1
|
Rangel AHDN, Bezerra DAFVDA, Sales DC, Araújo EDOM, Lucena LMD, Porto ALF, Véras ÍVUM, Lacerda AF, Ribeiro CVDM, Anaya K. An Overview of the Occurrence of Bioactive Peptides in Different Types of Cheeses. Foods 2023; 12:4261. [PMID: 38231707 DOI: 10.3390/foods12234261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 01/19/2024] Open
Abstract
The search for improvements in quality of life has increasingly involved changes in the diet, especially the consumption of foods which, in addition to having good nutritional value, are characterized by offering health benefits. Among the molecules that trigger several beneficial responses are peptides, which are specific fragments of proteins known to produce positive effects on the human body. This review aimed to discuss the bioactive potential of peptides from cheeses. Studies show that the protein composition of some cheese varieties exhibits a potential for the release of bioactive peptides. The production of these peptides can be promoted by some technological procedures that affect the milk structure and constituents. The cheese maturation process stands out for producing bioactive peptides due to the action of enzymes produced by lactic acid bacteria. Thus, in addition to being proteins with high biological value due to their excellent amino acid profile, peptides from some types of cheeses are endowed with functional properties such as anti-hypertensive, antimicrobial, antioxidant, anticarcinogenic, opioid, and zinc-binding activities.
Collapse
Affiliation(s)
| | | | - Danielle Cavalcanti Sales
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba 59280000, Brazil
| | | | - Luis Medeiros de Lucena
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba 59280000, Brazil
| | - Ana Lúcia Figueiredo Porto
- Morfology and Animal Fisiology Departament, Rural Federal University of Pernambuco (UFRPE), Recife 55292901, Brazil
| | | | - Ariane Ferreira Lacerda
- Federal Institute of Education, Science and Technology (IFRN), Currais Novos 59380000, Brazil
| | | | - Katya Anaya
- Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte (UFRN), Santa Cruz 59200000, Brazil
| |
Collapse
|
2
|
Abad I, Vignard J, Bouchenot C, Graikini D, Grasa L, Pérez MD, Mirey G, Sánchez L. Dairy By-Products and Lactoferrin Exert Antioxidant and Antigenotoxic Activity on Intestinal and Hepatic Cells. Foods 2023; 12:foods12102073. [PMID: 37238891 DOI: 10.3390/foods12102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/14/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The dairy industry generates a large volume of by-products containing bioactive compounds that may have added value. The aim of this study was to evaluate the antioxidant and antigenotoxic effects of milk-derived products, such as whey, buttermilk, and lactoferrin, in two human cell lines: Caco-2 as an intestinal barrier model and HepG2 as a hepatic cell line. First, the protective effect of dairy samples against the oxidative stress caused by menadione was analyzed. All these dairy fractions significantly reversed the oxidative stress, with the non-washed buttermilk fraction presenting the greatest antioxidant effect for Caco-2 cells and lactoferrin as the best antioxidant for HepG2 cells. At concentrations that did not impact cell viability, we found that the dairy sample with the highest antigenotoxic power against menadione, in both cell lines, was lactoferrin at the lowest concentration. Additionally, dairy by-products maintained their activity in a coculture of Caco-2 and HepG2, mimicking the intestinal-liver axis. This result suggests that the compounds responsible for the antioxidant activity could cross the Caco-2 barrier and reach HepG2 cells on the basal side, exerting their function on them. In conclusion, our results show that dairy by-products have antioxidant and antigenotoxic activities, which would allow revaluing their use in food specialties.
