1
|
Dai X, Song B, Xiang X, Jiang B, Li D, Liu C, Feng Z. Plasma technology modifies the surface properties of desalted duck egg white and applied as a novel oleogel stabilizer. Food Chem 2025; 480:143921. [PMID: 40121881 DOI: 10.1016/j.foodchem.2025.143921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/24/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Salted duck egg white (SDEW) is often discarded due to its high salt content. In this work, low-temperature plasma (LTP) technology was used to modify the functional properties of gelatinized desalted SDEW (gd-SDEW) through physical and chemical changes. After LTP treatment at 35 v for 3 min, gd-SDEW showed an increase in oil holding capacity. The analytical results indicated that the increase of β-sheets in the secondary structure, the surface hydrophobicity and the carbonyl content, the significant increase of BET surface area and decrease of adsorption mean pore size, and the increase of surface roughness were responsible for the increase of its oil holding capacity. LTP-treated gd-SDEW microgels can be used to stabilize the oleogels with excellent oil holding capacity, higher viscosity and gelation characteristics. This study offers the possibility of LTP as a novel technique to modify the surface properties of gd-SDEW for the reuse of SDEW.
Collapse
Affiliation(s)
- Xiaohan Dai
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bo Song
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoqing Xiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bin Jiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Dongmei Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Chunhong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Zhibiao Feng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Paschoa JLF, Ávila PF, Silva MF, de Melo AHF, da Cunha RL, Goldbeck R. Development of carrageenan-based emulsion gel as a vehicle to transport xylo-oligosaccharides and its functional properties. Food Funct 2025; 16:2530-2544. [PMID: 40029362 DOI: 10.1039/d5fo00172b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Xylo-oligosaccharides (XOSs) are prebiotic compounds that promote the growth of beneficial microorganisms in the intestinal tract and show resistance to enzymatic digestion, which makes them ideal for use as ingredients in healthy foods. This study presents the development of a new prebiotic and antioxidant carrageenan-based emulsion gel (EG) as a vehicle to transport XOSs obtained from sugarcane bagasse. The aim of developing the EG is its future potential application as a saturated fat replacement ingredient in food products with added functional properties (antioxidant and prebiotic). An experimental strategy based on a central composite rotational design (CCRD) was used to optimize the formulation of the EG with the aim of replicating the technological properties of saturated fat. The optimized emulsion gel with xylo-oligosaccharides (OEGX) resisted in vitro digestion and provided probiotic bacterial growth, with nearly 50% consumption of XOSs, indicating their prebiotic potential when incorporated into the emulsion. Furthermore, the stability of the OEGX against lipid oxidation processes, assessed during 30 days of storage at 40 °C, confirmed that the presence of XOSs in the emulsion considerably delayed the peroxidation process during storage. These results indicate that formulation of OEGX represents a promising strategy for the development of functional foods, meeting the growing demand for food products enriched with healthy ingredients.
Collapse
Affiliation(s)
- João L F Paschoa
- Laboratory of Bioprocess and Metabolic Engineering, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, Cidade Universitária, Campinas, Campinas, SP, 13083-862, Brazil.
| | - Patrícia Felix Ávila
- Laboratory of Bioprocess and Metabolic Engineering, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, Cidade Universitária, Campinas, Campinas, SP, 13083-862, Brazil.
| | - Marcos F Silva
- Laboratory of Bioprocess and Metabolic Engineering, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, Cidade Universitária, Campinas, Campinas, SP, 13083-862, Brazil.
| | - Allan Henrique F de Melo
- Laboratory of Bioprocess and Metabolic Engineering, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, Cidade Universitária, Campinas, Campinas, SP, 13083-862, Brazil.
| | - Rosiane Lopes da Cunha
- Process Engineering Laboratory, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rosana Goldbeck
- Laboratory of Bioprocess and Metabolic Engineering, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, Cidade Universitária, Campinas, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
3
|
Ferdaus MJ, Mahmud N, Talukder S, da Silva RC. Characteristics and Functional Properties of Bioactive Oleogels: A Current Review. Gels 2025; 11:69. [PMID: 39852041 PMCID: PMC11764616 DOI: 10.3390/gels11010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Oleogels have been a revolutionary innovation in food science in terms of their health benefits and unique structural properties. They provide a healthier alternative to traditional solid or animal fats. They have improved oxidative stability and nutritional value to maintain the desirable sensory qualities of lipid-based foods. Moreover, oleogels offer an ideal carrier for poorly water-soluble bioactive compounds. The three-dimensional structure of oleogels can protect and deliver bioactive compounds in functional food products. Bioactive compounds also affect the crystalline behavior of oleogelators, the physical properties of oleogels, and storage stability. Generally, different incorporation techniques are applied to entrap bioactive compounds in the oleogel matrix depending on their characteristics. These approaches enhance the bioavailability, controlled release, stability of bioactive compounds, and the shelf life of oleogels. The multifunctionality of oleogels extends their applications beyond fat replacements, e.g., food preservation, nutraceutical delivery, and even novel innovations like 3D food printing. Despite their potential, challenges such as large-scale production, cost efficiency, and consumer acceptance remain areas for further exploration. This review emphasizes the understanding of the relationship between the structure of oleogels and their functional properties to optimize their design in different food applications. It also highlights the latest advancements in bioactive oleogels, focusing on how they incorporate bioactive compounds such as polyphenols, essential oils, and flavonoids into oleogels. The impact of these compounds on the gelation process, storage stability, and overall functionality of oleogels is also critically examined.
Collapse
Affiliation(s)
| | | | | | - Roberta Claro da Silva
- Food and Nutritional Sciences Program, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (M.J.F.); (N.M.); (S.T.)
| |
Collapse
|
4
|
Cen S, Meng Z. Advances of plant-based fat analogs in 3D printing: Manufacturing strategies, printabilities, and food applications. Food Res Int 2024; 197:115178. [PMID: 39593389 DOI: 10.1016/j.foodres.2024.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 11/28/2024]
Abstract
Plant-based fat analogs are important alternatives to animal fats proposed in response to the strategy of low fat, low saturation, and sustainable development. Apart from possessing solid or semi-solid fat-analog structural properties, plant-based fat analogs also exhibit ideal rheological properties, making them highly suitable for food 3D printing. By utilizing 3D printing technology, it is feasible to personalize both the external (color and shape) and internal (nutrition and flavor) aspects of food, as well as plant-based fat analogs. Therefore, this review focuses on the research progress of plant-based fat analogs prepared based on 3D printing technology in the custom design of low-fat healthy food. This paper comprehensively reviews the latest advancements in manufacturing plant-based fat analogs from three perspectives: food hydrocolloids, oleogels, and emulsion gels. Then, starting with the printability of plant-based fat analogs, the food 3D printing technology and the printing characteristics of plant-based fat analogs are introduced. Next, strategies to adjust the printing stability of plant-based fat analogs to improve their plasticity and fidelity are discussed. Finally, the application prospects and limitations of plant-based fat analogs prepared by extrusion 3D printing technology in meat products, bakery goods, chocolates, and aerated food are discussed, which provides a reference for expanding the application of 3D printing in the field of fat-reducing and healthy food.
