1
|
Sun Y, Liu X, Li B, Sava-Segal C, Wang A, Zhang M. Effects of Repetition Suppression on Sound Induced Flash Illusion With Aging. Front Psychol 2020; 11:216. [PMID: 32153456 PMCID: PMC7047336 DOI: 10.3389/fpsyg.2020.00216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 01/30/2020] [Indexed: 11/13/2022] Open
Abstract
The sound-induced flash illusion (SiFI) is a classical auditory-dominated multisensory integration phenomenon in which the observer misperceives the number of visual flashes due to the simultaneous presentation of a different number of auditory beeps. Although the SiFI has been documented to correlate with perceptual sensitivity, to date there is no consensus as to how it corresponds to sensitivity with aging. The present study was based on the SiFI paradigm (Shams et al., 2000), adding repeated auditory stimuli prior to the appearance of audiovisual stimuli to investigate the effects of repetition suppression (RS) on the SiFI with aging. The repeated auditory stimuli consisted of one or two of the same auditory stimuli presented twice in succession, which were then followed by the audiovisual stimuli. By comparing the illusions in old and young adults, we aimed to explore the influence of aging on the RS of auditory stimuli on the SiFI. The results showed that both age groups showed SiFI effects, however, the RS performance of the two age groups had different effects on the fusion and fission illusions. The illusion effect in old adults was weaker than in young adults. Specifically, RS only affected fission illusions in the old adults but both fission and fusion illusions in young adults. Thus, the present study indicated that the decreased perceptual sensitivity based on auditory RS could weaken the SiFI effect in multisensory integration and that old adults are more susceptible to RS, showing that old adults perceived the SiFI effect weakly under auditory RS.
Collapse
Affiliation(s)
- Yawen Sun
- Department of Psychology, Soochow University, Suzhou, China
| | - Xiaole Liu
- Department of Psychology, Soochow University, Suzhou, China
- Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China
| | - Biqin Li
- Laboratory of Psychology and Cognition Science, School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Clara Sava-Segal
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, United States
| | - Aijun Wang
- Department of Psychology, Soochow University, Suzhou, China
- Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China
| | - Ming Zhang
- Department of Psychology, Soochow University, Suzhou, China
- Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Neural correlates of auditory sensory memory dynamics in the aging brain. Neurobiol Aging 2020; 88:128-136. [PMID: 32035848 DOI: 10.1016/j.neurobiolaging.2019.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 11/21/2022]
Abstract
The auditory system allows us to monitor background environmental sound patterns and recognize deviations that may indicate opportunities or threats. The mismatch negativity and P3a potentials have generators in the auditory and inferior frontal cortex and index expected sound patterns (standards) and any aberrations (deviants). The mismatch negativity and P3a waveforms show increased positivity for consecutive standards and deviants preceded by more standards. We hypothesized attenuated repetition effects in older participants, potentially because of differences in prefrontal functions. Young (23 ± 5 years) and older (75 ± 5 years) adults were tested in 2 oddball paradigms with pitch or location deviants. Significant repetition effects were observed in the young standard and deviant waveforms at multiple time windows. Except the earliest time window (30-100 ms), repetition effects were absent in the older group. Repetition effects were significant at frontal but not temporal lobe sites and did not differ among pitch and location deviants. However, P3a repetition was evident in both ages. Findings suggest age differences in the dynamic updating of sensory memory for background sound patterns.
