicrobial active packaging and storage of berries. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Lesley A. Cortés
- Post‐Harvest Lab. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Carrera 30 Número 45 ‐ 03 Bogotá Colombia
| | - Aníbal O. Herrera
- Post‐Harvest Lab. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Carrera 30 Número 45 ‐ 03 Bogotá Colombia
| | - Diego A. Castellanos
- Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Carrera 30 Número 45 ‐ 03 Bogotá Colombia
| |
Collapse
|
11
|
Nakamura A, Kawahara A, Takahashi H, Kuda T, Kimura B. Comparison between the Antimicrobial Activity of Essential Oils and Their Components in the Vapor Phase against Food-related Bacteria. J Oleo Sci 2022; 71:411-417. [PMID: 35236799 DOI: 10.5650/jos.ess21337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, the antibacterial properties of the volatile components of four essential oils (cinnamon, clove, origanum, and peppermint oil) and five of their components (allyl isothiocyanate (AITC), carvacrol, citral, eugenol, and (+)-limonene) against five food-related bacteria (Escherichia coli, Listeria monocytogenes, Salmonella Typhimurium, Pseudomonas fluorescens, and Enterococcus faecalis) were evaluated. The results of disc volatilization method revealed that AITC exhibited antibacterial activity against the five tested strains at the lowest concentration, as did cinnamon oil and carvacrol. Moreover, the total aerobic bacterial count in coleslaw salad was suppressed in all test groups treated with AITC compared to that in control.
Collapse
Affiliation(s)
- Ayaka Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Asuka Kawahara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
12
|
|
13
|
Derbassi NB, Pedrosa MC, Heleno S, Carocho M, Ferreira IC, Barros L. Plant volatiles: Using Scented molecules as food additives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Curcumin: A multifunctional molecule for the development of smart and active biodegradable polymer-based films. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Bahmid NA, Dekker M, Fogliano V, Heising J. Development of a moisture-activated antimicrobial film containing ground mustard seeds and its application on meat in active packaging system. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100753] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Bajer D, Burkowska-But A. Innovative and environmentally safe composites based on starch modified with dialdehyde starch, caffeine, or ascorbic acid for applications in the food packaging industry. Food Chem 2021; 374:131639. [PMID: 34839971 DOI: 10.1016/j.foodchem.2021.131639] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023]
Abstract
Biodegradable films based on starch modified with ascorbic acid or caffeine and dialdehyde starch (DS) were evaluated towards their applications in the food packaging industry. The morphology of the films surface was observed with SEM and AFM. The chemical structure was examined with ATR-FTIR spectroscopy and X-ray diffraction. The mechanical, thermal and barrier properties of the films were examined. The cross-linking and hydrophobic effect of dialdehyde starch on starch-based films was proven. Vitamin C addition prompts the crystalline structure formation and improves the hydrophilicity and antioxidant activity of the starch blends. Caffeine addition results in higher starch film hydrophobicity, whereas caffeine combined with DS reduces crystalline order in starch. Both caffeine and ascorbic acid incorporation influence the film stiffness, and dialdehyde starch causes an increase in brittleness. The high susceptibility to biodegradation and good antioxidant activity confirms the potential application of examined systems in the packaging industry.
Collapse
Affiliation(s)
- Dagmara Bajer
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | - Aleksandra Burkowska-But
- Faculty of Biological and Veterinary Science, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| |
Collapse
|
17
|
Development of an antifungal active packaging containing thymol and an ethylene scavenger. Validation during storage of cherry tomatoes. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Lima RC, de Carvalho APA, Vieira CP, Moreira RV, Conte-Junior CA. Green and Healthier Alternatives to Chemical Additives as Cheese Preservative: Natural Antimicrobials in Active Nanopackaging/Coatings. Polymers (Basel) 2021; 13:2675. [PMID: 34451212 PMCID: PMC8398146 DOI: 10.3390/polym13162675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023] Open
Abstract
The side effects and potential impacts on human health by traditional chemical additives as food preservatives (i.e., potassium and sodium salts) are the reasons why novel policies are encouraged by worldwide public health institutes. More natural alternatives with high antimicrobial efficacy to extend shelf life without impairing the cheese physicochemical and sensory quality are encouraged. This study is a comprehensive review of emerging preservative cheese methods, including natural antimicrobials (e.g., vegetable, animal, and protist kingdom origins) as a preservative to reduce microbial cheese contamination and to extend shelf life by several efforts such as manufacturing ingredients, the active ingredient for coating/packaging, and the combination of packaging materials or processing technologies. Essential oils (EO) or plant extracts rich in phenolic and terpenes, combined with packaging conditions and non-thermal methods, generally showed a robust microbial inhibition and prolonged shelf life. However, it impaired the cheese sensory quality. Alternatives including EO, polysaccharides, polypeptides, and enzymes as active ingredients/nano-antimicrobials for an edible film of coating/nano-bio packaging showed a potent and broad-spectrum antimicrobial action during shelf life, preserving cheese quality parameters such as pH, texture, color, and flavor. Future opportunities were identified in order to investigate the toxicological effects of the discussed natural antimicrobials' potential as cheese preservatives.