Collapse
Affiliation(s)
- Shaoyi Cen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Li J, Shi W, Sun Y, Qin Z, Zheng S, Liang S, Li Y, Ritzoulis C, Zhang H. Fabrication, characterization, and oxidation resistance of gelatin/egg white protein cryogel-templated oleogels through apple polyphenol crosslinking. Int J Biol Macromol 2024; 277:134077. [PMID: 39053829 DOI: 10.1016/j.ijbiomac.2024.134077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Cryogel-templated oleogels (CTO) were fabricated via a facile polyphenol crosslinking strategy, where apple polyphenol was utilized to crosslink the gelatin/egg white protein conjugates without forming hydrogels. After freeze-drying, cryogel templates were obtained and used to construct CTO by oil absorption. Apple polyphenol crosslinking improved the emulsion-related properties with appearance changes on samples, and infrared spectroscopy further confirmed the interactions between proteins and apple polyphenol. The crosslinked cryogels presented porous microstructures (porosity of over 96 %), enhanced thermal/mechanical stabilities, and could absorb a high content of oil (14.41 g/g) with a considerable oil holding capacity (90.98 %). Apple polyphenol crosslinking also influenced the rheological performances of CTO, where the highly crosslinked samples owned the best thixotropic recovery of 85.88 %. Moreover, after the rapid oxidation of oleogels, the generation of oxidation products was effectively inhibited by crosslinking (POV: 0.48 nmol/g, and TBARS: 0.53 mg/L). The polyphenol crosslinking strategy successfully involved egg white protein and gelatin to fabricate CTO with desired physical/chemical properties. Apple polyphenol acted as both a crosslinker and an antioxidant, which provided a good reference for fabricating pure protein-based CTO.
Collapse
Affiliation(s)
- Jiawen Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wangjue Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yifeng Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zeyu Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shijie Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Siheng Liang
- Aberdeen Institute of Data Science and Artificial Intelligence, South China Normal University, Guangzhou, China
| | - Yang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Alexander Campus, Thessaloniki, Greece; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Suman DK, Pal K, Mohanty B, Erva RR. Novel nutraceutical delivery system utilizing a bigel formulated with sesame oil, kokum butter, and pectin. Food Sci Biotechnol 2024; 33:3067-3082. [PMID: 39220304 PMCID: PMC11364833 DOI: 10.1007/s10068-024-01559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 09/04/2024] Open
Abstract
This study delineates biobased foods. Curcumin (CRU) delivery modules were studied using pectin gel, Sesame oil (SO), and Kokum butter (KB) oleogel (OG). SB1, the control, has 10% OG. The pectin gel between 10 and 50% oleogel were emulsified by 2.5% tween 80. Surface, physical, chemical, and physiochemical properties of prepared bigels were examined. Microscopic studies show biphasic feature. With OG content, FTIR shows hydrogen bonding increasing and decreasing. XRD confirmed gel amorphousness. Stress relaxation indicated 10% control bigel had considerably less strength. Bigel impedance factors increased considerably with OG content, according to impedance profiles. The moisture study found that replacing hydro phase with OG phase in formulations reduced moisture content from 10 to 50%. Less CRU released from 20 to 50% bigel matrices than 10% during in vitro studies. Acidic pH hindered polymer relaxation, altering release behaviour. Overall, the bigels were studied and shown to regulate oral CRU administration. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01559-3.
Collapse
Affiliation(s)
- Dheerendra Kumar Suman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Odisha India
| | - Rajeswara Reddy Erva
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh India
| |
Collapse
|
7
|
Chowdhury B, Sharma A, Akshit FNU, Mohan MS, Salunke P, Anand S. A review of oleogels applications in dairy foods. Crit Rev Food Sci Nutr 2024; 64:9691-9709. [PMID: 37229559 DOI: 10.1080/10408398.2023.2215871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The characteristics of dairy products, such as texture, color, flavor, and nutritional profile, are significantly influenced by the presence of milk fat. However, saturated fatty acids account for 65% of total milk fat. With increased health awareness and regulatory recommendations, consumer preferences have evolved toward low/no saturated fat food products. Reducing the saturated fat content of dairy products to meet market demands is an urgent yet challenging task, as it may compromise product quality and increase production costs. In this regard, oleogels have emerged as a viable milk fat replacement in dairy foods. This review focuses on recent advances in oleogel systems and explores their potential for incorporation into dairy products as a milk fat substitute. Overall, it can be concluded that oleogel can be a potential alternative to replace milk fat fully or partially in the product matrix to improve nutritional profile by mimicking similar rheological and textural product characteristics as milk fat. Furthermore, the impact of consuming oleogel-based dairy foods on digestibility and gut health is also discussed. A thorough comprehension of the application of oleogels in dairy products will provide an opportunity for the dairy sector to develop applications that will appeal to the changing consumer needs.
Collapse
Affiliation(s)
- Bhaswati Chowdhury
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Aditya Sharma
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - F N U Akshit
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Maneesha S Mohan
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Prafulla Salunke
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
8
|
Yang C, Li A, Guo T, Cheng J, Liu Z, Hu H, Wang J. Novel organic-inorganic composite pea protein silica food-grade aerogel materials: Fabrication, mechanisms, high oil-holding property and curcumin delivery capacity. Int J Biol Macromol 2024; 273:132832. [PMID: 38834123 DOI: 10.1016/j.ijbiomac.2024.132832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/20/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
The fragility of the skeleton and poor bioaccessibility limit Silica aerogel's application in the food industry. In this study, composite gels were obtained by cross-linking pea proteins isolate (PPI) with Tetraethoxysilane (TEOS)to improve the bioavailability of silica-derived aerogels. It indicated that TEOS first condensed with H+ to form secondary particles and then complexed with PPI via hydroxyl groups to form a composite aerogel. Meanwhile, the PPI-Si composite aerogel formed a dense mesoporous structure with a specific surface area of 312.5 g/cm3. This resulted in a higher oil holding percentage of 89.67 % for the PPI (10 %)-Si aerogel, which was 34.1 % higher than other studies, leading to a more stable oleogel. Finally, as a delivery system, the composite oleogel not only could significantly increase the bioaccessibility rate by 27.4 % compared with silica aerogel, but also could efficiently inhibit the premature release of curcumin in the simulated gastric fluids, while allowed sustainably release in the simulated intestinal fluids. These results provided a theoretical basis for the application of silica-derived aerogels in food and non-food applications.