Collapse
|
3
|
Wagnon CC, Wehrmann K, Klöppel S, Peter J. Incidental Learning: A Systematic Review of Its Effect on Episodic Memory Performance in Older Age. Front Aging Neurosci 2019; 11:173. [PMID: 31379557 PMCID: PMC6650531 DOI: 10.3389/fnagi.2019.00173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Episodic memory is the capacity to encode, store, and retrieve information of specific past events. Several studies have shown that the decline in episodic memory accompanies aging, but most of these studies assessed memory performance through intentional learning. In this approach, the individuals deliberately acquire knowledge. Yet, another method to evaluate episodic memory performance-receiving less attention by the research community-is incidental learning. Here, participants do not explicitly intent to learn. Incidental learning becomes increasingly important over the lifespan, since people spend less time in institutions where intentional learning is required (e.g., school, university, or at work). Yet, we know little how incidental learning impacts episodic memory performance in advanced age. Likewise, the neural mechanisms underlying incidental learning in older age remain largely unknown. Thus, the immediate goal of this review was to summarize the existing literature on how incidental learning changes with age and how neural mechanisms map onto these age-related changes. We considered behavioral as well as neuroimaging studies using incidental learning paradigms (alone or in combination with intentional learning) to assess episodic memory performance in elderly adults. We conducted a systematic literature search on the Medline/PubMed, Cochrane, and OVID SP databases and searched the reference lists of articles. The search yielded 245 studies, of which 34 concerned incidental learning and episodic memory in older adults. In sum, these studies suggest that aging particularly affects episodic memory after incidental learning for cognitively demanding tasks. Monitoring deficits in older adults might account for these findings since cognitively demanding tasks need increased attentional resources. On a neuronal level, dysregulation of the default-mode-network mirrors monitoring deficits, with an attempt to compensate through increased frontal activity. Future (neuroimaging) studies should systematically evaluate retrieval tasks with diverging cognitive load and consider the influence of attention and executive functions in more detail.
Collapse
Affiliation(s)
| | | | | | - Jessica Peter
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Age-related differences in Voice-Onset-Time in Polish language users: An ERP study. Acta Psychol (Amst) 2019; 193:18-29. [PMID: 30580059 DOI: 10.1016/j.actpsy.2018.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/15/2018] [Accepted: 12/06/2018] [Indexed: 11/23/2022] Open
Abstract
Using the Mismatch Negativity (MMN) paradigm we investigated for the first time cortical responses to consonant - vowel (CV) syllables differing in Voice-Onset-Time (VOT) for Polish, a member of the Slavic group of languages. The study aimed at testing age-related effects on different ERP responses in young (20-30 years of age) and elderly (60-68 years) native Polish speakers. Participants were presented with a sequence of voiced and voiceless stop CV syllables /to/ and /do/ with different VOT values (-100 ms, -70 ms, -30 ms, -20 ms, +20 ms, +50 ms). We analyzed MMN and P1, N1, N1', P2, N2 components. Our results showed an age-related decline in voicing perception in all tested ERP components. This decline could be explained in relation to a general slowing in neural processing with advancing age and may be associated with difficulties in temporal- and spectral-information processing in elderly people. Our findings revealed also that specific features of Slavic languages influence ERP morphology in a different way than reported in the literature for aspirating languages.
Collapse
|
5
|
Wilson TW, Heinrichs-Graham E, Proskovec AL, McDermott TJ. Neuroimaging with magnetoencephalography: A dynamic view of brain pathophysiology. Transl Res 2016; 175:17-36. [PMID: 26874219 PMCID: PMC4959997 DOI: 10.1016/j.trsl.2016.01.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/12/2023]
Abstract
Magnetoencephalography (MEG) is a noninvasive, silent, and totally passive neurophysiological imaging method with excellent temporal resolution (∼1 ms) and good spatial precision (∼3-5 mm). In a typical experiment, MEG data are acquired as healthy controls or patients with neurologic or psychiatric disorders perform a specific cognitive task, or receive sensory stimulation. The resulting data are generally analyzed using standard electrophysiological methods, coupled with advanced image reconstruction algorithms. To date, the total number of MEG instruments and associated users is significantly smaller than comparable human neuroimaging techniques, although this is likely to change in the near future with advances in the technology. Despite this small base, MEG research has made a significant impact on several areas of translational neuroscience, largely through its unique capacity to quantify the oscillatory dynamics of activated brain circuits in humans. This review focuses on the clinical areas where MEG imaging has arguably had the greatest impact in regard to the identification of aberrant neural dynamics at the regional and network level, monitoring of disease progression, determining how efficacious pharmacologic and behavioral interventions modulate neural systems, and the development of neural markers of disease. Specifically, this review covers recent advances in understanding the abnormal neural oscillatory dynamics that underlie Parkinson's disease, autism spectrum disorders, human immunodeficiency virus (HIV)-associated neurocognitive disorders, cerebral palsy, attention-deficit hyperactivity disorder, cognitive aging, and post-traumatic stress disorder. MEG imaging has had a major impact on how clinical neuroscientists understand the brain basis of these disorders, and its translational influence is rapidly expanding with new discoveries and applications emerging continuously.