Collapse
Affiliation(s)
- Rayssa Cruz Lima
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
| | - Anna Paula Azevedo de Carvalho
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
| | - Carla P. Vieira
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
| | - Rodrigo Vilela Moreira
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230340, RJ, Brazil;
| | - Carlos Adam Conte-Junior
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil; (R.C.L.); (C.P.V.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro 21941598, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230340, RJ, Brazil;
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, RJ, Brazil
| |
Collapse
|
19
|
Prakash J, Arora NK. Novel metabolites from Bacillus safensis and their antifungal property against Alternaria alternata. Antonie Van Leeuwenhoek 2021; 114:1245-1258. [PMID: 34076810 DOI: 10.1007/s10482-021-01598-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
Plant growth promoting rhizobacteria offer an effective and eco-sustainable solution to protect crops against phytopathogens. In the present study, Bacillus safensis STJP (NAIMCC-B-02323) from the rhizospheric soil of Stevia rebaudiana showed strong biocontrol activity against phytopathogen, Alternaria alternata. B. safensis STJP produced antifungal volatile organic compounds (AVOC). In the presence of AVOC, there was no conidia germination, mycelium growth was inhibited, and hyphae ruptured as observed by scanning electron microscopy. When mycelium of the fungus from bacterial treated plate was transferred into fresh potato dextrose agar plate, A. alternata could not grow. Extracted AVOC from B. safensis STJP were identified by thin-layer chromatography (TLC), Fourier-transform-infrared (FTIR) spectroscopy and gas-chromatography-mass spectrometry (GC-MS). In total 25 bacterial metabolites were identified by GC-MS analysis having alcohol, alkane, phenol, alkyl halide and aromatic compounds. Five of these (phenol, 2,4-bis (1,1-dimethylethyl)-, 3-hexadecanol, pyrrolo(1,2-a)pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-, 5,10-diethoxy-2,3,7,8-tetrahydro-1H,6H-dipyrrolo(1,2-a:1',2'-d)pyrazine and hexadecanoic acid) inhibited the mycelium growth, controlling spore formation and conidia germination of A. alternata. This study concluded that AVOC producing B. safensis can be used as a green-fungicide against A. alternata. Bacterial metabolites could pave the way for the development of next generation biopesticides. This can be a reliable technology to enhance the quality and reliability of biopesticides.
Collapse
Affiliation(s)
- Jai Prakash
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Naveen Kumar Arora
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
20
|
Salgado PR, Di Giorgio L, Musso YS, Mauri AN. Recent Developments in Smart Food Packaging Focused on Biobased and Biodegradable Polymers. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.630393] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Food packaging has a crucial function in the modern food industry. New food packaging technologies seek to meet consumers and industrial's demands. Changes related to food production, sale practices and consumers' lifestyles, along with environmental awareness and the advance in new areas of knowledge (such as nanotechnology or biotechnology), act as driving forces to develop smart packages that can extend food shelf-life, keeping and supervising their innocuousness and quality and also taking care of the environment. This review describes the main concepts and types of active and intelligent food packaging, focusing on recent progress and new trends using biodegradable and biobased polymers. Numerous studies show the great possibilities of these materials. Future research needs to focus on some important aspects such as possibilities to scale-up, costs, regulatory aspects, and consumers' acceptance, to make these systems commercially viable.