Collapse
Affiliation(s)
- Chen Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Aitong Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - TianLai Guo
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jie Cheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ziyun Liu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haiyue Hu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jianming Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
9
|
Qiu H, Zhang H, Eun JB. Oleogel classification, physicochemical characterization methods, and typical cases of application in food: a review. Food Sci Biotechnol 2024; 33:1273-1293. [PMID: 38585566 PMCID: PMC10992539 DOI: 10.1007/s10068-023-01501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 04/09/2024] Open
Abstract
The harmful effects of trans and saturated fatty acids have attracted worldwide attention. Edible oleogels, which can structure liquid oils, are promising healthy alternatives to traditional fats. Active research on oleogels is focused on the interaction between unsaturated oils with different fatty acid compositions and low molecular weight or polymer oleogels. The unique network structure inside oleogels has facilitated their application in candies, spreads, meat, and other products. However, the micro- and macro-properties, as well as the functional properties of oleogels vary by preparation method and the system composition. This review discusses the characteristics of oleogels, serving as a reference for the application of oleogels in food products. Specifically, it (i) classifies oleogels and explains the influence of gelling factors on their gelation, (ii) describes the methods for measuring the physicochemical properties of oleogels, and (iii) discusses the current applications of oleogels in food products.
Collapse
Affiliation(s)
- Hongtu Qiu
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 South Korea
- Department of School of Life Science and Bioengineering, Jining University, No.1 Xin tan Road, JiNing, 273155 China
- Yanbian University, Department of Food Science and Technology, No.977 Gong yuan Road, Yanji, 133002 China
| | - Hua Zhang
- Yanbian University, Department of Food Science and Technology, No.977 Gong yuan Road, Yanji, 133002 China
| | - Jong-Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 South Korea
| |
Collapse
|
10
|
Zhang S, Ren C, Wang C, Han R, Xie S. Effects of hydrocolloids and oleogel on techno-functional properties of dairy foods. Food Chem X 2024; 21:101215. [PMID: 38379797 PMCID: PMC10876705 DOI: 10.1016/j.fochx.2024.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
This paper aims to overview the influence of different gels that including hydrocolloids and oleogel on techno-functional changes of dairy foods. The hydrocolloids are widely added to dairy products as stabilizers, emulsifiers, and gelling agents to enhance their texture, or improve sensory properties to meet consumer needs; and the newly developed oleogel, which despite less discussed in dairy foods, this article lists its application in different dairy products. The properties of different hydrocolloids were explained in detail, meanwhile, some common hydrocolloids such as pectin, sodium alginate, carrageenan along with the interaction between gel and proteins on techno-functional properties of dairy products were mainly discussed. What's more, the composition of oleogel and its influence on dairy foods were briefly summarized. The key issues have been revealed that the use of both hydrocolloids and oleogel has great potential to be the future trend to improve the quality of dairy foods effectively.
Collapse
Affiliation(s)
- Shan Zhang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Chuanying Ren
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Caiyun Wang
- Inner Mongolia YiLi Industrial Group Co., Ltd., Hohhot 010110, China
| | - Renjiao Han
- Inner Mongolia National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Siyu Xie
- Inner Mongolia YiLi Industrial Group Co., Ltd., Hohhot 010110, China
| |
Collapse
|
11
|
Szymanska I, Zbikowska A, Onacik-Gür S. New Insight into Food-Grade Emulsions: Candelilla Wax-Based Oleogels as an Internal Phase of Novel Vegan Creams. Foods 2024; 13:729. [PMID: 38472842 DOI: 10.3390/foods13050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Cream-type emulsions containing candelilla wax-based oleogels (EC) were analyzed for their physicochemical properties compared to palm oil-based creams (EP). The microstructure, rheological behavior, stability, and color of the creams were determined by means of non-invasive and invasive techniques. All the formulations exhibited similar color parameters in CIEL*a*b* space, unimodal-like size distribution of lipid particles, and shear-thinning properties. Oleogel-based formulations were characterized by higher viscosity (consistency index: 172-305 mPa·s, macroscopic viscosity index: 2.19-3.08 × 10-5 nm-2) and elasticity (elasticity index: 1.09-1.45 × 10-3 nm-2), as well as greater resistance to centrifugal force compared to EP. Creams with 3, 4, or 5% wax (EC3-5) showed the lowest polydispersity indexes (PDI: 0.80-0.85) 24 h after production and the lowest instability indexes after environmental temperature changes (heating at 90 °C, or freeze-thaw cycle). EC5 had particularly high microstructural stability. In turn, candelilla wax content ≥ 6% w/w accelerated the destabilization processes of the cream-type emulsions due to disintegration of the interfacial layer by larger lipid crystals. It was found that candelilla wax-based lipids had great potential for use as palm oil substitutes in the development of novel vegan cream analogues.
Collapse
Affiliation(s)
- Iwona Szymanska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Anna Zbikowska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Sylwia Onacik-Gür
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology-State Research Institute, 36 Rakowiecka Street, 02-532 Warsaw, Poland
| |
Collapse
|
12
|
Fernandes Almeida R, Aguiar Borges L, Torres da Silva T, Serafim Timóteo Dos Santos N, Gianasi F, Augusto Caldas Batista E, Efraim P. Chocolates, compounds and spreads: A review on the use of oleogels, hydrogels and hybrid gels to reduce saturated fat content. Food Res Int 2024; 178:113986. [PMID: 38309886 DOI: 10.1016/j.foodres.2024.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
This study is a bibliometric analysis and literature review on the use of oleogels (OGs), hydrogels (HGs) and hybrid gels (HYGs) in chocolate, compounds and spreads with the aim of reducing the saturated fat in these products. The articles were selected by analyzing titles, keywords and abstracts in the Web of Science (WoS), Scopus and Google Scholar databases. Supplementary documents were obtained from government sources, including patent registrations. The theoretical and practical aspects were critically analyzed, highlighting the main points of agreement and disagreement between the authors. The results revealed a lack of regulations and official guidelines that widely allow the use of OGs, HGs and HYGs in chocolate confectionery products. The type and characteristics of raw materials affect the properties of products. Replacing cocoa butter (CB) with OGs, HGs or HYGs also affects texture, melting point and behavior, and nutritional aspects. These substitutions can result in products with better sensory acceptance and health benefits, such as reducing saturated fat and promoting cardiovascular health. However, it is important to find the ideal combination and proportions of components to obtain the desired properties in the final products.