Collapse
Affiliation(s)
- Inés Abad
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Julien Vignard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Catherine Bouchenot
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Dimitra Graikini
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Laura Grasa
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - María Dolores Pérez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Gladys Mirey
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
3
|
Valchkov A, Loginovska K, Doneva M, Ninova-Nikolova N, Metodieva P. Comparative analysis of the degree of hydrolysis and antioxidant activity of milk and whey hydrolysates. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235801002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The degree of hydrolysis and antioxidant activity of protein hydrolysates from fresh cow’s milk and whey obtained by the action of the proteolytic enzymes papain, bromelain and chymosin were compared. The lowest degree of hydrolysis in fresh milk hydrolysates was reported for sample MP1 (10 min reaction time, treatment with 0.1 mg/ml papain), and the highest percentage was obtained at hydrolysate MB12 (at 60 min reaction time, treatment with 1.0 mg/ml bromelain). For the whey samples in sample WC1 (10 min reaction time, treatment with 1.0 μl/ml chymosin), the percentage of hydrolysis was the lowest. The highest percentage was achieved at WP12 hydrolysate using papain at a concentration of 1 mg/ml and a 60-min reaction time. The obtained values for the antioxidant capacity of the hydrolysed products show a higher activity compared to the starting substrates. The highest activity in the milk hydrolysates of 11.32 mg TE/100 ml was found in variant MB3, and in the whey hydrolysates of 7.83 mg TE/100 ml - in variant WP7. Hydrolysates treated with chymosin had lower TE values compared to the hydrolysate’s variants, treated with papain and bromelain.
Collapse
|
4
|
Castellone V, Prandi B, Bancalari E, Tedeschi T, Gatti M, Bottari B. Peptide profile of Parmigiano Reggiano cheese after simulated gastrointestinal digestion: From quality drivers to functional compounds. Front Microbiol 2022; 13:966239. [PMID: 36081785 PMCID: PMC9445588 DOI: 10.3389/fmicb.2022.966239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Time of ripening has a strong impact on shaping the valuable and recognizable characteristics of long-ripened types of cheese such as Parmigiano Reggiano (PR) due to the interrelationship between microbiota and proteolysis that occurs during ripening. The derived peptide profile is linked to cheese quality and represents the canvas for enzymes upon digestion, which could be responsible for the release of potentially bioactive peptides (BPs). In this study, we aimed at investigating the presence of BP in 72 PR cheese samples of different ripening times, from curd to 24 months of ripening, produced in six different dairies, and following their fate after simulated gastrointestinal digestion. A small number of peptide sequences sharing 100% similarity with known antimicrobial, antioxidant, and ACE-inhibitor sequences were found in PR cheeses, while a higher number of potential BPs were found after their simulated gastrointestinal digestion, in different amounts according to ripening time. Taking advantage of the complex organization of the sampling plan, we were able to follow the fate of peptides considered quality drivers during cheese ripening to their release as functional compounds upon digestion.
Collapse
|
5
|
Murtaza MA, Irfan S, Hafiz I, Ranjha MMAN, Rahaman A, Murtaza MS, Ibrahim SA, Siddiqui SA. Conventional and Novel Technologies in the Production of Dairy Bioactive Peptides. Front Nutr 2022; 9:780151. [PMID: 35694165 PMCID: PMC9178506 DOI: 10.3389/fnut.2022.780151] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background In recent years, researchers have focused on functional ingredients, functional foods, and nutraceuticals due to the rapidly increasing interest in bioactive components, especially in bioactive peptides. Dairy proteins are a rich and balanced source of amino acids and their derived bioactive peptides, which possess biological and physiological properties. In the dairy industry, microbial fermentation and enzymatic hydrolysis are promising methods for producing bioactive peptides because of their rapid efficiency, and mild reaction conditions. However, these methods utilize less raw material, take long reaction time, result in low yields, and low activity products when used alone, which pose industry to seek for novel methods as pretreatments to increase the yield of bioactive peptides. Scope and Approach This review emphasizes the production of peptides from the dairy proteins and discusses the potential use of novel technologies as pretreatments to conventional methods of bioactive peptides production from dairy proteins, including the mechanisms of novel technologies along with respective examples of use, advantages, limitations, and challenges to each technology. Key Findings and Conclusion Noteworthily, hydrolysis of dairy proteins liberate wide-range of peptides that possess remarkable biological functions to maintain human health. Novel technologies in the dairy industry such as ultrasound-assisted processing (UAP), microwave-assisted processing (MAP), and high pressure processing (HPP) are innovative and environmentally friendly. Generally, novel technologies are less effectual compared to conventional methods, therefore used in combination with fermentation and enzymatic hydrolysis, and are promising pretreatments to modify peptides’ profile, improve the yields, and high liberation of bioactive peptides as compared to conventional technologies. UAP is an innovative and most efficient technology as its mechanical effects and cavitation change the protein conformation, increase the biological activities of enzymes, and enhance enzymatic hydrolysis reaction rate.