Collapse
Affiliation(s)
- Tony W Wilson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Neb; Center for Magnetoencephalography, UNMC, Omaha, Neb; Department of Neurological Sciences, UNMC, Omaha, Neb.
| | - Elizabeth Heinrichs-Graham
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Neb; Center for Magnetoencephalography, UNMC, Omaha, Neb
| | - Amy L Proskovec
- Center for Magnetoencephalography, UNMC, Omaha, Neb; Department of Psychology, University of Nebraska - Omaha, Neb
| | - Timothy J McDermott
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Neb; Center for Magnetoencephalography, UNMC, Omaha, Neb
| |
Collapse
|
6
|
Manan HA, Franz EA, Yusoff AN, Mukari SZMS. The effects of aging on the brain activation pattern during a speech perception task: an fMRI study. Aging Clin Exp Res 2015; 27:27-36. [PMID: 24906677 DOI: 10.1007/s40520-014-0240-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/06/2014] [Indexed: 11/28/2022]
Abstract
In the present study, brain activation associated with speech perception processing was examined across four groups of adult participants with age ranges between 20 and 65 years, using functional MRI (fMRI). Cognitive performance demonstrates that performance accuracy declines with age. fMRI results reveal that all four groups of participants activated the same brain areas. The same brain activation pattern was found in all activated areas (except for the right superior temporal gyrus and right middle temporal gyrus); brain activity was increased from group 1 (20-29 years) to group 2 (30-39 years). However, it decreased in group 3 (40-49 years) with further decreases in group 4 participants (50-65 years). Result also reveals that three brain areas (superior temporal gyrus, Heschl's gyrus and cerebellum) showed changes in brain laterality in the older participants, akin to a shift from left-lateralized to right-lateralized activity. The onset of this change was different across brain areas. Based on these findings we suggest that, whereas all four groups of participants used the same areas in processing, the engagement and recruitment of those areas differ with age as the brain grows older. Findings are discussed in the context of corroborating evidence of neural changes with age.
Collapse
Affiliation(s)
- Hanani Abdul Manan
- Diagnostic Imaging and Radiotherapy Program, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia,
| | | | | | | |
Collapse
|
7
|
Sanfratello L, Caprihan A, Stephen JM, Knoefel JE, Adair JC, Qualls C, Lundy SL, Aine CJ. Same task, different strategies: how brain networks can be influenced by memory strategy. Hum Brain Mapp 2014; 35:5127-40. [PMID: 24931401 DOI: 10.1002/hbm.22538] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/04/2014] [Accepted: 04/15/2014] [Indexed: 11/07/2022] Open
Abstract
Previous functional neuroimaging studies demonstrated that different neural networks underlie different types of cognitive processing by engaging participants in particular tasks, such as verbal or spatial working memory (WM) tasks. However, we report here that even when a WM task is defined as verbal or spatial, different types of memory strategies may be used to complete it, with concomitant variations in brain activity. We developed a questionnaire to characterize the type of strategy used by individual members in a group of 28 young healthy participants (18-25 years) during a spatial WM task. A cluster analysis was performed to differentiate groups. We acquired functional magnetoencephalography and structural diffusion tensor imaging measures to characterize the brain networks associated with the use of different strategies. We found two types of strategies were used during the spatial WM task, a visuospatial and a verbal strategy, and brain regions and time courses of activation differed between participants who used each. Task performance also varied by type of strategy used with verbal strategies showing an advantage. In addition, performance on neuropsychological tests (indices from Wechsler Adult Intelligence Scale-IV, Rey Complex Figure Test) correlated significantly with fractional anisotropy measures for the visuospatial strategy group in white matter tracts implicated in other WM and attention studies. We conclude that differences in memory strategy can have a pronounced effect on the locations and timing of brain activation and that these differences need further investigation as a possible confounding factor for studies using group averaging as a means for summarizing results.