Collapse
Affiliation(s)
- Rafael Fernandes Almeida
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Lara Aguiar Borges
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Thayná Torres da Silva
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Nereide Serafim Timóteo Dos Santos
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Felipe Gianasi
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Eduardo Augusto Caldas Batista
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Priscilla Efraim
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
13
|
Ferdaus MJ, Barman B, Mahmud N, da Silva RC. Oleogels as a Promising Alternative to Animal Fat in Saturated Fat-Reduced Meat Products: A Review. Gels 2024; 10:92. [PMID: 38391422 PMCID: PMC10888177 DOI: 10.3390/gels10020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The surge in chronic diseases is closely linked to heightened levels of saturated and trans fatty acids in processed foods, particularly meat products. Addressing this concern, various strategies have been employed to alleviate the impact of these detrimental fats. Among these, oleogels have emerged as a novel and promising approach in the food industry. As restructured fat systems, oleogels offer a unique opportunity to enhance the nutritional profile of meat products while providing distinct health and environmental advantages. This comprehensive review explores the transformative role of oleogels as innovative substitutes for traditional animal fats in a variety of meat products. Utilizing materials such as hydroxypropyl methylcellulose (HPMC), sterols, beeswax, γ-oryzanol, β-sitosterol, and others, oleogels have been investigated in diverse studies. The examination encompasses their impact on the textural, nutritional, and oxidative dimensions of meat patties, pork patties, pork liver pâtés, beef heart patties, and meat batters. An in-depth exploration is undertaken into the influence of various elements, including the type of oil, gelling agents, and processing methods, on the stability and physicochemical attributes of oleogels. Additionally, the paper scrutinizes the potential effects of oleogels on sensory attributes, texture, and the shelf life of meat products. In conclusion, this collective body of research emphasizes the versatility and efficacy of oleogels as viable replacements for traditional animal fats across a spectrum of meat products. The documented improvements in nutritional quality, oxidative stability, and sensory attributes pave the way for the development of healthier and more sustainable formulations in the meat industry.
Collapse
Affiliation(s)
- Md Jannatul Ferdaus
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Bishal Barman
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Niaz Mahmud
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Roberta Claro da Silva
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
14
|
Gao W, Yang G, Zhang D, Xu X, Hu J, Meng P, Liu W. Evaluation of high oleic sunflower oil oleogels with beeswax, beeswax-glyceryl monopalmitate, and beeswax-Span80 in cookie preparation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6198-6207. [PMID: 37140538 DOI: 10.1002/jsfa.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Shortening is used widely in cookie preparation to improve quality and texture. However, large amounts of saturated and trans fatty acids present in shortening have adverse effects on human health, and much effort has been made to reduce the use of shortening. The use of oleogels might be a suitable alternative. In this study, the oleogels of high oleic sunflower oil with beeswax (BW), BW-glyceryl monopalmitate (BW-GMP), and BW-Span80 (BW-S80) were prepared and their suitability to replace shortening in cookie preparation was evaluated. RESULTS The solid fat content of BW, BW-GMP, and BW-S80 oleogels was significantly lower than that of commercial shortening when the temperature was not higher than 35 °C. However, the oil-binding capacity of these oleogels was almost similar to that of shortening. The crystals in the shortening and oleogels were β' form mainly; however, the morphology of crystal aggregates in these oleogels was different from that of shortening. The textural and rheological properties of doughs prepared with the oleogels were similar, and clearly different from those of dough with commercial shortening. The breaking strengths of cookies made with oleogels were lower than that of cookies prepared with shortening. However, cookies containing BW-GMP and BW-S80 oleogels were similar in density and color to those prepared with shortening. CONCLUSION The textural properties and color of cookies with BW-GMP and BW-S80 oleogels were very similar to those of the cookies containing commercial shortening. The BW-GMP and BW-S80 oleogels could act as alternatives to shortening in the preparation of cookies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weifeng Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Guolong Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Dan Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Xiaoxin Xu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Jingbo Hu
- College of Chemical Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Pengcheng Meng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Wei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
15
|
Chen L, Lin S, Sun N. Food gel-based systems for efficient delivery of bioactive ingredients: design to application. Crit Rev Food Sci Nutr 2023; 64:13193-13211. [PMID: 37753779 DOI: 10.1080/10408398.2023.2262578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Food gels derived from natural biopolymers are valuable materials with significant scientific merit in the food industry because of their biocompatibility, safety, and environmental friendliness compared to synthetic gels. These gels serve as crucial delivery systems for bioactive ingredients. This review focuses on the selection, formulation, characterization, and behavior in gastrointestinal of hydrogels, oleogels, and bigels as delivery systems for bioactive ingredients. These three gel delivery systems exhibit certain differences in composition and can achieve the delivery of different bioactive ingredients. Hydrogels are suitable for delivering hydrophilic ingredients. Oleogels are an excellent choice for delivering lipophilic ingredients. Bigels contain both aqueous and oil phases, whose gelation makes their structure more stable, demonstrating the advantages of the above two types of gels. Besides, the formation and properties of the gel system are confirmed using different characterization methods. Furthermore, the changing behavior (e.g., swelling, disintegration, collapse, erosion) of the gel structure in the gastrointestinal is also analyzed, providing an opportunity to formulate soft substances that offer better protection or controlled release of bioactive components. This can further improve the transmissibility and utilization of bioactive substances, which is of great significance.
Collapse
Affiliation(s)
- Lei Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
16
|
Li J, Zhao S, Zhu Q, Zhang H. Characterization of chitosan-gelatin cryogel templates developed by chemical crosslinking and oxidation resistance of camellia oil cryogel-templated oleogels. Carbohydr Polym 2023; 315:120971. [PMID: 37230613 DOI: 10.1016/j.carbpol.2023.120971] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/17/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
In this study, chitosan-gelatin conjugates were prepared by chemical crosslinking of tannic acid. The cryogel templates were developed through freeze-drying and immersed in camellia oil to construct cryogel-templated oleogels. Chemical crosslinking resulted in apparent colour changes and improved emulsion-related/rheological properties on conjugates. The cryogel templates with different formulas exhibited different microstructures with high porosities (over 96 %), and crosslinked samples might have higher hydrogen bonding strength. Tannic acid crosslinking also led to enhanced thermal stabilities and mechanical properties. Cryogel templates could reach a considerable oil absorption capacity of up to 29.26 g/g and prevent oil from leaking effectively. The obtained oleogels with high tannic acid content possessed outstanding antioxidant abilities. After 8 days of rapid oxidation at 40 °C, Oleogels with a high degree of crosslinking owned the lowest POV and TBARS values (39.74 nmol/kg, and 24.40 μg/g, respectively). This study indicates that the involvement of chemical crosslinking would favor the preparation and the application potential of cryogel-templated oleogels, and the tannic acid in the composite biopolymer systems could act as both the crosslinking agent and the antioxidant.