Collapse
Affiliation(s)
- Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
- *Correspondence: Mian Anjum Murtaza,
| | - Shafeeqa Irfan
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Iram Hafiz
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | | | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Mian Shamas Murtaza
- Department of Food Science and Technology, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, Pakistan
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
- Salam A. Ibrahim,
| | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| |
Collapse
|
6
|
Kang L, Han T, Cong H, Yu B, Shen Y. Recent research progress of biologically active peptides. Biofactors 2022; 48:575-596. [PMID: 35080058 DOI: 10.1002/biof.1822] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
With the rapid development of molecular biology and biochemical technology, great progress has been made in the study of peptides. Peptides are easy to digest and absorb, with lowering of blood pressure and cholesterol, improving immunity, regulating hormones, antibacterial, and antiviral effects. Peptides also have physiological regulation and biological metabolism functions with applications in the fields of feed production and biomedical research. In the future, the research focus of bioactive peptides will focus on their efficient preparation and application. This article introduces a comprehensive review of the types, synthesis, functionalization, and bio-related applications of bioactive peptides. For this aim, we introduced in detail various biopeptides and then presented the production methods of bioactive peptides, such as enzymatic synthesis, microbial fermentation, chemical synthesis, and others. The applications of bioactive peptides for anticancers, immune therapy, antibacterial, and other applications have been introduced and discussed. And discussed the development prospects of biologically active peptides.
Collapse
Affiliation(s)
- Linlin Kang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Tingting Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Stobiecka M, Król J, Brodziak A. Antioxidant Activity of Milk and Dairy Products. Animals (Basel) 2022; 12:245. [PMID: 35158569 PMCID: PMC8833589 DOI: 10.3390/ani12030245] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of the study was to present a review of literature data on the antioxidant potential of raw milk and dairy products (milk, fermented products, and cheese) and the possibility to modify its level at the milk production and processing stage. Based on the available reports, it can be concluded that the consumption of products that are a rich source of bioactive components improves the antioxidant status of the organism and reduces the risk of development of many civilization diseases. Milk and dairy products are undoubtedly rich sources of antioxidant compounds. Various methods, in particular, ABTS, FRAP, and DPPH assays, are used for the measurement of the overall antioxidant activity of milk and dairy products. Research indicates differences in the total antioxidant capacity of milk between animal species, which result from the differences in the chemical compositions of their milk. The content of antioxidant components in milk and the antioxidant potential can be modified through animal nutrition (e.g., supplementation of animal diets with various natural additives (herbal mixtures, waste from fruit and vegetable processing)). The antioxidant potential of dairy products is associated with the quality of the raw material as well as the bacterial cultures and natural plant additives used. Antioxidant peptides released during milk fermentation increase the antioxidant capacity of dairy products, and the use of probiotic strains contributes its enhancement. Investigations have shown that the antioxidant activity of dairy products can be enhanced by the addition of plant raw materials or their extracts in the production process. Natural plant additives should therefore be widely used in animal nutrition or as functional additives to dairy products.