Collapse
|
21
|
Trajkovska Petkoska A, Daniloski D, D'Cunha NM, Naumovski N, Broach AT. Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res Int 2021; 140:109981. [PMID: 33648216 DOI: 10.1016/j.foodres.2020.109981] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022]
Abstract
Novel food packaging techniques are an important area of research to promote food quality and safety. There is a trend towards environmentally sustainable and edible forms of packaging. Edible packaging typically uses sustainable, biodegradable material that is applied as a consumable wrapping or coating around the food, which generates no waste. Numerous studies have recently investigated the importance of edible materials as an added value to packaged foods. Nanotechnology has emerged as a promising method to provide use of bioactives, antimicrobials, vitamins, antioxidants and nutrients to potentially increase the functionality of edible packaging. It can act as edible dispensers of food ingredients as encapsulants, nanofibers, nanoparticles and nanoemulsions. In this way, edible packaging serves as an active form of packaging. It plays an important role in packaged foods by desirably interacting with the food and providing technological functions such as releasing scavenging compounds (antimicrobials and antioxidants), and removing harmful gasses such as oxygen and water vapour which all can decrease products quality and shelf life. Active packaging can also contribute to maintaining the nutritive profile of packaged foods. In this review, authors present the latest information on new technological advances in edible food packaging, their novel applications and provide examples of recent studies where edible packaging possesses also an active role.
Collapse
Affiliation(s)
- Anka Trajkovska Petkoska
- Faculty of Technology and Technical Sciences, St. Clement of Ohrid University of Bitola, Dimitar Vlahov, 1400 Veles, Republic of North Macedonia.
| | - Davor Daniloski
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities and College of Health and Biomedicine, Victoria University, Melbourne, VIC 8001, Australia; Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland.
| | - Nathan M D'Cunha
- Faculty of Health, School of Rehabilitation and Exercise Sciences, Department of Food Science and Human Nutrition, University of Canberra, Bruce, ACT 2617, Australia.
| | - Nenad Naumovski
- Faculty of Health, School of Rehabilitation and Exercise Sciences, Department of Food Science and Human Nutrition, University of Canberra, Bruce, ACT 2617, Australia.
| | - Anita T Broach
- CSI: Create.Solve.Innovate. LLC, 2020 Kraft Dr., Suite 3007, Blacksburg, VA 24060, USA.
| |
Collapse
|
22
|
Ahmed S, Sameen DE, Lu R, Li R, Dai J, Qin W, Liu Y. Research progress on antimicrobial materials for food packaging. Crit Rev Food Sci Nutr 2020; 62:3088-3102. [DOI: 10.1080/10408398.2020.1863327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Dur E. Sameen
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Rui Lu
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Rui Li
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya’an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, China
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Ahankari SS, Subhedar AR, Bhadauria SS, Dufresne A. Nanocellulose in food packaging: A review. Carbohydr Polym 2020; 255:117479. [PMID: 33436241 DOI: 10.1016/j.carbpol.2020.117479] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 01/17/2023]
Abstract
The research in eco-friendly and sustainable materials for packaging applications with enhanced barrier, thermo-mechanical, rheological and anti-bacterial properties has accelerated in the last decade. Last decade has witnessed immense interest in employing nanocellulose (NC) as a sustainable and biodegradable alternative to the current synthetic packaging barrier films. This review article gathers the research information on NC as a choice for food packaging material. It reviews on the employment of NC and its various forms including its chemico-physical treatments into bio/polymers and its impact on the performance of nanocomposites for food packaging application. The review reveals the fact that the research trends towards NC based materials are quite promising for Active Packaging (AP) applications, including the Controlled Release Packaging (CRP) and Responsive Packaging (RP). Finally, it summarizes with the challenges of sustainable packaging, gray areas that need an improvement/focus in order to commercially exploit this wonderful material for packaging application.