Collapse
Affiliation(s)
- Jiawen Li
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shunan Zhao
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qinyi Zhu
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| |
Collapse
|
17
|
Botella-Martínez C, Pérez-Álvarez JÁ, Sayas-Barberá E, Navarro Rodríguez de Vera C, Fernández-López J, Viuda-Martos M. Healthier Oils: A New Scope in the Development of Functional Meat and Dairy Products: A Review. Biomolecules 2023; 13:biom13050778. [PMID: 37238648 DOI: 10.3390/biom13050778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In the present day, it has been widely established that a high intake of animal fat that contains a high content of saturated fatty acids may cause several life-threatening diseases, including obesity, diabetes-type 2, cardiovascular diseases, as well as several types of cancer. In this context, a great number of health organizations and government agencies have launched campaigns to reduce the saturated fat content in foods, which has prompted the food industry, which is no stranger to this problem, to start working to develop foods with a lower fat content or with a different fatty acid profile. Nevertheless, this is not an easy task due to the fact that saturated fat plays a very important role in food processing and in the sensorial perception of foods. Actually, the best way to replace saturated fat is with the use of structured vegetable or marine oils. The main strategies for structuring oils include pre-emulsification, microencapsulation, the development of gelled emulsions, and the development of oleogels. This review will examine the current literature on the different (i) healthier oils and (ii) strategies that will be potentially used by the food industry to reduce or replace the fat content in several food products.
Collapse
Affiliation(s)
- Carmen Botella-Martínez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Casilda Navarro Rodríguez de Vera
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Orihuela, Spain
| |
Collapse
|
18
|
Ropciuc S, Dranca F, Oroian MA, Leahu A, Codină GG, Prisacaru AE. Structuring of Cold Pressed Oils: Evaluation of the Physicochemical Characteristics and Microstructure of White Beeswax Oleogels. Gels 2023; 9:gels9030216. [PMID: 36975665 PMCID: PMC10048366 DOI: 10.3390/gels9030216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
The aim of the study was to characterize the gelling effect of beeswax (BW) using different types of cold pressed oil. The organogels were produced by hot mixing sunflower oil, olive oil, walnut oil, grape seed oil and hemp seed oil with 3%, 7% and 11% beeswax. Characterization of the oleogels was done using Fourier transform infrared spectroscopy (FTIR), the chemical and physical properties of the oleogels were determined, the oil binding capacity was estimated and the SEM morphology was studied. The color differences were highlighted by the CIE Lab color scale for evaluating the psychometric index of brightness (L*), components a and b. Beeswax showed excellent gelling capacity at 3% (w/w) of 99.73% for grape seed oil and a minimum capacity of 64.34%for hemp seed oil. The value of the peroxide index is strongly correlated with the oleogelator concentration. Scanning electron microscopy described the morphology of the oleogels in the form of overlapping structures of platelets similar in structure, but dependent on the percentage of oleogelator added. The use in the food industry of oleogels from cold-pressed vegetable oils with white beeswax is conditioned by the ability to imitate the properties of conventional fats.
Collapse
|
19
|
Li J, Zhang H. Efficient fabrication, characterization, and in vitro digestion of aerogel-templated oleogels from a facile method: Electrospun short fibers. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Oleogels-Innovative Technological Solution for the Nutritional Improvement of Meat Products. Foods 2022; 12:foods12010131. [PMID: 36613347 PMCID: PMC9818335 DOI: 10.3390/foods12010131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Food products contain important quantities of fats, which include saturated and/or unsaturated fatty acids. Because of a proven relationship between saturated fat consumption and the appearance of several diseases, an actual trend is to eliminate them from foodstuffs by finding solutions for integrating other healthier fats with high stability and solid-like structure. Polyunsaturated vegetable oils are healthier for the human diet, but their liquid consistency can lead to a weak texture or oil drain if directly introduced into foods during technological processes. Lately, the use of oleogels that are obtained through the solidification of liquid oils by using edible oleogelators, showed encouraging results as fat replacers in several types of foods. In particular, for meat products, studies regarding successful oleogel integration in burgers, meat batters, pâtés, frankfurters, fermented and bologna sausages have been noted, in order to improve their nutritional profile and make them healthier by substituting for animal fats. The present review aims to summarize the newest trends regarding the use of oleogels in meat products. However, further research on the compatibility between different oil-oleogelator formulations and meat product components is needed, as it is extremely important to obtain appropriate compositions with adequate behavior under the processing conditions.
Collapse
|
21
|
Liu Y, Binks BP. Fabrication of Stable Oleofoams with Sorbitan Ester Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14779-14788. [PMID: 36410861 PMCID: PMC9730906 DOI: 10.1021/acs.langmuir.2c02413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Sorbitan esters have been extensively used as surfactants to stabilize emulsions in many fields. However, the preparation of an oleofoam with sorbitan ester alone has not been reported. Here, we apply a novel protocol to fabricate stable oleofoams of high air volume fraction from mixtures of vegetable oil and sorbitan ester. To incorporate more air bubbles into the oil matrix, aeration is first carried out in the one-phase region at high temperatures, during which the highest over-run can reach 280%. Due to foam instability at high temperatures, the foam is then submitted to rapid cooling, followed by storage at low temperatures. For high-melting sorbitan monostearate, the resulting foams containing many crystal-encased air bubbles are ultrastable to drainage, coarsening, and coalescence for several months. On the contrary, the cooled foams with low-melting sorbitan monooleate go through a gradual decay lasting for more than 1 month. We highlight the importance of hydrogen bond formation between surfactant and oil in enhancing foam stability. The generic nature of the above findings is demonstrated by preparing oil foams with various vegetable oils and sorbitan monooleate.