Collapse
Affiliation(s)
| | - Jolanta Król
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (M.S.); (A.B.)
| | | |
Collapse
|
8
|
Gonchigar S, Sannaningaiah D, Hanumegowda S, Srinivasa C, Shivaiah A, Venkatappa M, Hanumanthappa R, Rangappa R, Laxmaiah R. Protein extract of kenaf seed exhibits anticoagulant, antiplatelet and antioxidant activities. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.335693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Jia L, Wang L, Liu C, Liang Y, Lin Q. Bioactive peptides from foods: production, function, and application. Food Funct 2021; 12:7108-7125. [PMID: 34223585 DOI: 10.1039/d1fo01265g] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioactive peptides are a class of peptides with special physiological functions and have potential applications in human health and disease prevention. Bioactive peptides have gained much research attention because they affect the cardiovascular, endocrine, immune, and nervous systems. Recent research has reported that bioactive peptides are of great value for physiological function regulation, including antioxidation, anti-hypertension, antithrombosis, antibacterial properties, anti-cancer, anti-inflammation, anti-diabetic, anti-obesity, cholesterol-lowering, immunoregulation, mineral binding and opioid activities. The production of food-derived bioactive peptides is mainly through the hydrolysis of digestive enzymes and proteolytic enzymes or microbial fermentation. The purpose of this review is to introduce the production, function, application, challenges, and prospects of food-derived bioactive peptides.
Collapse
Affiliation(s)
- Liting Jia
- Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Rice and By-product Deep Processing, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | | | | | | | | |
Collapse
|
10
|
Cakir B, Tunali-Akbay T. Potential anticarcinogenic effect of goat milk-derived bioactive peptides on HCT-116 human colorectal carcinoma cell line. Anal Biochem 2021; 622:114166. [PMID: 33726980 DOI: 10.1016/j.ab.2021.114166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 01/06/2023]
Abstract
Novel food-derived anti cancerogenic bioactive peptides were characterized by goat milk pepsin hydrolysate. Pepsin treated casein fraction of goat milk caused an apoptotic cell death on the HCT116 cell lines. These bioactive peptides are encrypted in the protein structure in the inactive form and can become active during gastrointestinal digestion in the body. In this study, the possible therapeutic effect of goat milk-based bioactive peptides on human colorectal cancer cell lines was investigated. Goat milk-derived bioactive peptides were extracted from the casein and whey protein fractions using trypsin, pepsin, and papain enzymes. The bioactive peptides were characterized by the liquid chromatography quadrupole time of flight mass spectrometry. Both enzyme-treated casein and whey fractions were incubated with the HCT116 cell lines, and then the cell cytotoxicity was evaluated using MTT assay. The type of cell death was analyzed by flow cytometry using Annexin V and propidium iodide. Among all applications, the pepsin-treated casein fraction was the highest potential peptides that cause 80.92% apoptotic cell death. In conclusion, pepsin treated casein fraction exhibited antiproliferative activity against HCT116 cells. The bioactive peptides of this fraction can be considered as a potential source for the development of new anti cancerogenic agents.
Collapse
Affiliation(s)
- Bilal Cakir
- İstanbul Sabahattin Zaim University (İZÜ), Food and Agricultural Research Center (GTAUM), Küçükçekmece, Istanbul, Turkey.
| | - Tugba Tunali-Akbay
- Marmara University, Faculty of Dentistry, Basic Medical Sciences Department, Maltepe, Istanbul, Turkey.