Collapse
Affiliation(s)
- Lori Sanfratello
- Department of Radiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Josef Golubic S, Aine CJ, Stephen JM, Adair JC, Knoefel JE, Supek S. Modulatory role of the prefrontal generator within the auditory M50 network. Neuroimage 2014; 92:120-31. [PMID: 24531051 PMCID: PMC4059503 DOI: 10.1016/j.neuroimage.2014.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022] Open
Abstract
The amplitude variability of the M50 component of neuromagnetic responses is commonly used to explore the brain's ability to modulate its response to incoming repetitive or novel auditory stimuli, a process conceptualized as a gating mechanism. The goal of this study was to identify the spatial and temporal characteristics of the cortical sources underlying the M50 network evoked by tones in a passive oddball paradigm. Twenty elderly subjects [10 patients diagnosed with mild cognitive impairment (MCI) or probable Alzheimer disease (AD) and 10 age-matched controls] were examined using magnetoencephalographic (MEG) recordings and the multi-dipole Calibrated Start Spatio-Temporal (CSST) source localization method. We identified three cortical regions underlying the M50 network: prefrontal cortex (PF) in addition to bilateral activation of the superior temporal gyrus (STG). The cortical dynamics of the PF source within the 30-100 ms post-stimulus interval was characterized and was found to be comprised of two subcomponents, Mb1c and Mb2c. The PF source was localized for 10/10 healthy subjects, whereas 9/10 MCI/AD patients were lacking the PF source for both tone conditions. The selective activation of the PF source in healthy controls along with the inactivation of the PF region for MCI/AD patients, enabled us to examine the dynamics of this network of activity when it was functional and dysfunctional, respectively. We found significantly enhanced activity of the STG sources in response to both tone conditions for all subjects who lacked a PF source. The reported results provide novel insights into the topology and neurodynamics of the M50 auditory network, which suggest an inhibitory role of the PF source that normally suppresses activity of the STG sources.
Collapse
Affiliation(s)
| | - Cheryl J Aine
- Department of Radiology, UNM School of Medicine, Albuquerque, NM 87131, USA
| | | | - John C Adair
- Department of Neurology, UNM School of Medicine, Albuquerque, NM 87131, USA
| | - Janice E Knoefel
- Department of Internal Medicine, UNM School of Medicine, Albuquerque, NM 87131, USA
| | - Selma Supek
- Department of Physics, Faculty of Science, University of Zagreb, Croatia.
| |
Collapse
|
9
|
Enhanced attention-dependent activity in the auditory cortex of older musicians. Neurobiol Aging 2014; 35:55-63. [DOI: 10.1016/j.neurobiolaging.2013.06.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 06/25/2013] [Accepted: 06/30/2013] [Indexed: 11/23/2022]
|
10
|
Age-related changes in the neurophysiology of language in adults: relationship to regional cortical thinning and white matter microstructure. J Neurosci 2012; 32:12204-13. [PMID: 22933802 DOI: 10.1523/jneurosci.0136-12.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although reading skill remains relatively stable with advancing age in humans, neurophysiological measures suggest potential reductions in efficiency of lexical information processing. It is unclear whether these age-related changes are secondary to decreases in regional cortical thickness and/or microstructure of fiber tracts essential to language. Magnetoencephalography, volumetric MRI, and diffusion tensor imaging were performed in 10 young (18-33 years) and 10 middle-aged (42-64 years) human individuals to evaluate the spatiotemporal dynamics and structural correlates of age-related changes in lexical-semantic processing. Increasing age was associated with reduced activity in left temporal lobe regions from 250 to 350 ms and in left inferior prefrontal cortex from 350 to 450 ms (i.e., N400). Hierarchical regression indicated that age no longer predicted left inferior prefrontal activity after cortical thickness and fractional anisotropy (FA) of the uncinate fasciculus (UF) were considered. Interestingly, FA of the UF was a stronger predictor of the N400 response than cortical thickness. Age-related reductions in left-lateralization of language responses were observed between 250 and 350 ms, and were associated with left temporal thinning and frontotemporal FA reductions. N400 reductions were not associated with poorer task performance. Rather, increasing age was associated with reduction in the left prefrontal N400, which in turn was also associated with slower response time. These results reveal that changes in the neurophysiology of language occur by middle age and appear to be partially mediated by structural brain loss. These neurophysiological changes may reflect an adaptive process that ensues as communication between left perisylvian regions declines.