Collapse
|
22
|
Li J, Xi Y, Wu L, Zhang H. Preparation, characterization and in vitro digestion of bamboo shoot protein/soybean protein isolate based-oleogels by emulsion-templated approach. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Fabrication of aerogel-templated oleogels from alginate-gelatin conjugates for in vitro digestion. Carbohydr Polym 2022; 291:119603. [DOI: 10.1016/j.carbpol.2022.119603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
|
24
|
Silva PM, Cerqueira MA, Martins AJ, Fasolin LH, Cunha RL, Vicente AA. Oleogels and bigels as alternatives to saturated fats: A review on their application by the food industry. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pedro M. Silva
- Centre of Biological Engineering University of Minho Braga Portugal
- International Iberian Nanotechnology Laboratory Braga Portugal
| | | | | | - Luiz H. Fasolin
- Department of Food Engineering and Technology School of Food Engineering, University of Campinas – UNICAMP Campinas São Paulo Brazil
| | - Rosiane L. Cunha
- Department of Food Engineering and Technology School of Food Engineering, University of Campinas – UNICAMP Campinas São Paulo Brazil
| | | |
Collapse
|
25
|
Barroso NG, Santos MAS, Okuro PK, Cunha RL. Composition and process approaches that underpin the mechanical properties of oleogels. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noádia Genuario Barroso
- Department of Food Engineering and Technology, School of Food Engineering University of Campinas (UNICAMP) Campinas Brazil
| | - Matheus Augusto Silva Santos
- Department of Food Engineering and Technology, School of Food Engineering University of Campinas (UNICAMP) Campinas Brazil
| | - Paula Kiyomi Okuro
- Department of Food Engineering and Technology, School of Food Engineering University of Campinas (UNICAMP) Campinas Brazil
| | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology, School of Food Engineering University of Campinas (UNICAMP) Campinas Brazil
| |
Collapse
|
26
|
Hao J, Li X, Wang Q, Lv W, Zhang W, Xu D. Recent developments and prospects in the extraction, composition, stability, food applications, and
in vitro
digestion of plant oil bodies. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jia Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Xiaoyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Qiuyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Wenwen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Wenguan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| |
Collapse
|
27
|
Analysis of Stability, Rheological and Structural Properties of Oleogels Obtained from Peanut Oil Structured with Yellow Beeswax. Gels 2022; 8:gels8070448. [PMID: 35877533 PMCID: PMC9318143 DOI: 10.3390/gels8070448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to evaluate the macro- and microscopic properties of oleogels with yellow beeswax using different methods, especially modern optical techniques. Microrheological properties, physical stability and morphology of oleogel crystals obtained by structuring of peanut oil with yellow beeswax was analyzed. It was observed that oleogels, even with the smallest concentration of beeswax (2%), were resistant to centrifugal force. Increase in yellow beeswax concentration (from 2, 4, 6 to 8 %) resulted in significant differences in the characteristics of oleogels: increased elasticity (EI), macroscopic viscosity (MVI) and the firmness values of oleogels. It was concluded that non-invasive optical techniques (multi-speckle diffusing wave spectroscopy—Rheolaser Master) are useful in obtaining a quick evaluation of physical properties of oleogels at the microstructural level, and the received information allows for quality assessment.
Collapse
|
28
|
Jordânia Silva T, Ramírez-Carrasco P, Romero-Hasler P, Soto-Bustamante E, Barrera-Arellano D, Robert P, Giménez B. Soybean oil organogelled emulsions as oral delivery systems of hydroxytyrosol and hydroxytyrosol alkyl esters. Food Chem 2022; 379:132182. [DOI: 10.1016/j.foodchem.2022.132182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
|
29
|
Zhang J, Chuesiang P, Kim JT, Shin GH. The role of nanostructured lipid carriers and type of biopolymers on the lipid digestion and release rate of curcumin from curcumin-loaded oleogels. Food Chem 2022; 392:133306. [PMID: 35636193 DOI: 10.1016/j.foodchem.2022.133306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/23/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
Abstract
Curcumin-nanostructured lipid carrier-loaded oleogels (Cur-NLC-OGs) have been developed with biopolymer cryogels as an efficient delivery system to overcome the extremely low water solubility and instability of curcumin. The effect of NLC and biopolymer types on the encapsulation and release of curcumin from Cur-OGs was investigated. Alginate, carboxymethyl cellulose (CMC), and pectin solutions were firstly freeze dried to make biopolymer cryogels and they were mixed with Cur and Cur-NLC to obtain stable and self-standing Cur-OGs and Cur-NLC-OGs, respectively. As compared to Cur-OGs, Cur-NLC-OGs had higher encapsulation efficiency and showed slower release of curcumin under acidic condition. Although Cur-NLC affected the rapid release of free fatty acids, the Cur-NLC-OGs prepared with CMC cryogel was most efficient in delaying lipid digestion. Overall, NLC and CMC-based OGs could be effectively used to improve encapsulation efficiency and control lipolysis of lipid droplets. These results will be advantageous for the development of oleogels with desirable functionality.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Piyanan Chuesiang
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea.
| |
Collapse
|
30
|
Sivakanthan S, Fawzia S, Madhujith T, Karim A. Synergistic effects of oleogelators in tailoring the properties of oleogels: A review. Compr Rev Food Sci Food Saf 2022; 21:3507-3539. [PMID: 35591753 DOI: 10.1111/1541-4337.12966] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
Conventional solid fats play a crucial role as an ingredient in many processed foods. However, these fats contain a high amount of saturated fats and trans fats. Legislations and dietary recommendations related to these two types of fats set forth as a consequence of evidence showing their deleterious health impact have triggered the attempts to find alternate tailor-made lipids for these solid fats. Oleogels is considered as a novel alternative, which has reduced saturated fat and no trans fat content. In addition to mimicking the distinctive characteristics of solid fats, oleogels can be developed to contain a high amount of polyunsaturated fatty acids and used to deliver bioactives. Although there has been a dramatic rise in the interest in developing oleogels for food applications over the past decade, none of them has been commercially used in foods so far due to the deficiency in their crystal network structure, particularly in monocomponent gels. Very recently, there is a surge in the interest in using of combination of gelators due to the synergistic effects that aid in overcoming the drawbacks in monocomponent gels. However, currently, there is no comprehensive insight into synergism among oleogelators reported in recent studies. Therefore, a comprehensive intuition into the findings reported on synergism is crucial to fill this gap. The objective of this review is to give a comprehensive insight into synergism among gelators based on recent literature. This paper also identifies the future research propositions towards developing oleogels capable of exactly mimicking the properties of conventional solid fats to bridge the gap between laboratory research and the food industry.