| |
Collapse
|
11
|
Sharkey SJ, Harnedy-Rothwell PA, Allsopp PJ, Hollywood LE, FitzGerald RJ, O'Harte FPM. A Narrative Review of the Anti-Hyperglycemic and Satiating Effects of Fish Protein Hydrolysates and Their Bioactive Peptides. Mol Nutr Food Res 2020; 64:e2000403. [PMID: 32939966 DOI: 10.1002/mnfr.202000403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prevalence of type 2 diabetes and overweight/obesity are increasing globally. Food supplementation as a preventative option has become an attractive option in comparison to increased pharmacotherapy dependency. Hydrolysates of fish processing waste and by-products have become particularly interesting in a climate of increased food wastage awareness and are rapidly gaining traction in food research. This review summarizes the available research so far on the potential effect of these hydrolysates on diabetes and appetite suppression. Scopus and Web of Science are searched using eight keywords (fish, hydrolysate, peptides, satiating, insulinotropic, incretin, anti-obesity, DPP-4 [dipeptidylpeptidase-4/IV]) returning a total of 2549 results. Following exclusion criteria (repeated appearances, non-fish marine sources [e.g., macroalgae], and irrelevant bioactivities [e.g., immunomodulatory, anti-thrombotic]), 44 relevant publications are included in this review. Stimulation of hormone secretion, regulation of glucose uptake, anorexigenic potential, identified mechanisms of action, and research conducted on the most potent bioactive peptides identified within these hydrolysates are all specifically addressed. Results of this review conclude that despite wide methodological variation between studies, there is significant potential for the application of fish protein hydrolysates in the management of bodyweight and hyperglycemia.
Collapse
Affiliation(s)
- Shaun J Sharkey
- School of Biomedical Sciences, Ulster University, Cromore Road, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| | | | - Philip J Allsopp
- School of Biomedical Sciences, Ulster University, Cromore Road, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| | - Lynsey E Hollywood
- Department of Hospitality and Tourism Management, Ulster University Business School, Ulster University, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| | - Richard J FitzGerald
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
| | - Finbarr P M O'Harte
- School of Biomedical Sciences, Ulster University, Cromore Road, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| |
Collapse
|
12
|
Egger L, Ménard O, Abbühl L, Duerr D, Stoffers H, Berthoud H, Meola M, Badertscher R, Blaser C, Dupont D, Portmann R. Higher microbial diversity in raw than in pasteurized milk Raclette-type cheese enhances peptide and metabolite diversity after in vitro digestion. Food Chem 2020; 340:128154. [PMID: 33010641 DOI: 10.1016/j.foodchem.2020.128154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
Numerous bacteria are responsible for hydrolysis of proteins during cheese ripening. The raw milk flora is a major source of bacterial variety, starter cultures are needed for successful acidification of the cheese and proteolytic strains like Lactobacillus helveticus, are added for flavor improvement or acceleration of ripening processes. To study the impact of higher bacterial diversity in cheese on protein hydrolysis during simulated human digestion, Raclette-type cheeses were produced from raw or heat treated milk, with or without proteolytic L. helveticus and ripened for 120 days. Kinetic processes were studied with a dynamic (DIDGI®) in vitro protocol and endpoints with the static INFOGEST in vitro digestion protocol, allowing a comparison of the two in vitro protocols at the level of gastric and intestinal endpoints. Both digestion protocols resulted in comparable peptide patterns after intestinal digestion and higher microbial diversity in cheeses led to a more diverse peptidome after simulated digestion.
Collapse
Affiliation(s)
- Lotti Egger
- Agroscope, Schwarzenburgstr. 161, 3003 Bern, Switzerland.