Collapse
|
11
|
Aine CJ, Sanfratello L, Ranken D, Best E, MacArthur JA, Wallace T, Gilliam K, Donahue CH, Montaño R, Bryant JE, Scott A, Stephen JM. MEG-SIM: a web portal for testing MEG analysis methods using realistic simulated and empirical data. Neuroinformatics 2012; 10:141-58. [PMID: 22068921 DOI: 10.1007/s12021-011-9132-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MEG and EEG measure electrophysiological activity in the brain with exquisite temporal resolution. Because of this unique strength relative to noninvasive hemodynamic-based measures (fMRI, PET), the complementary nature of hemodynamic and electrophysiological techniques is becoming more widely recognized (e.g., Human Connectome Project). However, the available analysis methods for solving the inverse problem for MEG and EEG have not been compared and standardized to the extent that they have for fMRI/PET. A number of factors, including the non-uniqueness of the solution to the inverse problem for MEG/EEG, have led to multiple analysis techniques which have not been tested on consistent datasets, making direct comparisons of techniques challenging (or impossible). Since each of the methods is known to have their own set of strengths and weaknesses, it would be beneficial to quantify them. Toward this end, we are announcing the establishment of a website containing an extensive series of realistic simulated data for testing purposes ( http://cobre.mrn.org/megsim/ ). Here, we present: 1) a brief overview of the basic types of inverse procedures; 2) the rationale and description of the testbed created; and 3) cases emphasizing functional connectivity (e.g., oscillatory activity) suitable for a wide assortment of analyses including independent component analysis (ICA), Granger Causality/Directed transfer function, and single-trial analysis.
Collapse
Affiliation(s)
- C J Aine
- Department of Radiology, MSC10 5530, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Plomp G, Kunchulia M, Herzog MH. Age-related changes in visually evoked electrical brain activity. Hum Brain Mapp 2011; 33:1124-36. [PMID: 21538705 DOI: 10.1002/hbm.21273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 12/03/2010] [Accepted: 01/03/2010] [Indexed: 11/06/2022] Open
Abstract
Whereas much is known about the degenerative effects of aging on cortical tissue, less is known about how aging affects visually evoked electrical activity, and at what latencies. We compared visual processing in elderly and young controls using a visual masking paradigm, which is particularly sensitive to detect temporal processing deficits, while recording EEG. The results show that, on average, elderly have weaker visual evoked potentials than controls, and that elderly show a distinct scalp potential topography (microstate) at around 150 ms after stimulus onset. This microstate occurred irrespective of the visual stimulus presented. Electrical source imaging showed that the changes in the scalp potential resulted from decreased activity in lateral occipital cortex and increases in fronto-parietal areas. We saw, however, no evidence that increased fronto-parietal activity enhanced performance on the discrimination task, and no evidence that it compensated for decreased posterior activity. Our results show qualitatively different patterns of visual evoked potentials (VEPs) in the elderly, and demonstrate that increased fronto-parietal activity arises during visual processing in the elderly already between 150 and 200 ms after stimulus onset. The microstate associated with these changes is a potential diagnostic tool to detect age-related cortical changes.
Collapse
Affiliation(s)
- Gijs Plomp
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédéral de Lausanne, Lausanne, Switzerland.
| | | | | |
Collapse
|
13
|
Grady CL, Charlton R, He Y, Alain C. Age differences in FMRI adaptation for sound identity and location. Front Hum Neurosci 2011; 5:24. [PMID: 21441992 PMCID: PMC3061355 DOI: 10.3389/fnhum.2011.00024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 03/01/2011] [Indexed: 11/25/2022] Open
Abstract
We explored age differences in auditory perception by measuring fMRI adaptation of brain activity to repetitions of sound identity (what) and location (where), using meaningful environmental sounds. In one condition, both sound identity and location were repeated allowing us to assess non-specific adaptation. In other conditions, only one feature was repeated (identity or location) to assess domain-specific adaptation. Both young and older adults showed comparable non-specific adaptation (identity and location) in bilateral temporal lobes, medial parietal cortex, and subcortical regions. However, older adults showed reduced domain-specific adaptation to location repetitions in a distributed set of regions, including frontal and parietal areas, and to identity repetition in anterior temporal cortex. We also re-analyzed data from a previously published 1-back fMRI study, in which participants responded to infrequent repetition of the identity or location of meaningful sounds. This analysis revealed age differences in domain-specific adaptation in a set of brain regions that overlapped substantially with those identified in the adaptation experiment. This converging evidence of reductions in the degree of auditory fMRI adaptation in older adults suggests that the processing of specific auditory “what” and “where” information is altered with age, which may influence cognitive functions that depend on this processing.