Collapse
Affiliation(s)
- Subajiny Sivakanthan
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.,Department of Agricultural Chemistry, Faculty of Agriculture, University of Jaffna, Kilinochchi, Sri Lanka.,Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sabrina Fawzia
- School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Azharul Karim
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Szymańska I, Żbikowska A, Onacik-Gür S. Candelilla wax-based oleogels versus palm oil: evaluation of physical properties of innovative and conventional lipids using optical techniques. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2309-2320. [PMID: 34625957 DOI: 10.1002/jsfa.11569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/08/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The widespread use of palm oil in food production affects high consumption of long-chain saturated fatty acids, which increases the risk of cardiovascular disease. Solid or semi-solid wax-based oleogels obtained as a result of edible oils structuring can be an alternative. RESULTS Oleogels, obtained by structuring a mixture of refined rapeseed and linseed oils (1:1) with 30-80 g kg-1 candelilla wax (CW), were investigated using optical techniques: multi-speckle diffusing wave spectroscopy, centrifugal stability analysis, reflection method, and polarized light microscopy. Refined palm oil was a comparative sample. Increasing CW concentration resulted in an increase in values of L* parameter and opacity, a decrease in the Yellowness Index and a slight increase in the average crystal size. The microstructure of oleogels with 30 or 40 g kg-1 CW was least like the crystal network. Solidification of oleogels took place in two stages. Increase in CW concentration shortened solidification time and increased solidification temperature (greater elasticity of oleogels). Palm oil solidified the longest (497.1 min) and at the lowest temperature (29.3 °C). It showed lower resistance to centrifugal force than oleogels at 20 and 30 °C. All oleogels were stable (no oil release occurred) at 20 °C. CONCLUSION Optical methods allow for an objective and detailed analysis of physical properties of palm oil and oleogels, as well as identification and tracking changes at the microstructural level over time. It has great potential in the edible lipid quality control at various stages of processing or storage. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Iwona Szymańska
- Department of Food Technology and Assessment, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Anna Żbikowska
- Department of Food Technology and Assessment, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Sylwia Onacik-Gür
- Department of Food Technology and Assessment, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
32
|
Palla CA, Dominguez M, Carrín ME. An overview of structure engineering to tailor the functionality of monoglyceride oleogels. Compr Rev Food Sci Food Saf 2022; 21:2587-2614. [DOI: 10.1111/1541-4337.12930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Camila A. Palla
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Bahía Blanca Argentina
- Planta Piloto de Ingeniería Química ‐ PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| | - Martina Dominguez
- Planta Piloto de Ingeniería Química ‐ PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| | - María Elena Carrín
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Bahía Blanca Argentina
- Planta Piloto de Ingeniería Química ‐ PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| |
Collapse
|
33
|
Li L, Liu G, Bogojevic O, Pedersen JN, Guo Z. Edible oleogels as solid fat alternatives: Composition and oleogelation mechanism implications. Compr Rev Food Sci Food Saf 2022; 21:2077-2104. [DOI: 10.1111/1541-4337.12928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 01/05/2022] [Accepted: 01/26/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Linlin Li
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety South China University of Technology Guangzhou China
| | - Oliver Bogojevic
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| | - Jacob Nedergaard Pedersen
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| |
Collapse
|
34
|
Wei F, Lu M, Li J, Xiao J, Rogers MA, Cao Y, Lan Y. Construction of foam-templated oleogels based on rice bran protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
|
36
|
Wang Z, Chandrapala J, Truong T, Farahnaky A. Oleogels prepared with low molecular weight gelators: Texture, rheology and sensory properties, a review. Crit Rev Food Sci Nutr 2022; 63:6069-6113. [PMID: 35057682 DOI: 10.1080/10408398.2022.2027339] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is a growing need for healthier foods with no trans and reduced saturated fat. However, solid fats play critical roles in texture and sensory attributes of food products, making it challenging to eliminate them in foods. Recently, the concept of oleogelation as a novel oil structuring technique has received numerous attentions owing to their great potential to mimic the properties of solid fats. Understanding textural, rheological and sensory properties of oleogels helps predict the techno-functionalities of oleogels to replace solid fats in food products. This research critically reviews the textural and rheological properties of oleogels prepared by low molecular weight oleogelators (LMWGs) and functional characteristics of foods formulated by these oleogels. The mechanical properties of LMWG-containing oleogels are comprehensively discussed against conventional solid fats. The interactions between the oleogel and its surrounding food matrix are explained, and the sensory attributes of oleogel containing reformulated products are highlighted. Scientific insights into the texture and rheological properties of oleogels manufactured with a wide range of low molecular gelators and their related products are provided in order to boost their implication for creating healthier foods with high consumer acceptability. Future research opportunities on low molecular weight gelators are also discussed.
Collapse
Affiliation(s)
- Ziyu Wang
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Jayani Chandrapala
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Tuyen Truong
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Martinez RM, Oseliero Filho PL, Gerbelli BB, Magalhães WV, Velasco MVR, da Silva Lannes SC, de Oliveira CLP, Rosado C, Baby AR. Influence of the Mixtures of Vegetable Oil and Vitamin E over the Microstructure and Rheology of Organogels. Gels 2022; 8:gels8010036. [PMID: 35049573 PMCID: PMC8774424 DOI: 10.3390/gels8010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Candelilla wax (CW) and 12-hydroxystearic acid (12HSA) are classic solid-fiber-matrix organogelators. Despite the high number of studies using those ingredients in oily systems, there is scarce literature using a mixture of oil and antioxidants. Vitamin E (VE) is an important candidate for its lipophilicity and several applications on pharmaceutical, cosmetics, and food industries. In this work, we investigated the influences of mixtures between vegetable oil (VO) and VE on the microstructures and rheological properties of CW and 12HSA organogels. A weak gel (G′′/G′ > 0.1) with a shear-thinning behavior was observed for all samples. The presence of VE impacted the gel strength and the phase transition temperatures in a dose-dependent pattern. Larger and denser packed crystals were seen for 12HSA samples, while smaller and more dispersed structures were obtained for CW organogels. The results obtained in this work allowed the correlation of the structural and mechanical properties of the organogels, which plays an important role in the physical-chemical characteristics of these materials.