| | | | - Lychou Abbühl
- Agroscope, Schwarzenburgstr. 161, 3003 Bern, Switzerland
| | - Desirée Duerr
- Agroscope, Schwarzenburgstr. 161, 3003 Bern, Switzerland
| | | | | | - Marco Meola
- Agroscope, Schwarzenburgstr. 161, 3003 Bern, Switzerland
| | | | - Carola Blaser
- Agroscope, Schwarzenburgstr. 161, 3003 Bern, Switzerland
| | | | - Reto Portmann
- Agroscope, Schwarzenburgstr. 161, 3003 Bern, Switzerland
| |
Collapse
|
13
|
Frühbauerová M, Červenka L, Hájek T, Salek RN, Velichová H, Buňka F. Antioxidant properties of processed cheese spread after freeze-dried and oven-dried grape skin powder addition. POTRAVINARSTVO 2020. [DOI: 10.5219/1310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Processed cheese spread (PCS) is a popular product with high nutritional value and containing protein, fat and minerals. Grape skin is waste from winery processing plants that still has phenolic substances with significant antioxidant activity that could be used for valorisation of processed cheese and increasing the content of nutrients, phenolics and overall antioxidant properties. Both oven-dried (OD) and freeze-dried (FD) grape skin (GS) powder was characterised by the principal ingredients, the content of phenolic compounds and antioxidant capacity. Similarly, the influence of the addition of OD-GS and FD-GS powders on processed cheese spread (PCS) at 1% and 2% (w/w) levels were examined. The OD-GS and FD-GS powders were characterised by protein content, fat content, moisture and dietary fibre, thus showing that drying technique did not affect those parameters. The OD-GS powder exhibited higher content of rutin, (+)-catechin, (-)-epicatechin and total flavonoid content (TFC), while higher total phenolic content (TPC) and ABTS radical cation were observed for freeze-dried GS powder. Fortification of PCS with 1% and 2% (w/w) of GS powder increased protein content. An ANOVA procedure revealed that addition of FD-GS powder to processed cheese spread was superior to TPC values together with rutin, (+)-catechin, and (-)-epicatechin contents. The higher phenolic contents reflected the higher antioxidant capacity of PCS samples fortified with FD-GS powder. Freeze-dried gape skin powder was the better choice for valorisation of processed cheese spread.
Collapse
|
14
|
|
15
|
Liu L, Li S, Zheng J, Bu T, He G, Wu J. Safety considerations on food protein-derived bioactive peptides. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Tonolo F, Folda A, Cesaro L, Scalcon V, Marin O, Ferro S, Bindoli A, Rigobello MP. Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103696] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
17
|
Taniguchi M, Aida R, Saito K, Ochiai A, Takesono S, Saitoh E, Tanaka T. Identification and characterization of multifunctional cationic peptides from traditional Japanese fermented soybean Natto extracts. J Biosci Bioeng 2019; 127:472-478. [PMID: 30337232 DOI: 10.1016/j.jbiosc.2018.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
In this study, we investigated the lipopolysaccharide (LPS)-neutralizing and angiogenic activities of cationic peptides derived from the traditional Japanese fermented product Natto, which is made by fermenting cooked soybeans using Bacillus subtilis. Initially, we prepared 20 fractions of Natto extracts with various isoelectric points (pI's) using ampholyte-free isoelectric focusing (autofocusing). Cationic peptides were then purified from fractions 19 and 20, whose pH values were greater than 12, using reversed-phase high-performance liquid chromatography, and were identified using matrix-assisted laser/desorption ionization-time-of-flight mass spectroscopy. Among the 13 identified cationic peptides, seven (KFNKYGR, FPFPRPPHQK, GQSSRPQDRHQK, QRFDQRSPQ, ERQFPFPRPPHQK, GEIPRPRPRPQHPE, and EQPRPIPFPRPQPR) had pI's greater than 9.5, positive net charges, and differing molecular weights. These peptides were then chemically synthesized and applied to chromogenic LPS-neutralizing assays using Limulus amebocyte lysates, and 50% effective (neutralizing) concentrations of 2.6-5.5 μM were demonstrated. In addition, tube formation assays in human umbilical vein endothelial cells revealed angiogenic activities for all but one (GEIPRPRPRPQHPE) of these seven cationic peptides, with increases in relative tube lengths of 23-31% in the presence of peptides at 10 μM. Subsequent experiments showed negligible hemolytic activity of these peptides at concentrations of up to 500 μM in mammalian red blood cells. Collectively, these data demonstrate that six cationic peptides from Natto extracts, with the exception of GEIPRPRPRPQHPE, have LPS-neutralizing and angiogenic activities but do not induce hemolysis.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Ryousuke Aida