Collapse
Affiliation(s)
- Sandeep S Ahankari
- School of Mechanical Engineering, VIT University, Vellore, TN, 632014, India.
| | - Aditya R Subhedar
- School of Mechanical Engineering, VIT University, Vellore, TN, 632014, India
| | - Swarnim S Bhadauria
- School of Mechanical Engineering, VIT University, Vellore, TN, 632014, India
| | - Alain Dufresne
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000, Grenoble, France
| |
Collapse
|
24
|
Drago E, Campardelli R, Pettinato M, Perego P. Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods 2020; 9:E1628. [PMID: 33171881 PMCID: PMC7695158 DOI: 10.3390/foods9111628] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/21/2023] Open
Abstract
Innovation in food packaging is mainly represented by the development of active and intelligent packing technologies, which offer to deliver safer and high-quality food products. Active packaging refers to the incorporation of active component into the package with the aim of maintaining or extending the product quality and shelf-life. The intelligent systems are able to monitor the condition of packaged food in order to provide information about the quality of the product during transportation and storage. These packaging technologies can also work synergistically to yield a multipurpose food packaging system. This review is a critical and up-dated analysis of the results reported in the literature about this fascinating and growing field of research. Several aspects are considered and organized going from the definitions and the regulations, to the specific functions and the technological aspects regarding the manufacturing technologies, in order to have a complete overlook on the overall topic.
Collapse
Affiliation(s)
| | | | - Margherita Pettinato
- Department of Civil, Chemical and Environmental Engineering (DICCA), Polytechnique School, University of Genoa, Via Opera Pia 15, 16145 Genova, Italy; (E.D.); (R.C.); (P.P.)
| | | |
Collapse
|
25
|
Estevez-Areco S, Guz L, Candal R, Goyanes S. Active bilayer films based on cassava starch incorporating ZnO nanorods and PVA electrospun mats containing rosemary extract. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106054] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Hassoun A, Carpena M, Prieto MA, Simal-Gandara J, Özogul F, Özogul Y, Çoban ÖE, Guðjónsdóttir M, Barba FJ, Marti-Quijal FJ, Jambrak AR, Maltar-Strmečki N, Kljusurić JG, Regenstein JM. Use of Spectroscopic Techniques to Monitor Changes in Food Quality during Application of Natural Preservatives: A Review. Antioxidants (Basel) 2020; 9:E882. [PMID: 32957633 PMCID: PMC7555908 DOI: 10.3390/antiox9090882] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Consumer demand for food of high quality has driven research for alternative methods of food preservation on the one hand, and the development of new and rapid quality assessment techniques on the other hand. Recently, there has been a growing need and interest in healthier food products, which has led to an increased interest in natural preservatives, such as essential oils, plant extracts, and edible films and coatings. Several studies have shown the potential of using biopreservation, natural antimicrobials, and antioxidant agents in place of other processing and preservation techniques (e.g., thermal and non-thermal treatments, freezing, or synthetic chemicals). Changes in food quality induced by the application of natural preservatives have been commonly evaluated using a range of traditional methods, including microbiology, sensory, and physicochemical measurements. Several spectroscopic techniques have been proposed as promising alternatives to the traditional time-consuming and destructive methods. This review will provide an overview of recent studies and highlight the potential of spectroscopic techniques to evaluate quality changes in food products following the application of natural preservatives.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, 9291 Tromsø, Norway
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | - Yeşim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | | | - María Guðjónsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, 113 Reykjavík, Iceland;
- Matis, Food and Biotech R&D, 113 Reykjavík, Iceland
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Francisco J. Marti-Quijal
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Nadica Maltar-Strmečki
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička c. 54, 10 000 Zagreb, Croatia;
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| |
Collapse
|
27
|
Developing a Commercial Antimicrobial Active Packaging System of Ground Beef Based on " Tsipouro" Alcoholic Distillate. Foods 2020; 9:foods9091171. [PMID: 32854273 PMCID: PMC7555391 DOI: 10.3390/foods9091171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to develop a commercial active packaging system of ground beef, by exploiting the antimicrobial and antioxidant properties of a traditional Greek alcoholic distillate called “tsipouro”. Commercial packages (500 g) were used and 40 mL of “tsipouro” was added in absorbent pads placed underneath the ground beef, while 10 mL was also mounted under the packaging film, facing the headspace. Samples were packaged in 80% O2: 20% CO2 and stored at 0, 4, 8, and 12 °C. Total Viable Counts, pseudomonads, Brochothrix thermosphacta, lactic acid bacteria, yeasts-moulds, pH, colour (L*, a*, b*), odour (buttery and acidic), and ethanol migration to ground beef (SPME/GC-FID) were determined. Moreover, mathematical models (square root and Arrhenius) describing the effect of temperature on determinant indicators of spoilage and quality deterioration like growth of dominant microorganisms and red colour reduction were developed and validated under non-isothermal conditions. B. thermosphacta dominated the microbial association of ground beef, while LAB were second in dominance, revealing a high growth potential at all assays. a* value (redness) was gradually decreased in controls, while samples treated with “tsipouro” showed more stable red colour during storage. Although ethanol was organoleptically detectable, especially at low storage temperatures (0–4 °C), it was rather perceived as a pleasant cool odour. Prediction by both models for microbial growth as well as those of Arrhenius model for reduction of a* value showed good agreement with the observations under non-isothermal storage. Overall, our study showed that the developed antimicrobial active packaging of ground beef based on “tsipouro”, combined with high oxygen MAP lead to an almost 2-fold shelf-life extension compared with controls during storage at chill and abuse temperatures.