Collapse
|
14
|
Stephen JM, Montaño R, Donahue CH, Adair JC, Knoefel J, Qualls C, Hart B, Ranken D, Aine CJ. Somatosensory responses in normal aging, mild cognitive impairment, and Alzheimer's disease. J Neural Transm (Vienna) 2009; 117:217-25. [PMID: 20013008 DOI: 10.1007/s00702-009-0343-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
Abstract
As a part of a larger study of normal aging and Alzheimer's disease (AD), which included patients with mild cognitive impairment (MCI), we investigated the response to median nerve stimulation in primary and secondary somatosensory areas. We hypothesized that the somatosensory response would be relatively spared given the reported late involvement of sensory areas in the progression of AD. We applied brief pulses of electric current to left and right median nerves to test the somatosensory response in normal elderly (NE), MCI, and AD. MEG responses were measured and were analyzed with a semi-automated source localization algorithm to characterize source locations and timecourses. We found an overall difference in the amplitude of the response of the primary somatosensory source (SI) based on diagnosis. Across the first three peaks of the SI response, the MCI patients exhibited a larger amplitude response than the NE and AD groups (P < 0.03). Additional relationships between neuropsychological measures and SI amplitude were also determined. There was no significant difference in amplitude for the contralateral secondary somatosensory source across diagnostic category. These results suggest that somatosensory cortex is affected early in the progression of AD and may have some consequence on behavioral and functional measures.
Collapse
Affiliation(s)
- Julia M Stephen
- The Mind Research Network, 1101 Yale Boulevard NE, Albuquerque, NM 87106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Aine CJ, Bryant JE, Knoefel JE, Adair JC, Hart B, Donahue CH, Montaño R, Hayek R, Qualls C, Ranken D, Stephen JM. Different strategies for auditory word recognition in healthy versus normal aging. Neuroimage 2009; 49:3319-30. [PMID: 19962439 DOI: 10.1016/j.neuroimage.2009.11.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022] Open
Abstract
To explore the effects of commonly encountered pathology on auditory recognition strategies in elderly participants, magnetoencephalographic (MEG) brain activation patterns and performance were examined in 30 elderly [18 controls and 12 elderly with mild cognitive impairment (MCI) or probable Alzheimer's disease (AD)]. It was predicted that participants with known pathology would reveal different networks of brain activation, compared to healthy elderly, which should correlate with poorer performance. Participants heard a list of words representing common objects, twice. After 20 minutes a list of new and old words was presented and participants judged whether each word was heard earlier. MEG responses were analyzed using a semiautomated source modeling procedure. A cluster analysis using all subjects' MEG sources revealed three dominant patterns of activity which correlated with IQ and task performance. The highest performing group revealed activity in premotor, anterior temporal, and superior parietal lobes with little contribution from prefrontal cortex. Performance and brain activation patterns were also compared for individuals with or without abnormalities such as white matter hyperintensities and/or volume reduction evidenced on their MRIs. Memory performance and activation patterns for individuals with white matter hyperintensities resembled the group of MCI/AD patients. These results emphasize the following: (1) general pathology correlates with cognitive decline and (2) full characterization of the health of elderly participants is important in studies of normal aging since random samples from the elderly population are apt to include individuals with subclinical pathology that can affect cognitive performance.
Collapse
Affiliation(s)
- C J Aine
- Department of Radiology, University of New Mexico School of Medicine, MSC10-5530, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Modulation of medial temporal lobe activity in epilepsy patients with hippocampal sclerosis during verbal working memory. J Int Neuropsychol Soc 2009; 15:536-46. [PMID: 19573272 DOI: 10.1017/s135561770909078x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been traditionally assumed that medial temporal lobe (MTL) is not required for working memory (WM). However, animal lesion and electrophysiological studies and human neuropsychological and neuroimaging studies have provided increasing evidences of a critical involvement of MTL in WM. Based on previous findings, the central aim of this study was to investigate the contribution of the MTL to verbal WM encoding. Here, we used magnetoencephalography (MEG) to compare the patterns of MTL activation of 9 epilepsy patients suffering from left hippocampal sclerosis with those of 10 healthy matched controls while they performed a verbal WM task. MEG recordings allow detailed tracking of the time course of MTL activation. We observed impaired WM performance associated with changes in the dynamics of MTL activity in epilepsy patients. Specifically, whereas patients showed decreased activity in damaged MTL, activity in the contralateral MTL was enhanced, an effect that became significant in the 600- to 700-ms interval after stimulus presentation. These findings strongly support the crucial contribution of MTL to verbal WM encoding and provide compelling evidence for the proposal that MTL contributes to both episodic memory and WM. Whether this pattern is signaling reorganization or a normal use of a damaged structure is discussed.