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Kazuki Saito
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Satoshi Takesono
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan
| | - Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
18
|
Acquah C, Agyei D, Obeng EM, Pan S, Tan KX, Danquah MK. Aptamers: an emerging class of bioaffinity ligands in bioactive peptide applications. Crit Rev Food Sci Nutr 2019; 60:1195-1206. [PMID: 30714390 DOI: 10.1080/10408398.2018.1564234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The food and health applications of bioactive peptides have grown remarkably in the past few decades. Current elucidations have shown that bioactive peptides have unique structural arrangement of amino acids, conferring distinct functionalities, and molecular affinity characteristics. However, whereas interest in the biological potency of bioactive peptides has grown, cost-effective techniques for monitoring the structural changes in these peptides and how these changes affect the biological properties have not grown at the same rate. Due to the high binding affinity of aptamers for other biomolecules, they have a huge potential for use in tracking the structural, conformational, and compositional changes in bioactive peptides. This review provides an overview of bioactive peptides and their essential structure-activity relationship. The review further highlights on the types and methods of synthesis of aptamers before the discussion of the prospects, merits, and challenges in the use of aptamers for bioaffinity interactions with bioactive peptides.
Collapse
Affiliation(s)
- Caleb Acquah
- Department of Chemical Engineering, Curtin University, Sarawak, Malaysia.,School of Nutrition Sciences, Faculty of Health Sciences, Curtin University, Sarawak, Malaysia
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Eugene Marfo Obeng
- Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Victoria, Australia
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Kei Xian Tan
- Department of Chemical Engineering, Curtin University, Sarawak, Malaysia
| | - Michael Kobina Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, Tennessee, USA
| |
Collapse
|
19
|
Stabilization of polydopamine modified silver nanoparticles bound trypsin: Insights on protein hydrolysis. Colloids Surf B Biointerfaces 2019; 173:733-741. [DOI: 10.1016/j.colsurfb.2018.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/10/2018] [Accepted: 10/09/2018] [Indexed: 01/03/2023]
|
20
|
Giromini C, Cheli F, Rebucci R, Baldi A. Invited review: Dairy proteins and bioactive peptides: Modeling digestion and the intestinal barrier. J Dairy Sci 2018; 102:929-942. [PMID: 30591343 DOI: 10.3168/jds.2018-15163] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022]
Abstract
Dairy products are one of the most important sources of biologically active proteins and peptides. The health-promoting functions of these peptides are related to their primary structure, which depends on the parent protein composition. A crucial issue in this field is the demonstration of a cause-effect relationship from the ingested protein form to the bioactive form in vivo. Intervention studies represent the gold standard in nutritional research; however, attention has increasingly been focused on the development of sophisticated in vitro models of digestion to elucidate the mechanism of action of dairy nutrients in a mechanistic way and significantly reduce the number of in vivo trials. On the other hand, the epithelial intestinal barrier is the first gate that actively interacts with digestion metabolites, making the intestinal cells the first target tissue of dairy nutrients and respective metabolites. An evolution of the in vitro digestion approach in the study of dairy proteins and derived bioactive compounds is the setup of combined in vitro digestion and cell culture models taking into consideration the endpoint to measure the target organism (e.g., animal, human) and the key concepts of bioaccessibility, bioavailability, and bioactivity. This review discusses the relevance and challenges of modeling digestion and the intestinal barrier, focusing on the implications for the modeling of dairy protein digestion for bioactivity evaluation.