Collapse
|
28
|
Solano RJ, Sierra CA, Ávila Murillo M. Antifungal activity of LDPE/lauric acid films against Colletotrichum tamarilloi. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Radfar R, Hosseini H, Farhodi M, Ghasemi I, Średnicka-Tober D, Shamloo E, Khaneghah AM. Optimization of antibacterial and mechanical properties of an active LDPE/starch/nanoclay nanocomposite film incorporated with date palm seed extract using D-optimal mixture design approach. Int J Biol Macromol 2020; 158:S0141-8130(20)33003-8. [PMID: 32380104 DOI: 10.1016/j.ijbiomac.2020.04.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/19/2020] [Accepted: 04/18/2020] [Indexed: 11/16/2022]
Abstract
A novel active LDPE/TPS nanocomposite films containing date palm seed extracts (Kabkab variety) were developed using D-optimal mixture design. 20 different blends of components including LDPE, TPS, Cloisite 20A, PE-g-MA, EDTA and date palm seed extracts in different proportions were prepared. Using trace and counter plots the effects of each component on the mechanical and antibacterial properties of the composites were studied. The results showed that the films containing a mixture of date seed extract and EDTA had notable antibacterial activity against E. coli and S. aureus; however, these components weakened the mechanical properties of the prepared films. At the same time Cloisite 20A nanoparticles strengthened the films mechanical properties. The optimized formulation for the overall best antibacterial and mechanical properties was 67.5 wt% for LDPE, 4.1 wt% for date seed extract, 2.8 wt% for Cloisite 20A and 2.5 wt% for EDTA. The studied properties of the manufactured film samples were close to the values predicted by the model.
Collapse
Affiliation(s)
- Ramin Radfar
- Department of Food Science and Technology, Faculty of Nutrition Sciences, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Agricultural and Food Policy, Agricultural Planning and Economics Researches Institute (APERI), Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Farhodi
- Department of Food Science and Technology, Faculty of Nutrition Sciences, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ismail Ghasemi
- Department of Plastics, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Dominika Średnicka-Tober
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Ehsan Shamloo
- Department of Food Science and Technology, Faculty of Nutrition Sciences, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Sao Paulo, Brazil
| |
Collapse
|
30
|
Berdejo D, Pagán E, García-Gonzalo D, Pagán R. Exploiting the synergism among physical and chemical processes for improving food safety. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2018.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Pavli F, Argyri AA, Skandamis P, Nychas GJ, Tassou C, Chorianopoulos N. Antimicrobial Activity of Oregano Essential Oil Incorporated in Sodium Alginate Edible Films: Control of Listeria monocytogenes and Spoilage in Ham Slices Treated with High Pressure Processing. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3726. [PMID: 31718078 PMCID: PMC6887770 DOI: 10.3390/ma12223726] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 01/02/2023]
Abstract
The aim of the study was to evaluate the efficacy of oregano essential oil (OEO) incorporated in Na-alginate edible films when applied to sliced ham inoculated with a cocktail of Listeria monocytogenes strains, with or without pretreatment by high pressure processing (HPP). Microbiological, physicochemical and sensory analyses (in Listeria-free slices) were performed, while, the presence/absence and the relative abundance of each Listeria strain, was monitored by pulsed field gel electrophoresis (PFGE). The OEO incorporation in the films, caused approximately 1.5 log reduction in Listeria population at 8 and 12 °C at the end of the storage period, and almost 2.5 log reduction at 4 °C. The HPP treatment caused 1 log reduction to the initial Listeria population, while levels kept on decreasing throughout the storage for all the tested temperatures. The pH of the samples was higher in the cases where HPP was involved, and the samples were evaluated as less spoiled. Furthermore, the presence of OEO in the films resulted in color differences compared to the control samples, whilst the aroma of these samples was improved. In conclusion, the combined application of HPP and OEO edible films on the slices, led to a significant reduction or absence of the pathogen.