Collapse
Affiliation(s)
- Renata Miliani Martinez
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
- Correspondence: (R.M.M.); (A.R.B.)
| | | | - Barbara Bianca Gerbelli
- Center of Natural and Human Sciences, Federal University of ABC, Santo André 09210-170, Brazil;
| | | | - Maria Valéria Robles Velasco
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Suzana Caetano da Silva Lannes
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | | | - Catarina Rosado
- CBIOS—Universidade Lusófona’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
- Correspondence: (R.M.M.); (A.R.B.)
| |
Collapse
|
38
|
Current trends and next generation of future edible oils. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Ribeiro E, Morell P, Nicoletti V, Quiles A, Hernando I. Protein- and polysaccharide-based particles used for Pickering emulsion stabilisation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106839] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Pinto TC, Martins AJ, Pastrana L, Pereira MC, Cerqueira MA. Oleogel-Based Systems for the Delivery of Bioactive Compounds in Foods. Gels 2021; 7:gels7030086. [PMID: 34287270 PMCID: PMC8293095 DOI: 10.3390/gels7030086] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 01/29/2023] Open
Abstract
Oleogels are semi-solid materials containing a large fraction of liquid oil entrapped in a network of structuring molecules. In the food industry, these formulations can be used to mimic fats and to deliver bioactive compounds. In the last decade, there has been increasing interest in these structures, not only from a scientific point of view, i.e., studying new molecules, methodologies for gelification, and new structures, but also from a technological point of view, with researchers and companies exploring these structures as a way to overcome certain challenges and/or create new and innovative products. One of the exciting applications of oleogels is the delivery of functional molecules, where the incorporation of oil-soluble functional compounds can be explored not only at the macroscale but also at micro- and nanoscales, resulting in different release behaviors and also different applications. This review presents and discusses the most recent works on the development, production, characterization, and applications of oleogels and other oleogel-based systems to deliver functional molecules in foods.
Collapse
Affiliation(s)
- Tiago C. Pinto
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; (T.C.P.); (M.C.P.)
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
| | - Artur J. Martins
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
| | - Lorenzo Pastrana
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
| | - Maria C. Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; (T.C.P.); (M.C.P.)
| | - Miguel A. Cerqueira
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
- Correspondence:
| |
Collapse
|
41
|
Pușcaș A, Mureșan V, Muste S. Application of Analytical Methods for the Comprehensive Analysis of Oleogels-A Review. Polymers (Basel) 2021; 13:polym13121934. [PMID: 34200945 PMCID: PMC8230493 DOI: 10.3390/polym13121934] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous empirical studies have already been conducted on the innovative fat-replacing system defined as oleogel, creating a real urge for setting up a framework for future research, rather than conducting studies with arbitrary methods. This study re-evaluates the utility of some analyses and states some conclusions in order to eliminate the reluctance of food processors and consumers towards the utilization of oleogels as ingredients. The review presents extensively the methods applied for the characterization of various oleogels, while highlighting their addressability or inconveniences. The discussed methods were documented from the research published in the last five years. A classification of the methods is proposed based on their aims or the utility of the results, which either describe the nano-structure and the network formation, the quality of the resulting oleogel or its suitability as food ingredient or other edible purposes. The general conclusions drawn for some classes of oleogels were also revisited, in order to ease the understanding of the oleogel behaviour, to encourage innovative research approaches and to stimulate the progress in the state of art of knowledge.
Collapse
|
42
|
Bin Sintang MD, Danthine S, Tavernier I, Van de Walle D, Doan CD, Aji Muhammad DR, Rimaux T, Dewettinck K. Polymer coated fat crystals as oil structuring agents: Fabrication and oil-structuring properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Kulawik-Pióro A, Miastkowska M. Polymeric Gels and Their Application in the Treatment of Psoriasis Vulgaris: A Review. Int J Mol Sci 2021; 22:ijms22105124. [PMID: 34066105 PMCID: PMC8151792 DOI: 10.3390/ijms22105124] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
Psoriasis is a chronic skin disease, and it is especially characterized by the occurrence of red, itchy, and scaly eruptions on the skin. The quality of life of patients with psoriasis is decreased because this disease remains incurable, despite the rapid progress of therapeutic methods and the introduction of many innovative antipsoriatic drugs. Moreover, many patients with psoriasis are dissatisfied with their current treatment methods and the form with which the drug is applied. The patients complain about skin irritation, clothing stains, unpleasant smell, or excessive viscosity of the preparation. The causes of these issues should be linked with little effectiveness of the therapy caused by low permeation of the drug into the skin, as well as patients’ disobeying doctors’ recommendations, e.g., concerning regular application of the preparation. Both of these factors are closely related to the physicochemical form of the preparation and its rheological and mechanical properties. To improve the quality of patients’ lives, it is important to gain knowledge about the specific form of the drug and its effect on the safety and efficacy of a therapy as well as the patients’ comfort during application. Therefore, we present a literature review and a detailed analysis of the composition, rheological properties, and mechanical properties of polymeric gels as an alternative to viscous and greasy ointments. We discuss the following polymeric gels: hydrogels, oleogels, emulgels, and bigels. In our opinion, they have many characteristics (i.e., safety, effectiveness, desired durability, acceptance by patients), which can contribute to the development of an effective and, at the same time comfortable, method of local treatment of psoriasis for patients.
Collapse
Affiliation(s)
| | - Małgorzata Miastkowska
- Correspondence: (A.K.-P.); (M.M.); Tel.: +48-1-2628-2740 (A.K.-P.); +48-1-2628-3072 (M.M.)
| |
Collapse
|
44
|
Zhao W, Wei Z, Xue C. Recent advances on food-grade oleogels: Fabrication, application and research trends. Crit Rev Food Sci Nutr 2021; 62:7659-7676. [PMID: 33955285 DOI: 10.1080/10408398.2021.1922354] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to improve the nutritional and quality characteristics of food, solid fats are widely used in food formulations. With the continuous improvement of consumers' awareness of health in recent years, substantial attempts have been carried out to find substitutes for solid fats to reduce saturated fatty acid content in foods. Oleogels have drawn increasing attention due to their attractive advantages such as easy fabrication, superior fatty acid composition and safe use in food products to satisfy consumers' demands for healthy products. This review provides the latest information on the diversified oleogel systems. The feasibility of oleogel and oleogel-based system as nutraceutical vehicles is elucidated. The type as well as concentration of oleogelators and the synergistic effect between two or more oleogelators are important factors affecting the properties of obtained oleogel. Oleogels used in nutraceutical delivery have been shown to offer increased loading amount, enhanced bioaccessibility and targeted or controlled release. These nutrients wrapped in oleogels may in turn affect the formation and properties of oleogels. Furthermore, the future perspectives of oleogels are discussed. The feasible research trends of food-grade oleogel include oleogel-based solid lipid particle, essential oil-in-oleogel system, delivery of probiotics, nutraceuticals co-delivery and microencapsulated oleogel.
Collapse
Affiliation(s)
- Wanjun Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
45
|
Shakeel A, Farooq U, Gabriele D, Marangoni AG, Lupi FR. Bigels and multi-component organogels: An overview from rheological perspective. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106190] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|