Collapse
Affiliation(s)
- Carlotta Giromini
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134.
| | - Federica Cheli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134
| | - Raffaella Rebucci
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134
| |
Collapse
|
21
|
Biological activities and peptidomic profile of in vitro-digested cow, camel, goat and sheep milk. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.01.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins. Anal Bioanal Chem 2017; 410:3407-3423. [PMID: 29260283 DOI: 10.1007/s00216-017-0793-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/29/2022]
Abstract
Milk proteins have been extensively studied for their ability to yield a range of bioactive peptides following enzymatic hydrolysis/digestion. However, many hurdles still exist regarding the widespread utilization of milk protein-derived bioactive peptides as health enhancing agents for humans. These mostly arise from the fact that most milk protein-derived bioactive peptides are not highly potent. In addition, they may be degraded during gastrointestinal digestion and/or have a low intestinal permeability. The targeted release of bioactive peptides during the enzymatic hydrolysis of milk proteins may allow the generation of particularly potent bioactive hydrolysates and peptides. Therefore, the development of milk protein hydrolysates capable of improving human health requires, in the first instance, optimized targeted release of specific bioactive peptides. The targeted hydrolysis of milk proteins has been aided by a range of in silico tools. These include peptide cutters and predictive modeling linking bioactivity to peptide structure [i.e., molecular docking, quantitative structure activity relationship (QSAR)], or hydrolysis parameters [design of experiments (DOE)]. Different targeted enzymatic release strategies employed during the generation of milk protein hydrolysates are reviewed herein and their limitations are outlined. In addition, specific examples are provided to demonstrate how in silico tools may help in the identification and discovery of potent milk protein-derived peptides. It is anticipated that the development of novel strategies employing a range of in silico tools may help in the generation of milk protein hydrolysates containing potent and bioavailable peptides, which in turn may be used to validate their health promoting effects in humans. Graphical abstract The targeted enzymatic hydrolysis of milk proteins may allow the generation of highly potent and bioavailable bioactive peptides.
Collapse
|
23
|
Egger L, Schlegel P, Baumann C, Stoffers H, Guggisberg D, Brügger C, Dürr D, Stoll P, Vergères G, Portmann R. Physiological comparability of the harmonized INFOGEST in vitro digestion method to in vivo pig digestion. Food Res Int 2017; 102:567-574. [DOI: 10.1016/j.foodres.2017.09.047] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 12/24/2022]
|
24
|
Agyei D, Pan S, Acquah C, Bekhit AEDA, Danquah MK. Structure-informed detection and quantification of peptides in food and biological fluids. J Food Biochem 2017; 43:e12482. [PMID: 31353495 DOI: 10.1111/jfbc.12482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023]
Abstract
Peptides with biological properties, that is, bioactive peptides, are a class of biomolecules whose health-promoting properties are increasingly being exploited in food and health products. However, research on targeted techniques for the detection and quantification of these peptides is still in its infancy. Such information is needed in order to enhance the biological and chemometric characterization of peptides and their subsequent application in the functional food and pharmaceutical industries. In this review, the role of classic techniques such as electrophoretic, chromatographic, and peptide mass spectrometry in the structure-informed detection and quantitation of bioactive peptides are discussed. Prospects for the use of aptamers in the characterization of bioactive peptides are also discussed. PRACTICAL APPLICATIONS: Although bioactive peptides have huge potential applications in the functional foods and health area, there are limited techniques in enhancing throughput detection, quantification, and characterization of these peptides. This review discusses state-of-the-art techniques relevant in complementing bioactive detection and profiling irrespective of the small number of amino acid units. Insights into challenges, possible remedies and prevailing areas requiring thorough research in the extant literature for food chemists and biotechnologists are also presented.
Collapse
Affiliation(s)
- Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising 85354, Germany
| | - Caleb Acquah
- Curtin Malaysia Research Institute, Curtin University, Sarawak 98009, Malaysia.,Department of Chemical Engineering, Curtin University, Sarawak 98009, Malaysia
| | | | - Michael K Danquah
- Curtin Malaysia Research Institute, Curtin University, Sarawak 98009, Malaysia.,Department of Chemical Engineering, Curtin University, Sarawak 98009, Malaysia
| |
Collapse
|