Collapse
Affiliation(s)
- Foteini Pavli
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lycovrissi, 14123 Attica, Greece; (F.P.); (A.A.A.); (C.T.)
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lycovrissi, 14123 Attica, Greece; (F.P.); (A.A.A.); (C.T.)
| | - Panagiotis Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;
| | - Chrysoula Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lycovrissi, 14123 Attica, Greece; (F.P.); (A.A.A.); (C.T.)
| | - Nikos Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lycovrissi, 14123 Attica, Greece; (F.P.); (A.A.A.); (C.T.)
| |
Collapse
|
32
|
Eremeeva N, Makarova N, Zhidkova E, Maximova V, Lesova E. Ultrasonic and microwave activation of raspberry extract: antioxidant and anti-carcinogenic properties. FOODS AND RAW MATERIALS 2019. [DOI: 10.21603/2308-4057-2019-2-264-273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Safe and healthy nutrition has a beneficial effect on human well-being. Various foods, such as berries, are known to inhibit cancer-promoting pre-proliferative signals. Among European fruit and berry crops, raspberries demonstrate one with the widest ranges of biologically active substances. Extraction remains a reliable method of obtaining biologically active substances from plant materials. The research objective was to obtain a semi-finished raspberry product by using microwave and ultrasonic processing and to study its antioxidant, anti-carcinogenic, sensory, physico-chemical, and microbiological properties. The raspberry extracts were obtained by maceration, ultrasound treatment, and microwave processing. After that, the samples underwent a comparative analysis of their antioxidant properties. The ultrasonic method gave the best results. A set of experiments made it possible to define the optimal technological modes for the extraction process: ethanol = 50%, ultrasonic radiation = 35 kHz, temperature = 40 ± 5°C, time = 120 min, water ratio = 1:10. A set of experiments on cell cultures demonstrated that the raspberry extract was able to reduce the expression of the anti-inflammatory COX-2, iNOS, and IL-8 genes. Hense, we recommend further studies of the effect of the raspberry extract on the induced expression of COX-2, iNOS, and IL-8. In addition, its anticarcinogenic properties have to be studied in vivo.
Collapse
|
33
|
|
34
|
Dong H, He J, Xiao K, Li C. Temperature‐sensitive polyurethane (
TSPU
) film incorporated with carvacrol and cinnamyl aldehyde: antimicrobial activity, sustained release kinetics and potential use as food packaging for Cantonese‐style moon cake. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hao Dong
- School of Food Science and Engineering South China University of Technology No. 381, Wushan Road Tianhe District Guangzhou510640China
| | - Jiapeng He
- School of Food Science and Engineering South China University of Technology No. 381, Wushan Road Tianhe District Guangzhou510640China
| | - Kaijun Xiao
- School of Food Science and Engineering South China University of Technology No. 381, Wushan Road Tianhe District Guangzhou510640China
| | - Chao Li
- School of Food Science and Engineering South China University of Technology No. 381, Wushan Road Tianhe District Guangzhou510640China
| |
Collapse
|
35
|
Kapetanakou AE, Nestora S, Evageliou V, Skandamis PN. Sodium alginate–cinnamon essential oil coated apples and pears: Variability of Aspergillus carbonarius growth and ochratoxin A production. Food Res Int 2019; 119:876-885. [DOI: 10.1016/j.foodres.2018.10.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
|
36
|
Zanetti M, Carniel TK, Dalcanton F, dos Anjos RS, Gracher Riella H, de Araújo PH, de Oliveira D, Antônio Fiori M. Use of encapsulated natural compounds as antimicrobial additives in food packaging: A brief review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Vilela C, Kurek M, Hayouka Z, Röcker B, Yildirim S, Antunes MDC, Nilsen-Nygaard J, Pettersen MK, Freire CS. A concise guide to active agents for active food packaging. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.08.006] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: A review. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.06.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Pavli F, Tassou C, Nychas GJE, Chorianopoulos N. Probiotic Incorporation in Edible Films and Coatings: Bioactive Solution for Functional Foods. Int J Mol Sci 2018; 19:E150. [PMID: 29300362 PMCID: PMC5796099 DOI: 10.3390/ijms19010150] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 12/25/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