Collapse
|
17
|
Čeponienė R, Westerfield M, Torki M, Townsend J. Modality-specificity of sensory aging in vision and audition: Evidence from event-related potentials. Brain Res 2008; 1215:53-68. [DOI: 10.1016/j.brainres.2008.02.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 01/13/2008] [Accepted: 02/04/2008] [Indexed: 10/22/2022]
|
18
|
Abstract
Structural and functional neuroimaging continues to play an increasing role in the presurgical evaluation of patients with epilepsy. In addition to its value in localizing the epileptogenic zone and eloquent cortex, neuroimaging is contributing to our understanding of mood comorbidity in epilepsy. Although the vast majority of research has focused on patients with temporal lobe epilepsy (TLE), neuroimaging studies of patients with extratemporal epilepsy and primary generalized epilepsy are increasing in number. In this review, structural and functional imaging modalities that have received considerable research attention in recent years are reviewed, and their strengths and limitations for understanding behavior in epilepsy are assessed. In addition, advances in multimodal imaging are discussed along with their potential application to the presurgical evaluation of patients with seizure disorders.
Collapse
Affiliation(s)
- Carrie R McDonald
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Aine CJ, Woodruff CC, Knoefel JE, Adair JC, Hudson D, Qualls C, Bockholt J, Best E, Kovacevic S, Cobb W, Padilla D, Hart B, Stephen JM. Aging: compensation or maturation? Neuroimage 2006; 32:1891-904. [PMID: 16797187 PMCID: PMC3777226 DOI: 10.1016/j.neuroimage.2006.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 04/24/2006] [Accepted: 05/02/2006] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies of healthy aging often reveal differences in neural activation patterns between young and elderly groups for episodic memory tasks, even though there are no differences in behavioral performance. One explanation typically offered is that the elderly compensate for their memory deficiencies through the recruitment of additional prefrontal regions. The present study of healthy aging compared magnetoencephalographic (MEG) time-courses localized to specific cortical regions in two groups of subjects (20-29 years and >or=65 years) during a visual delayed-match-to-sample (DMS) task. MR morphometrics and neuropsychological test results were also examined with the hope of providing insight into the nature of the age-related differences. The behavioral results indicated no differences in performance between young and elderly groups. Although there was a main effect of age on the latency of the initial peak in primary/secondary visual cortex, these longer latencies were not correlated with the performance of elderly on the DMS task. The lateral occipital gyrus (LOG) revealed qualitatively different patterns of activity for the two age groups corroborated by neuropsychological test results. Morphometric results for the young versus elderly groups revealed less white (WM) and gray matter (GM) volumes in the frontal lobes of the elderly. When a group of middle-aged subjects (33-43 years) was included in the morphometric analyses, the middle-aged subjects revealed statistically greater WM volumes in frontal and parietal cortex suggesting immature WM tracts in the young. Perhaps our elderly utilized a different strategy compared to the young due to the different brain maturation levels of these groups.
Collapse
Affiliation(s)
- Cheryl J Aine
- Research, New Mexico VA Health Care Systems, and Department of Radiology, UNM School of Medicine, Albuquerque, NM 87108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kovacevic S, Qualls C, Adair JC, Hudson D, Woodruff CC, Knoefel J, Lee RR, Stephen JM, Aine CJ. Age-related effects on superior temporal gyrus activity during an auditory oddball task. Neuroreport 2006; 16:1075-9. [PMID: 15973151 DOI: 10.1097/00001756-200507130-00009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We used magnetoencephalography in combination with magnetic resonance imaging to investigate the effects of aging on the temporal dynamics of activity localized to several brain regions during an auditory oddball task. The most interesting effects were noted in the superior temporal gyrus as follows: (1) responses were generally stronger to rare than to frequent tones throughout the entire 600-ms time interval, and (2) increases in the amplitude of the 40-ms peak and the latency of the maximum late response were evident in the elderly. Although superior temporal gyrus activity has traditionally been associated with early sensory processing, these results suggest that superior temporal gyrus activity is also important for later decision-related processing.
Collapse
Affiliation(s)
- Sanja Kovacevic
- Department of Radiology, University of New Mexico, Albuquerque, New Mexico, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|