Nowadays, the consumption of food products containing probiotics, has increased worldwide due to concerns regarding healthy diet and wellbeing. This trend has received a lot of attention from the food industries, aiming to produce novel probiotic foods, and from researchers, to improve the existing methodologies for probiotic delivery or to develop and investigate new possible applications. In this sense, edible films and coatings are being studied as probiotic carriers with many applications. There is a wide variety of materials with film-forming ability, possessing different characteristics and subsequently affecting the final product. This manuscript aims to provide significant information regarding probiotics and active/bioactive packaging, to review applications of probiotic edible films and coatings, and to discuss certain limitations of their use as well as the current legislation and future trends.
Collapse
Affiliation(s)
- Foteini Pavli
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lycovrissi, 14123 Attica, Greece.
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | - Chrysoula Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lycovrissi, 14123 Attica, Greece.
| | - George-John E Nychas
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | - Nikos Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lycovrissi, 14123 Attica, Greece.
| |
Collapse
|
40
|
Hassoun A, Emir Çoban Ö. Essential oils for antimicrobial and antioxidant applications in fish and other seafood products. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.07.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Yu Z, Alsammarraie FK, Nayigiziki FX, Wang W, Vardhanabhuti B, Mustapha A, Lin M. Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films. Food Res Int 2017; 99:166-172. [PMID: 28784473 DOI: 10.1016/j.foodres.2017.05.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/30/2017] [Accepted: 05/12/2017] [Indexed: 01/09/2023]
Abstract
Cellulose nanofibrils (CNFs) are superfine cellulose fibrils with a nanoscale diameter and have gained increasing attention due to their great potential in the food industry. However, the applications of CNFs in active food packaging are still limited. The objectives of this study were to develop biopolymer-based edible nanocomposite films using CNFs, corn starch, and chitosan, and to investigate the effect and mechanisms of CNFs on the active functions and properties of the nanocomposite films. Important functional properties of the films were measured and the films were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Zetasizer. The results demonstrate that CNFs increased the rigidity of the films due to more hydrogen bonds being induced by CNFs (≥60%). Incorporating a high content of CNFs (≥60%) in the film resulted in enhanced filling effect on the structure of the biopolymer films, which significantly improved the light barrier, oxygen barrier and water vapor barrier capacities. As CNF content increased to 100%, the film opacity increased by 59%, while the peroxide value of corn oil protected with edible films was reduced by 23%. Furthermore, the antimicrobial properties of the edible films with 80% and 100% CNFs were increased by up to 2logCFU/g on day 8 in a beef model, due to more positive charges in the films and improved blocking effects on oxygen. These results demonstrate that CNFs can effectively enhance the antimicrobial effect and barrier properties of biopolymer-based nanocomposite films and have great potential in applications of active packaging for food products.
Collapse
Affiliation(s)
- Zhilong Yu
- Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Fouad K Alsammarraie
- Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Francois Xavier Nayigiziki
- Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Wei Wang
- Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Bongkosh Vardhanabhuti
- Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Azlin Mustapha
- Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| | - Mengshi Lin
- Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
42
|
|
43
|
|
44
|
Pola CC, Medeiros EA, Pereira OL, Souza VG, Otoni CG, Camilloto GP, Soares NF. Cellulose acetate active films incorporated with oregano ( Origanum vulgare ) essential oil and organophilic montmorillonite clay control the growth of phytopathogenic fungi. Food Packag Shelf Life 2016. [DOI: 10.1016/j.fpsl.2016.07.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|